Forelæsning 10: Statistik ved hjælp af simulering
|
|
|
- Martin Bundgaard
- 7 år siden
- Visninger:
Transkript
1 Kursus Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27
2 Oversigt 1 Introduktion til simulering Eksempel 1 2 Fejlophobningslove Eksempel 1, fortsat 3 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 2, one-sample Two-sample situationen Eksempel 3 4 Hypotesetest ved hjælp af simulering Vha. bootstrap konfidensintervaller One-sample setup, Eksempel 2, fortsat Hypotesetest ved hjælp af permutationstest Two-sample setup, Eksempel 3, fortsat Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
3 Introduktion til simulering Oversigt 1 Introduktion til simulering Eksempel 1 2 Fejlophobningslove Eksempel 1, fortsat 3 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 2, one-sample Two-sample situationen Eksempel 3 4 Hypotesetest ved hjælp af simulering Vha. bootstrap konfidensintervaller One-sample setup, Eksempel 2, fortsat Hypotesetest ved hjælp af permutationstest Two-sample setup, Eksempel 3, fortsat Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
4 Introduktion til simulering Motivation Table 8.1 har et "hul : Små stikprøver som IKKE kommer fra en normalfordeling?? I gl. dage: non-parametriske tests, e.g. Kapitel 14. Mere almindeligt nu: Simuleringsbaseret: Konfidensintervaller er meget nemmere at opnå De er meget nemmere at anvende i mere komplicerede situationer De "forgrover ikke informationen i samme udstrækning De afspejler i højere grad dagens virkelighed - de anvendes simpelt hen nu i rigtig mange sammenhænge Kræver: Brug af computer - R er et super værktøj til dette! Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
5 Introduktion til simulering Hvad er simulering egentlig? (Pseudo)tilfældige tal genereret af en computer En tilfældighedsgenerator er en algoritme der kan generere x i+1 ud fra x i En sekvens af tal "ser tilfældige ud Kræver en "start - kaldet "seed.(bruger typisk uret i computeren) Grundlæggende simuleres den uniforme fordeling, og så bruges: Hvis U Uniform(0, 1) og F er en fordelingsfunktion for en eller anden sandsynlighedsfordeling, så vil F 1 (U) følge fordelingen givet ved F Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
6 Introduktion til simulering I praksis i R De forskellige fordelinger er gjort klar til simulering: rbinom rpois rhyper rnorm rlnorm rexp runif rt rchisq rf Binomialfordelingen Poissonfordelingen Den hypergeometriske fordeling Normalfordelingen Lognormalfordelingen Eksponentialfordelingen Den uniforme(lige) fordeling t-fordelingen χ 2 -fordelingen F-fordelingen Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
7 Introduktion til simulering Eksempel 1 Eksempel 1 En virksomhed producerer rektangulære plader. Længden af pladerne (i meter), X, antages at kunne beskrives med en normalfordeling N(2, ) og bredden af pladerne (i meter), Y, antages at kunne beskrives med en normalfordeling N(3, ). Man er interesseret i arealet, som jo så givet ved A = XY. Hvad er middelarealet? Hvad er spredningen i arealet fra plade til plade? Hvor ofte sådanne plader har et areal, der afviger mere end 0.1m 2 fra de 6m 2? Sandsynligheden for andre mulige hændelser? Generelt: Hvad er sandsynlighedsfordelingen for A? Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
8 Introduktion til simulering Eksempel 1 Eksempel 1, løsning i R Kode: k=10000 X=rnorm(k,2,0.1) Y=rnorm(k,3,0.2) A=X*Y mean(a) sd(a) sum(abs(a-6)>0.1)/k Resultat: > mean(a) [1] > sd(a) [1] > sum(abs(a- 6)>0.1)/k [1] Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
9 Fejlophobningslove Oversigt 1 Introduktion til simulering Eksempel 1 2 Fejlophobningslove Eksempel 1, fortsat 3 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 2, one-sample Two-sample situationen Eksempel 3 4 Hypotesetest ved hjælp af simulering Vha. bootstrap konfidensintervaller One-sample setup, Eksempel 2, fortsat Hypotesetest ved hjælp af permutationstest Two-sample setup, Eksempel 3, fortsat Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
10 Fejlophobningslove Fejlophobningslove Skal kunne finde: σf(x 2 1,...,X = Var(f(X n) 1,..., X n )) Vi kender allerede: n n σf(x 2 1,...,X n) = a 2 i σi 2, hvis f(x 1,..., X n ) = a i X i Ny regel for ikke-lineære funktioner: i=1 i=1 σ 2 f(x 1,...,X n) n ( f i=1 X i ) 2 σ 2 i Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
11 Fejlophobningslove Fejlophobningslove Eller ved simulering: Simuler k udfald af samtlige n målinger som N(X i, σi 2 ): X (j) i, j = 1..., k Beregn spredningen direkte som den observerede spredning af de k værdier for f: σ f(x1,...,x n) = k i=1 (f j f) 2 1 k 1 f j = f(x (j) 1,..., X (j) n ) Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
12 Fejlophobningslove Eksempel 1, fortsat Eksempel 1, fortsat Vi har allerede brugt simulerings-metoden i første del af eksemplet. To konkrete målinger for X og Y, er givet: x = 2.05m og y = 2.99m. Hvad er "fejlen" på A = = 6.13 fundet ved den ikke-lineære fejlophobningslov? Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
13 Fejlophobningslove Eksempel 1, fortsat Eksempel 1, fortsat Faktisk kan man finde variansen for A = XY teoretisk: Var(XY ) = E [ (XY ) 2] [E(XY )] 2 = E(X 2 )E(Y 2 ) E(X) 2 E(Y ) 2 = [ Var(X) + E(X) 2] [ Var(Y ) + E(Y ) 2] E(X) 2 E(Y ) 2 = Var(X)Var(Y ) + Var(X)E(Y ) 2 + Var(Y )E(X) 2 = = = Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
14 Konfidensintervaller ved hjælp af simulering: bootstrapping Oversigt 1 Introduktion til simulering Eksempel 1 2 Fejlophobningslove Eksempel 1, fortsat 3 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 2, one-sample Two-sample situationen Eksempel 3 4 Hypotesetest ved hjælp af simulering Vha. bootstrap konfidensintervaller One-sample setup, Eksempel 2, fortsat Hypotesetest ved hjælp af permutationstest Two-sample setup, Eksempel 3, fortsat Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
15 Konfidensintervaller ved hjælp af simulering: bootstrapping Konfidensintervaller ved hjælp af simulering: bootstrapping What to do med en lille stikprøve, som IKKE er normalfordelt? To mulige løsninger 1 Find/identificer/antag en anden og mere rigtig fordeling for populationen("systemet") 2 Undlad at antage nogen fordeling overhovedet Bootstrapping findes i to versioner: 1 Parametrisk bootstrap: Simuler gentagne stikprøver fra den antagede fordeling. 2 Ikke-parametrisk bootstrap: Simuler gentagne stikprøver direkte fra data. Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
16 Konfidensintervaller ved hjælp af simulering: bootstrapping Ikke-parametrisk bootstrap for one-sample situationen Data: x 1,..., x n. 100(1 α)%-konfidensintervallet for µ: Simuler k stikprøver af størrelse n ved at udtage tilfældigt blandt de tilgængelige data (med tilbagelægning - stort k, e.g. k > 1000) Beregn gennemsnittet i hver af de k stikprøver: x 1,..., x k Beregn 100α/2%- og 100(1 α/2)% fraktilerne for disse Intervallet er: [ fraktil 100α/2%, fraktil 100(1 α/2)% ] Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
17 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 2, one-sample Eksempel 2, one-sample I et studie undersøgte man kvinders cigaretforbrug før og efter fødsel. Man fik følgende observationer af antal cigaretter pr. dag: før efter før efter Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
18 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 2, one-sample Eksempel 2, løsning i R Dataindlæsning: x1=c(8,24,7,20,6,20,13,15,11,22,15) x2=c(5,11,0,15,0,20,15,19,12,0,6) dif=x1-x2 R-Metode 1: k=10000 mysamples = replicate(k, sample(dif, replace = TRUE)) mymeans = apply(mysamples, 2, mean) quantile(mymeans,c(0.025,0.975)) R-Metode 2: (Installer først pakken "bootstrap") library(bootstrap) quantile(bootstrap(dif,k,mean)$thetastar,c(0.025,0.975)) Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
19 Konfidensintervaller ved hjælp af simulering: bootstrapping Two-sample situationen Two-sample situationen Data: x 1,..., x n1 og y 1,..., y n2 100(1 α)%-konfidensintervallet for µ 1 µ 2 : Simuler k sæt af 2 stikprøver af størrelse n 1 og n 2 ved at udtage tilfældigt blandt de tilgængelige data (med tilbagelægning - stort k, e.g. k > 1000) Beregn forskellen i gennemsnittene for hver af de k stikprøvepar: x 1 ȳ 1,..., x k ȳ k Beregn 100α/2%- og 100(1 α/2)% fraktilerne for disse Intervallet er: [ fraktil 100α/2%, fraktil 100(1 α/2)% ] Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
20 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 3 Eksempel 3 I et studie ville man undersøge, om børn der havde fået mælk fra flaske som barn havde dårligere eller bedre tænder end dem, der ikke havde fået mælk fra flaske. Fra 19 tilfældigt udvalgte børn registrerede man hvornår de havde haft deres første tilfælde af karies. flaske alder flaske alder flaske alder nej 9 nej 10 ja 16 ja 14 nej 8 ja 14 ja 15 nej 6 ja 9 nej 10 ja 12 nej 12 nej 12 ja 13 ja 12 nej 6 nej 20 ja 19 ja 13 Find konfidensintervallet for forskellen! Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
21 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 3 Eksempel 3, løsning i R Dataindlæsning: x=c(9,10,12,6,10,8,6,20,12) y=c(14,15,19,12,13,13,16,14,9,12) Bootsrapping i R: k=10000 xsamples = replicate(k, sample (x, replace = TRUE)) ysamples = replicate(k, sample (y, replace = TRUE)) mymeandifs = apply(xsamples, 2, mean)-apply(ysamples, 2, mean) quantile(mymeandifs,c(0.025,0.975)) Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
22 Hypotesetest ved hjælp af simulering Oversigt 1 Introduktion til simulering Eksempel 1 2 Fejlophobningslove Eksempel 1, fortsat 3 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 2, one-sample Two-sample situationen Eksempel 3 4 Hypotesetest ved hjælp af simulering Vha. bootstrap konfidensintervaller One-sample setup, Eksempel 2, fortsat Hypotesetest ved hjælp af permutationstest Two-sample setup, Eksempel 3, fortsat Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
23 Hypotesetest ved hjælp af simulering Vha. bootstrap konfidensintervaller Hypotesetest ved hjælp af bootstrap konfidensintervaller Sammenhæng mellem hypotese og konfidensinterval: H 0 : θ = θ 0 accepteres θ 0 ligger i konfidensintervallet for θ F.eks.ensidet hypotese-test vha. bootstrap: H 0 : θ = θ 0 mod H 1 : θ > θ 0 accepteres θ 0 > 100α%-fraktilen for bootstrapværdierne for θ Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
24 Hypotesetest ved hjælp af simulering One-sample setup, Eksempel 2, fortsat One-sample setup, Eksempel 2, fortsat Vi fortsætter cigaretforbrugseksemplet. Man vil nu gerne påvise, at cigaretforbruget er faldet efter fødslen: H 0 : µ 1 µ 2 = 0 mod H 1 : µ 1 µ 2 > 0 P-værdien findes i R som: sum(mymeans<0)/k Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
25 Hypotesetest ved hjælp af simulering Hypotesetest ved hjælp af permutationstest Hypotesetest ved hjælp af permutationstest Vi har nu stikprøverne: x 1,..., x n1 og y 1,..., y n2 ˆµ 1 = x og ˆµ 2 = ȳ Et permutationstest for hypotesen µ 1 = µ 2 er defineret ved: Simuler k sæt af 2 stikprøver af størrelse n 1 og n 2 ved at permutere de tilgængelige data (stort k, e.g. k > 1000) Beregn forskellen i gennemsnittene for hver af de k stikprøvepar: x 1 ȳ 1,..., x k ȳ k Find P-værdien ud fra positionen af x ȳ i denne fordeling (2-sidet eller 1-sidet - på sædvanlig vis) Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
26 Hypotesetest ved hjælp af simulering Two-sample setup, Eksempel 3, fortsat Two-sample setup, Eksempel 3, fortsat Vi fortsætter eksemplet med tænderne. Vi ønsker at udføre et tosidet test for om µ 1 = µ 2. Følgende R-kode gennemfører beregningerne: x=c(9,10,12,6,10,8,6,20,12) y=c(14,15,19,12,13,13,16,14,9,12) k= perms = replicate(k,sample(c(x,y))) mymeandifs = apply(perms[1:9,], 2, mean)-apply(perms[10:19,], 2, mean) sum(abs(mymeandifs)>abs(mean(x)-mean(y)))/k Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
27 Hypotesetest ved hjælp af simulering Two-sample setup, Eksempel 3, fortsat Oversigt 1 Introduktion til simulering Eksempel 1 2 Fejlophobningslove Eksempel 1, fortsat 3 Konfidensintervaller ved hjælp af simulering: bootstrapping Eksempel 2, one-sample Two-sample situationen Eksempel 3 4 Hypotesetest ved hjælp af simulering Vha. bootstrap konfidensintervaller One-sample setup, Eksempel 2, fortsat Hypotesetest ved hjælp af permutationstest Two-sample setup, Eksempel 3, fortsat Per Bruun Brockhoff ([email protected]) Introduktion til Statistik, Forelæsning 10 Foråret / 27
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.
Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
Forelæsning 9: Inferens for andele (kapitel 10)
Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen
Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher
Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
R i 02402: Introduktion til Statistik
R i 02402: Introduktion til Statistik Per Bruun Brockhoff DTU Informatik, DK-2800 Lyngby 20. juni 2011 Indhold 1 Anvendelse af R på Databar-systemet på DTU 5 1.1 Adgang......................................
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Forelæsning 1: Intro og beskrivende statistik
Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information
Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Løsning til eksamen d.27 Maj 2010
DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Forelæsning 11: Envejs variansanalyse, ANOVA
Kursus 02323: Introduktion til Statistik Forelæsning 11: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm
Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5
02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling
Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens
Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve
Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff
Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge
Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange
1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger
Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.
Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):
Opgaver til kapitel 3
Opgaver til kapitel 3 3.1 En løber er interesseret i at undersøge om hendes løbeur er kalibreret korrekt. Hun udmåler derfor en strækning på præcis 1000 m og løber den 16 gange. For hver løbetur noterer
