Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
|
|
|
- Philip Skov
- 9 år siden
- Visninger:
Transkript
1 Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark Efterår 2016 DTU Compute Introduktion til Statistik Efterår / 55
2 enote 2: Kontinuerte fordelinger Grundlæggende koncepter: Tæthedsfunktion: f (x) (pdf) Fordelingsfunktion: F(x) = P(X x) (cdf) Middelværdi (µ) og varians (σ 2 ) Regneregler for stokastiske variabler Specifikke fordelinger: Normal Log-Normal Uniform Eksponential t χ 2 (Chi-i-anden) F DTU Compute Introduktion til Statistik Efterår / 55
3 enote 2: Continuous Distributions General concepts: Density function: f (x) (pdf) Distribution: F(x) = P(X x) (cdf) Mean (µ) and variance (σ 2 ) Calculation rules for random variables Specific distributions: Normal Log-Normal Uniform Exponential t χ 2 (Chi-square) F DTU Compute Introduktion til Statistik Efterår / 55
4 Oversigt 1 Kontinuerte Stokastiske variable og fordelinger Tæthedsfunktion Fordelingsfunktion Middelværdi af en kontinuert stokastisk variabel Varians af en kontinuert stokastisk variabel 2 Konkrete Statistiske fordelinger Kontinuerte fordelinger i R Uniform fordeling Eksempel 1 Normalfordelingen Eksempel 2 Eksempel 3 Eksempel 4 Log-Normal fordelingen 3 Eksponentialfordelingen Eksempel 5 Eksempel 6 Eksempel 7 4 Regneregler for stokastiske variable Eksempel 8 Eksempel 9 DTU Compute Introduktion til Statistik Efterår / 55
5 Kontinuerte Stokastiske variable og fordelinger Tæthedsfunktion Tæthedsfunktion (probability density function (pdf)) Tæthedsfunktionen for en stokastisk variabel betegnes ved f (x) f (x) siger noget om hyppigheden af udfaldet x for den stokastiske variabel X For kontinuerte variable svarer tætheden ikke til sandsynligheden, dvs. f (x) P(X = x) Et godt plot af f (x) er et histogram (kontinuert) DTU Compute Introduktion til Statistik Efterår / 55
6 Kontinuerte Stokastiske variable og fordelinger Tæthedsfunktion Tæthedsfunktion for en kontinuert variabel f (x) P(a < X b) -4-2 a 0 b 2 4 x DTU Compute Introduktion til Statistik Efterår / 55
7 Kontinuerte Stokastiske variable og fordelinger Tæthedsfunktion Tæthedsfunktion for en kontinuert variabel For en kontinuert stokastisk variabel skrives tæthedsfunktionen som: Der gælder: f (x) f (x) 0 for alle mulige x f (x)dx = 1 DTU Compute Introduktion til Statistik Efterår / 55
8 Kontinuerte Stokastiske variable og fordelinger Fordelingsfunktion Fordelingsfunktion (distribution function eller cumulative density function (cdf)) Fordelingsfunktion for en kontinuert stokastisk variabel betegnes ved F(x) Fordelingsfunktionen svarer til den kumulerede tæthedsfunktion: F(x) = P(X x) x F(x) = f (u)du f (x) = F (x) DTU Compute Introduktion til Statistik Efterår / 55
9 Kontinuerte Stokastiske variable og fordelinger Fordelingsfunktion Fordelingsfunktion (distribution function eller cumulative density function (cdf)) F(x) P(a < X b) = F(b) F(a) -4-2 a 0 b 2 4 x DTU Compute Introduktion til Statistik Efterår / 55
10 Kontinuerte Stokastiske variable og fordelinger Fordelingsfunktion Spørgsmål om sandsynligheder (socrative.com, room: PBAC) f (x) ? a b x Spørgsmål: Hvilket areal (sandsynlighed) er markeret? A: b f (x)dx Svar C: b a f (x)dx B: 1 b a f (x)dx C: b a f (x)dx D: 1 a f (x)dx DTU Compute Introduktion til Statistik Efterår / 55
11 Kontinuerte Stokastiske variable og fordelinger Fordelingsfunktion Spørgsmål om sandsynligheder (socrative.com, room: PBAC) f (x) ? a b x Spørgsmål: Hvordan kan vi nemmest udregne det markerede areal? A: b a f (x)dx B: b a F(x)dx C: f (b) f (a) D: F(b) F(a) Svar D: F(b) F(a) (vi gør det i R med (normalfordelt): pnorm(b) - pnorm(a)) DTU Compute Introduktion til Statistik Efterår / 55
12 Kontinuerte Stokastiske variable og fordelinger Fordelingsfunktion Den empiriske cumulative distribution function - ecdf vs. cdf Student height example from Chapter 1: ## Plot empirisk cdf (ecdf) og estimeret cdf ## Højderne x <- c(168,161,167,179,184,166,198,187,191,179) ## Plot den empiriske cdf plot(ecdf(x), verticals = TRUE) ## En række x punkter xp <- 150:210 ## Den estimerede cdf lines(xp, pnorm(xp, mean(x), sd(x))) DTU Compute Introduktion til Statistik Efterår / 55
13 Kontinuerte Stokastiske variable og fordelinger Middelværdi af en kontinuert stokastisk variabel Middelværdi (mean) af en kontinuert stokastisk variabel Middelværdien af en kontinuert stokastisk variabel µ = x f (x)dx Sammenlign med den diskrete definition: µ = x f (x) alle x DTU Compute Introduktion til Statistik Efterår / 55
14 Kontinuerte Stokastiske variable og fordelinger Varians af en kontinuert stokastisk variabel Varians af en kontinuert stokastisk variabel Variansen af en kontinuert stokastisk variabel: σ 2 = (x µ) 2 f (x)dx Sammenlign med den diskrete definition: σ 2 = (x µ) 2 f (x) alle x DTU Compute Introduktion til Statistik Efterår / 55
15 Kontinuerte Stokastiske variable og fordelinger Varians af en kontinuert stokastisk variabel Spørgsmål om middelværdi (socrative.com, room: PBAC) f (x) f 1 (x) f 2 (x) x Spørgsmål: Hvilken middelværdi er størst? A: µ 1 < µ 2 B: µ 1 > µ 2 C: µ 1 = µ 2 D: Kan ikke afgøres Svar A: µ 1 < µ 2. (D er også fint at svare, da man ikke kan se hvad der er under -4 og over 4.) DTU Compute Introduktion til Statistik Efterår / 55
16 Kontinuerte Stokastiske variable og fordelinger Varians af en kontinuert stokastisk variabel Spørgsmål om middelværdi (socrative.com, room: PBAC) f (x) f 1 (x) f 2 (x) x Spørgsmål: Hvilken spredning er størst? A: σ 1 < σ 2 B: σ 1 > σ 2 C: σ 1 = σ 2 D: Kan ikke afgøres Svar B: σ 1 > σ 2. (D er også fint at svare, da man ikke kan se hvad der er under -4 og over 4.) DTU Compute Introduktion til Statistik Efterår / 55
17 Konkrete Statistiske fordelinger Konkrete statistiske fordelinger Der findes en række statistiske fordelinger, som kan bruges til at beskrive og analysere forskellige problemstillinger med Følgende kontinuerte fordelinger: Uniform fordeling Normalfordelingen Log-normalfordelingen Eksponentialfordelingen DTU Compute Introduktion til Statistik Efterår / 55
18 Konkrete Statistiske fordelinger Kontinuerte fordelinger i R Kontinuerte fordelinger i R R norm unif lnorm exp Betegnelse Normalfordelingen Uniform fordeling Log-normalfordelingen Eksponentialfordelingen d Tæthedsfunktion f (x) (probability density function). p Fordelingsfunktion F(x) (cumulative distribution function). q Fraktil (quantile) i fordeling. r Tilfældige tal fra fordelingen. DTU Compute Introduktion til Statistik Efterår / 55
19 Uniform fordeling Konkrete Statistiske fordelinger Uniform fordeling Skrivemåde: X U(α,β) (Læses: X følger en uniform fordeling med parametre α og β) Tæthedsfunktion: f (x) = 1 β α Middelværdi: µ = α+β 2 Varians: σ 2 = 12 1 (β α)2 DTU Compute Introduktion til Statistik Efterår / 55
20 Uniform fordeling Konkrete Statistiske fordelinger Uniform fordeling Uniform fordeling U(4,5) Taethed, f(x) x DTU Compute Introduktion til Statistik Efterår / 55
21 Konkrete Statistiske fordelinger Uniform fordeling Spørgsmål om uniform fordelt variabel (socrative.com, room: PBAC) Medarbejdere på en arbejdsplads ankommer mellem klokken 8.00 og Det antages, at ankomsttiden kan beskrives ved en uniform fordeling. Hvad er sandsynligheden for at en tilfældig udvalgt medarbejder ankommer mellem 8.20 og 8.30? A: 1/2 B: 1/6 C: 1/3 D: 0 E: Ved ikke Svar C: 10/30=1/3 punif(30,0,30)-punif(20,0,30) [1] 0.33 DTU Compute Introduktion til Statistik Efterår / 55
22 Konkrete Statistiske fordelinger Uniform fordeling Spørgsmål om uniform fordelt variabel (socrative.com, room: PBAC) Medarbejdere på en arbejdsplads ankommer mellem klokken 8.00 og Det antages, at ankomsttiden kan beskrives ved en uniform fordeling. Spørgsmål: Hvad er sandsynligheden for at en tilfældig udvalgt medarbejder ankommer efter 8.30? Svar: P(X > 30) = 0 1-punif(30,0,30) [1] 0 DTU Compute Introduktion til Statistik Efterår / 55
23 Normalfordelingen Konkrete Statistiske fordelinger Normalfordelingen Skrivemåde: X N(µ,σ 2 ) Tæthedsfunktion: f (x) = 1 (x µ)2 σ e 2σ 2 2π Middelværdi: µ = µ Varians: σ 2 = σ 2 DTU Compute Introduktion til Statistik Efterår / 55
24 Normalfordelingen Konkrete Statistiske fordelinger Normalfordelingen 0.5 Normalfordeling Taethed, f(x) x DTU Compute Introduktion til Statistik Efterår / 55
25 Normalfordelingen Konkrete Statistiske fordelinger Normalfordelingen Sammenligning af to normalfordelinger med forskellig middelvardi og ens varians 0.45 N(0,1 2 ) N(5,1 2 ) DTU Compute Introduktion til Statistik Efterår / 55
26 Normalfordelingen Konkrete Statistiske fordelinger Normalfordelingen Sammenligning af tre normalfordelinger med ens middelvardi og forskellig varians Taethed, f(x) x DTU Compute Introduktion til Statistik Efterår / 55
27 Normalfordelingen Konkrete Statistiske fordelinger Normalfordelingen En standard normalfordeling: Z N(0,1 2 ) En normalfordeling med middelværdi 0 og varians 1. Standardisering: En vilkårlig normalfordelt variabel X N(µ,σ 2 ) kan standardiseres ved at beregne Z = X µ σ DTU Compute Introduktion til Statistik Efterår / 55
28 Konkrete Statistiske fordelinger Normalfordelingen Eksempel 2 Målefejl: En vægt har en målefejl, Z, der kan beskrives ved en standard normalfordeling, dvs Z N(0,1 2 ) dvs. middelværdi µ = 0 og spredning σ = 1 gram. Vi måler nu vægten af ét emne Spørgsmål a): Hvad er sandsynligheden for at vægten måler mere end 2 gram for lidt? DTU Compute Introduktion til Statistik Efterår / 55
29 Eksempel 2 Konkrete Statistiske fordelinger Normalfordelingen dnorm(z) z Svar: P(Z 2) = pnorm(-2) [1] DTU Compute Introduktion til Statistik Efterår / 55
30 Konkrete Statistiske fordelinger Normalfordelingen Eksempel 2 Spørgsmål: Hvad er sandsynligheden for at vægten måler mindst 2 gram for meget? Svar: P(Z 2) = 1 P(Z < 2) = pnorm(2) dnorm(z) [1] z DTU Compute Introduktion til Statistik Efterår / 55
31 Konkrete Statistiske fordelinger Normalfordelingen Eksempel 2 Spørgsmål: Hvad er sandsynligheden for at vægten måler mere end ±1 gram forkert? A: pnorm(1) - pnorm(-1) B: 2*pnorm(-1) C: 2*pnorm(1) D: Ved ikke Svar B: P(Z 1 Z > 1) = P(Z 1) + P(Z > 1) = 2P(Z 1) = *pnorm(-1) dnorm(z) [1] z DTU Compute Introduktion til Statistik Efterår / 55
32 Konkrete Statistiske fordelinger Normalfordelingen Eksempel 3 Indkomstfordeling: Det antages, at blandt en gruppe lærere i folkeskolen, at lønnen kan beskrives ved en normalfordeling med middelværdi µ = og spredning σ = Hvad er sandsynligheden for at en tilfældig udvalgt lærer tjener mere end ? A: P(Z > ) B: P(Z > 300) C: P(Z > ) D: Ved ikke Svar: P(X > 300) = P(Z > ) = P(Z > 2) = X N(300,10 2 ) Z = X N(0,1 2 ) DTU Compute Introduktion til Statistik Efterår / 55
33 Eksempel 3 Konkrete Statistiske fordelinger Normalfordelingen Indkomstfordeling: Det antages, at blandt en gruppe lærere i folkeskolen, at lønnen kan beskrives ved en normalfordeling med middelværdi µ = og spredning σ = Spørgsmål: Hvad er sandsynligheden for at en tilfældig udvalgt lærer tjener mere end ? Svar: 1-pnorm(( )/10) [1] dnorm(z) 1-pnorm(300, mean = 280, sd = 10) [1] z DTU Compute Introduktion til Statistik Efterår / 55
34 Konkrete Statistiske fordelinger Normalfordelingen Eksempel 4 Ny indkomstfordeling Det antages, at blandt en gruppe lærere i folkeskolen, at lønnen kan beskrives ved en normalfordeling med middelværdi µ = og spredning σ = Omvendt spørgsmål Angiv det interval, der dækker over 95% af læreres løn Svar: qnorm(0.025, mean = 290, sd = 4) [1] qnorm(0.975, mean = 290, sd = 4) [1] DTU Compute Introduktion til Statistik Efterår / 55
35 Log-Normalfordelingen Konkrete Statistiske fordelinger Log-Normal fordelingen Skrivemåde: X LN(α,β 2 ) (Hvis X følger log-normal så følger log(x) normal) Tæthedsfunktion: f (x) = { 1 x 2πβ e (ln(x) α)2 /2β 2 x > 0, β > 0 0 ellers Middelværdi: µ = e α+β 2 /2 Varians: σ 2 = e 2α+β 2 (e β 2 1) DTU Compute Introduktion til Statistik Efterår / 55
36 Konkrete Statistiske fordelinger Log-normal fordelingen Log-Normal fordelingen 0.25 Log Normalfordeling LN(1,1) 0.2 LN(1,1) Taethed, f(x) x DTU Compute Introduktion til Statistik Efterår / 55
37 Konkrete Statistiske fordelinger Log-normal fordelingen Log-Normal fordelingen Lognormal og Normalfordelingen: En log-normal fordelt variabel Y LN(α,β 2 ), kan transformeres til en standard normalfordelt variabel X ved dvs. X = ln(y) α β X N(0,1 2 ) DTU Compute Introduktion til Statistik Efterår / 55
38 Eksponentialfordelingen Eksponentialfordelingen Skrivemåde: X Exp(λ) Tæthedsfunktionen { λe λx x > 0 f (x) = 0 ellers Middelværdi µ = 1 λ Varians σ 2 = 1 λ 2 DTU Compute Introduktion til Statistik Efterår / 55
39 Eksponentialfordelingen Eksponentialfordelingen Eksponential fordeling med β= EXP(1) Taethed, f(x) x DTU Compute Introduktion til Statistik Efterår / 55
40 Eksponentialfordelingen Eksponentialfordelingen Eksponentialfordelingen er et special tilfælde af Gammafordelingen Eksponentialfordelingen anvendes f.eks. til at beskrive levetider og ventetider Eksponentialfordelingen kan bruges til at beskrive (vente)tiden mellem hændelser i poissonproces DTU Compute Introduktion til Statistik Efterår / 55
41 Eksponentialfordelingen Sammenhæng mellem eksponential- og poissonfordelingen Poisson: Diskrete hændelser pr. enhed Eksponential: Kontinuert afstand mellem hændelser t 1 t 2 tid t DTU Compute Introduktion til Statistik Efterår / 55
42 Eksponentialfordelingen Eksempel 5 Eksempel 5 Kø-model - poissonproces Tiden mellem kundeankomster på et posthus er eksponentialfordelt med middelværdi µ = 2 minutter. Spørgsmål: En kunde er netop ankommet. Hvad er sandsynligheden for at der ikke kommer flere kunder indefor en periode på 2 minutter? Svar: 1-pexp(2, rate = 1/2) [1] 0.37 DTU Compute Introduktion til Statistik Efterår / 55
43 Eksponentialfordelingen Eksempel 6 Eksempel 6 Spørgsmål: En kunde er netop ankommet. Beregn sandsynligheden for at der ikke kommer flere kunder indefor en periode på 2 minutter vha. poissonfordelingen Svar: λ 2min = 1, P(X = 0) = e 1 1! 10 = e 1 dpois(0,1) [1] 0.37 exp(-1) [1] 0.37 DTU Compute Introduktion til Statistik Efterår / 55
44 Eksponentialfordelingen Eksempel 7 Eksempel 7 Andre tidsperioder: Tiden mellem kundeankomster på et posthus er eksponentialfordelt med middelværdi µ = 2 minutter. Vi betragter nu en periode på 10 minutter Spørgsmål: Beregn sandsynligheden for at der ikke kommer nogen kunder i perioden vha. poissonfordelingen Svar: λ 10min = 5, P(X = 0) = e 5 1! 50 = e 5 dpois(0,5) [1] DTU Compute Introduktion til Statistik Efterår / 55
45 Regneregler for stokastiske variable Regneregler for stokastiske variable (Gælder BÅDE kontinuert og diskret) X er en stokastisk variabel Vi antager at a og b er konstanter. Da gælder: Middelværdi-regel: E(aX + b) = ae(x) + b Varians-regel: Var(aX + b) = a 2 Var(X) DTU Compute Introduktion til Statistik Efterår / 55
46 Regneregler for stokastiske variable Eksempel 8 Eksempel 8 X er en stokastisk variabel En stokastisk variabel X har middelværdi 4 og varians 6. Spørgsmål: Beregn middelværdi og varians for Y = 3X + 2 Svar: E(Y) = 3E(X) + 2 = = 10 Var(Y) = ( 3) 2 Var(X) = 9 6 = 54 DTU Compute Introduktion til Statistik Efterår / 55
47 Regneregler for stokastiske variable Eksempel 8 Regneregler for stokastiske variable X 1,...,X n er stokastiske variable Da gælder (når de er uafhængige): Middelværdi-regel: E(a 1 X 1 + a 2 X a n X n ) = a 1 E(X 1 ) + a 2 E(X 2 ) a n E(X n ) Varians-regel: Var(a 1 X 1 + a 2 X a n X n ) = a 2 1 Var(X 1) a 2 nvar(x n ) DTU Compute Introduktion til Statistik Efterår / 55
48 Regneregler for stokastiske variable Eksempel 9 Eksempel 9 Flypassager-planlægning Vægten af passagerer på en flystrækning antages normalfordelt X N(70,10 2 ). Et fly, der kan tage 55 passagerer, må max. lastes med 4000 kg (kun passageres vægt betragtes som last). Spørgsmål: Beregn sandsynligheden for at flyet bliver overlastet Hvad er Y=Total passagervægt? Hvad er Y? I hvert fald IKKE: Y = 55 X!!!!!! DTU Compute Introduktion til Statistik Efterår / 55
49 Eksempel 9 Regneregler for stokastiske variable Eksempel 9 Hvad er Y=Total passagervægt? Y = 55 i=1 X i, hvor X i N(70,10 2 ) Middelværdi og varians for Y: E(Y) = Var(Y) = 55 i=1 55 i=1 E(X i ) = Var(X i ) = 55 i=1 55 i=1 70 = = = = 5500 Bruger normalfordeling for Y: 1-pnorm(4000, mean = 3850, sd = sqrt(5500)) [1] DTU Compute Introduktion til Statistik Efterår / 55
50 Regneregler for stokastiske variable Eksempel 9 Eksempel 9 - FORKERT ANALYSE Hvad er Y? I hvert fald IKKE: Y = 55 X!!!!!! Middelværdi og varians for Y: E(Y) = = 3850 Var(Y) = 55 2 Var(X) = = Bruger normalfordeling for Y: 1-pnorm(4000, mean = 3850, sd = 550) [1] 0.39 Konsekvens af forkert beregning: MANGE spildte penge for flyselskabet!!! DTU Compute Introduktion til Statistik Efterår / 55
51 Oversigt Regneregler for stokastiske variable Eksempel 9 1 Kontinuerte Stokastiske variable og fordelinger Tæthedsfunktion Fordelingsfunktion Middelværdi af en kontinuert stokastisk variabel Varians af en kontinuert stokastisk variabel 2 Konkrete Statistiske fordelinger Kontinuerte fordelinger i R Uniform fordeling Eksempel 1 Normalfordelingen Eksempel 2 Eksempel 3 Eksempel 4 Log-Normal fordelingen 3 Eksponentialfordelingen Eksempel 5 Eksempel 6 Eksempel 7 4 Regneregler for stokastiske variable Eksempel 8 Eksempel 9 DTU Compute Introduktion til Statistik Efterår / 55
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen
Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Modul 3: Kontinuerte stokastiske variable
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable........................... 1 3.1.1 Tæthedsfunktion...............................
Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1
Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset
Modul 5: Test for én stikprøve
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger
Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,
Teoretisk Statistik, 16. februar Generel teori,repetition
1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske
Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau
ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer
Konfidensinterval for µ (σ kendt)
Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16 Program Resultaterne
Repetition Stokastisk variabel
Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder
Løsning til prøveeksamen 1
IMM - DTU 020 Probability 2006-2-8 BFN/bfn Løsning til prøveeksamen Spørgsmål ) For en indikatorvariabel I A for hændelsen A gælder E(I A ) = P(A) (se for eksemepl side 68). Således er E(X) = P(N ) = =
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.
Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher
Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte
Hvad skal vi lave i dag?
p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Transformation af kontinuerte fordelinger på R, flerdimensionale kontinuerte fordelinger, mere om normalfordelingen Helle Sørensen Uge 7, onsdag SaSt2 (Uge 7, onsdag)
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
Løsning til eksamen 16/
1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Sandsynlighedsregning Oversigt over begreber og fordelinger
Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)
Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.1
Noter i fejlteori Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen Version 1.1 April 2013 2 Indhold 1 Motivation 3 2 Det matematiske fundament 5 2.1 Lidt sandsynlighedsregning......................
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Sandsynlighedsregning Stokastisk variabel
Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.
Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
3 Stokastiske variable 3.1 Diskrete variable
3 Stokastiske variable 3.1 Diskrete variable Punktsandsnligheden benævnes P(x) = P(X = x). {x, P(x)} er en sandsnlighedsfordeling for den stokastiske variabel, X, hvis 1) P(x) $ 0 for alle værdier af x.
Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.
Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
02402 Løsning til testquiz02402f (Test VI)
02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:
Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen
