Oversigt. Kursus Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.
|
|
|
- Troels Dalgaard
- 10 år siden
- Visninger:
Transkript
1 Kursus Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark Oversigt 1 Introduktion til simulering Eksempel Eksempel 3 4 Vha. bootstrap konfidensintervaller Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Motivation Introduktion til simulering Introduktion til simulering Hvad er simulering egentlig? Table 8.1 har et "hul : Små stikprøver som IKKE kommer fra en normalfordeling?? I gl. dage: non-parametriske tests, e.g. Kapitel 14. Mere almindeligt nu: Simuleringsbaseret: Konfidensintervaller er meget nemmere at opnå De er meget nemmere at anvende i mere komplicerede situationer De "forgrover ikke informationen i samme udstrækning De afspejler i højere grad dagens virkelighed - de anvendes simpelt hen nu i rigtig mange sammenhænge Kræver: Brug af computer - R er et super værktøj til dette! (Pseudo)tilfældige tal genereret af en computer En tilfældighedsgenerator er en algoritme der kan generere x i+1 ud fra x i En sekvens af tal "ser tilfældige ud Kræver en "start - kaldet "seed.(bruger typisk uret i computeren) Grundlæggende simuleres den uniforme fordeling, og så bruges: Hvis U Uniform(0, 1) og F er en fordelingsfunktion for en eller anden sandsynlighedsfordeling, så vil F 1 (U) følge fordelingen givet ved F Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
2 I praksis i R Introduktion til simulering Eksempel 1 Introduktion til simulering Eksempel 1 De forskellige fordelinger er gjort klar til simulering: rbinom Binomialfordelingen rpois Poissonfordelingen rhyper Den hypergeometriske fordeling rnorm Normalfordelingen rlnorm Lognormalfordelingen rexp Eksponentialfordelingen runif Den uniforme(lige) fordeling rt t-fordelingen rchisq χ 2 -fordelingen rf F-fordelingen En virksomhed producerer rektangulære plader. Længden af pladerne (i meter), X, antages at kunne beskrives med en normalfordeling N(2, ) og bredden af pladerne (i meter), Y, antages at kunne beskrives med en normalfordeling N(3, ). Man er interesseret i arealet, som jo så givet ved A = XY. Hvad er middelarealet? Hvad er spredningen i arealet fra plade til plade? Hvor ofte sådanne plader har et areal, der afviger mere end 0.1m 2 fra de 6m 2? Sandsynligheden for andre mulige hændelser? Generelt: Hvad er sandsynlighedsfordelingen for A? Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Eksempel 1, løsning i R Introduktion til simulering Eksempel 1 Kode: k=10000 X=rnorm(k,2,0.1) Y=rnorm(k,3,0.2) A=X*Y mean(a) sd(a) sum(abs(a-6)>0.1)/k Resultat: > mean(a) [1] > sd(a) [1] > sum(abs(a- 6)>0.1)/k [1] Skal kunne finde: σ 2 f(x 1,...,X n) = Var(f(X 1,..., X n )) Vi kender allerede: σ 2 f(x 1,...,X n) = n a 2 i σi 2, hvis f(x 1,..., X n ) = i=1 Ny regel for ikke-lineære funktioner: n ( ) 2 f σf(x 2 1,...,X n) σi 2 X i i=1 n a i X i i=1 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
3 Eller ved simulering: Simuler k udfald af samtlige n målinger som N(X i, σi 2 ): X (j) i, j = 1..., k Beregn spredningen direkte som den observerede spredning af de k værdier for f: σ f(x1,...,x n) = k i=1 (f j f) 2 1 k 1 f j = f(x (j) 1,..., X (j) n ) Vi har allerede brugt simulerings-metoden i første del af eksemplet. To konkrete målinger for X og Y, er givet: x = 2.05m og y = 2.99m. Hvad er "fejlen" på A = = 6.13 fundet ved den ikke-lineære fejlophobningslov? Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Faktisk kan man finde variansen for A = XY teoretisk: Var(XY ) = E [ (XY ) 2] [E(XY )] 2 = E(X 2 )E(Y 2 ) E(X) 2 E(Y ) 2 = [ Var(X) + E(X) 2] [ Var(Y ) + E(Y ) 2] E(X) 2 E(Y ) 2 = Var(X)Var(Y ) + Var(X)E(Y ) 2 + Var(Y )E(X) 2 = = = What to do med en lille stikprøve, som IKKE er normalfordelt? To mulige løsninger 1 Find/identificer/antag en anden og mere rigtig fordeling for populationen("systemet") 2 Undlad at antage nogen fordeling overhovedet Bootstrapping findes i to versioner: 1 Parametrisk bootstrap: Simuler gentagne stikprøver fra den antagede fordeling. 2 Ikke-parametrisk bootstrap: Simuler gentagne stikprøver direkte fra data. Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
4 Ikke-parametrisk bootstrap for one-sample situationen Data: x 1,..., x n. 100(1 α)%-konfidensintervallet for µ: Simuler k stikprøver af størrelse n ved at udtage tilfældigt blandt de tilgængelige data (med tilbagelægning - stort k, e.g. k > 1000) Beregn gennemsnittet i hver af de k stikprøver: x 1,..., x k Beregn 100α/2%- og 100(1 α/2)% fraktilerne for disse Intervallet er: [ fraktil 100α/2%, fraktil 100(1 α/2)% ] I et studie undersøgte man kvinders cigaretforbrug før og efter fødsel. Man fik følgende observationer af antal cigaretter pr. dag: før efter før efter Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Eksempel 2, løsning i R Dataindlæsning: x1=c(8,24,7,20,6,20,13,15,11,22,15) x2=c(5,11,0,15,0,20,15,19,12,0,6) dif=x1-x2 R-Metode 1: k=10000 mysamples = replicate(k, sample(dif, replace = TRUE)) mymeans = apply(mysamples, 2, mean) quantile(mymeans,c(0.025,0.975)) R-Metode 2: (Installer først pakken "bootstrap") library(bootstrap) quantile(bootstrap(dif,k,mean)$thetastar,c(0.025,0.975)) Data: x 1,..., x n1 og y 1,..., y n2 100(1 α)%-konfidensintervallet for µ 1 µ 2 : Simuler k sæt af 2 stikprøver af størrelse n 1 og n 2 ved at udtage tilfældigt blandt de tilgængelige data (med tilbagelægning - stort k, e.g. k > 1000) Beregn forskellen i gennemsnittene for hver af de k stikprøvepar: x 1 ȳ 1,..., x k ȳ k Beregn 100α/2%- og 100(1 α/2)% fraktilerne for disse Intervallet er: [ fraktil 100α/2%, fraktil 100(1 α/2)% ] Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
5 Eksempel 3 Eksempel 3 Eksempel 3 Eksempel 3, løsning i R I et studie ville man undersøge, om børn der havde fået mælk fra flaske som barn havde dårligere eller bedre tænder end dem, der ikke havde fået mælk fra flaske. Fra 19 tilfældigt udvalgte børn registrerede man hvornår de havde haft deres første tilfælde af karies. flaske alder flaske alder flaske alder nej 9 nej 10 ja 16 ja 14 nej 8 ja 14 ja 15 nej 6 ja 9 nej 10 ja 12 nej 12 nej 12 ja 13 ja 12 nej 6 nej 20 ja 19 ja 13 Dataindlæsning: x=c(9,10,12,6,10,8,6,20,12) y=c(14,15,19,12,13,13,16,14,9,12) Bootsrapping i R: k=10000 xsamples = replicate(k, sample (x, replace = TRUE)) ysamples = replicate(k, sample (y, replace = TRUE)) mymeandifs = apply(xsamples, 2, mean)-apply(ysamples, 2, mean) quantile(mymeandifs,c(0.025,0.975)) Find konfidensintervallet for forskellen! Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Vha. bootstrap konfidensintervaller Hypotesetest ved hjælp af bootstrap konfidensintervaller Sammenhæng mellem hypotese og konfidensinterval: H 0 : θ = θ 0 accepteres θ 0 ligger i konfidensintervallet for θ Vi fortsætter cigaretforbrugseksemplet. Man vil nu gerne påvise, at cigaretforbruget er faldet efter fødslen: H 0 : µ 1 µ 2 = 0 mod H 1 : µ 1 µ 2 > 0 P-værdien findes i R som: sum(mymeans<0)/k F.eks.ensidet hypotese-test vha. bootstrap: H 0 : θ = θ 0 mod H 1 : θ > θ 0 accepteres θ 0 > 100α%-fraktilen for bootstrapværdierne for θ Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
6 Vi har nu stikprøverne: x 1,..., x n1 og y 1,..., y n2 ˆµ 1 = x og ˆµ 2 = ȳ Et permutationstest for hypotesen µ 1 = µ 2 er defineret ved: Simuler k sæt af 2 stikprøver af størrelse n 1 og n 2 ved at permutere de tilgængelige data (stort k, e.g. k > 1000) Beregn forskellen i gennemsnittene for hver af de k stikprøvepar: x 1 ȳ 1,..., x k ȳ k Vi fortsætter eksemplet med tænderne. Vi ønsker at udføre et tosidet test for om µ 1 = µ 2. Følgende R-kode gennemfører beregningerne: x=c(9,10,12,6,10,8,6,20,12) y=c(14,15,19,12,13,13,16,14,9,12) k= perms = replicate(k,sample(c(x,y))) mymeandifs = apply(perms[1:9,], 2, mean)-apply(perms[10:19,], 2, mean) sum(abs(mymeandifs)>abs(mean(x)-mean(y)))/k Find P-værdien ud fra positionen af x ȳ i denne fordeling (2-sidet eller 1-sidet - på sædvanlig vis) Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27 Oversigt 1 Introduktion til simulering Eksempel Eksempel 3 4 Vha. bootstrap konfidensintervaller Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
Forelæsning 10: Statistik ved hjælp af simulering
Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Forelæsning 9: Inferens for andele (kapitel 10)
Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
R i 02402: Introduktion til Statistik
R i 02402: Introduktion til Statistik Per Bruun Brockhoff DTU Informatik, DK-2800 Lyngby 20. juni 2011 Indhold 1 Anvendelse af R på Databar-systemet på DTU 5 1.1 Adgang......................................
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen
Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Forelæsning 1: Intro og beskrivende statistik
Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information
Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele
Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher
Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger
Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University
Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen
Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)
Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.
Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1
Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver
Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2 Københavns Universitet Susanne Ditlevsen og Helle Sørensen R opgaver Det er en god ide at vænne sig til at skrive kommandoerne i en editor
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Løsning til eksamen d.27 Maj 2010
DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1
Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.
Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse
Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres
En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger
Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,
Vejledende besvarelser til opgaver i kapitel 14
Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Tabeller og Kurveblade til Statistik
Tabeller og Kurveblade til Statistik Informatik og Matematisk Modellering DTU Henrik Spliid Version 3 Forår 2001 0 Statistiske Tabeller, Version 3, Forår 2001 Side 1 af 73 Nærværende tabelsamling er udarbejdet
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5
02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling
Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel.
Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel. Kapitel Deskriptiv statistik Indhold 1. Generelle forhold... 1 Kapitel : Deskriptiv Statistik... 1 Kapitel 4: Normalfordelingen...
Forelæsning 11: Envejs variansanalyse, ANOVA
Kursus 02323: Introduktion til Statistik Forelæsning 11: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!
Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe
Statistik for ankomstprocesser
Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte
