Appendiks A Anvendte test statistikker
|
|
|
- Karl Svendsen
- 9 år siden
- Visninger:
Transkript
1 Appendiks A Anvendte test statistikker Afhandlingen opdeler testene i henholdsvis parametriske og ikke-parametriske test. De første fire test er parametriske test, mens de ikke-parametriske test udgør de sidste tre. Afhandlingen anvender i alt 7 forskellige test til at teste effekten af M&A markedet i Skandinavien. Parametriske test Test 1: Cross Sectional Dependence (Brown and Warner, 1980, 1985) Test 2: Cross Sectional Independence (Brown and Warner, 1980, 1985) Test 3: Adjusted Cross Sectional Independence (Brown and Warner, 1980, 1985 and Patell, 1976) Test 4: Adjusted Standardized Abnormal Return (Brown and Warner, 1985; Patell, 1976) Ikke-parametriske test Test 5: Rank Test (Corrado, 1989; and Zivney, 1992) Test 6: Sign Test (Corrado and Zivney, 1992) Test 7: Generalised Sign Test (Cowan, 1992; Cowan and Sergeant, 1996) Parametriske tests Test 1 Cross-sectionel afhængighed Denne metode estimerer variansen på tværs af stikprøven, over tid. Metoden finder sin anvendelse i tilfælde hvor flere events forekommer i den samme kalenderperiode kan der være cross-sectionel korrelation mellem de anormale afkast. For at kunne beregne standardafvigelsen er der nogle step man skal igennem. Første step er beregningen af det gennemsnitlige anormale afkast på tværs af stikprøven: =, (A.1) Efterfølgende beregnes gennemsnittet af de gennemsnitlige anormale afkast på tværs af stikprøven i estimationsperioden T:
2 = (A.2) Metoden estimerer variansen ved: = ( ) (A.3) = ( ) ~ (0,1) (A.4) Test 2 Cross-Sectionel uafhængighed Denne er en alternativ til cross-sectionel afhængighed. Forskellen består i at man her ser uafhængigt på de enkelte observationer i stikprøven. Denne metode mener, at der ikke forekommer korrelation på tværs af stikprøven. Første step er beregningen af det gennemsnitlige anormale afkast på tværs af stikprøven på tilsvarende måde som i test 1: =, (A.5) Efterfølgende bestemmes estimationsperiodens standardafvigelse som: = ( ) (A.6) = ( ) ~ ( 1) (A.7) Test 3 Cross-sectionel uafhængighed med Patell s justeringsfaktor Denne er en alternativ metode til cross-sectionel uafhængighed test. Forskellen består i at der inddrages et ekstra led, som kaldes Patells justeringsfaktor, der tager højde for forecast error.
3 Første step er som foroven beregningen af det gennemsnitlige anormale afkast på tværs af stikprøven på tilsvarende måde som i test 1: =, (A.8) Efterfølgende bestemmes estimationsperiodens standardafvigelse for hver dag i event vinduet: = ( ) (, ) (, ) (A.9) = ( ) (, ) (, ) ~ ( 1) (A.10) Test 4 Standardiseret cross-sectionel uafhængighed med Patell s justeringsfaktor Antagelsen om, at alle anormale afkast er identisk fordelte med identisk varians holder ikke altid. Dette kan variere, da nogle aktier er mere volatile end andre. Derudover tager metoden og hensyn til forskelle i varianser (forecast error). De standardiserede anormale afkast bestemmes ved at dividere de anormale afkast med de enkelte aktiers standardafvigelsen. Dette sker ved:, =, ( ) (A.11) Dette kan omskrives til:, =, ( ) (, ), (A.12) = ~ ( 1) (A.13)
4 Ikke-parametriske test Da anormale afkast ikke er normalfordelte, men fat-tailed, er de parametriske test statistikker ikke helt valide og dermed misspecificerede. Her finder ikke-parametriske test anvendelse, da test statistikkerne er bedre specificerede og mere kraftfulde. Test 5 Ranks test Metoden sammenligner rangeringerne i event perioden for hver aktie, med det forventede gennemsnitlige rang. Denne test rangerer de anormale afkast i estimationsperioden for hver transaktion, hvorefter de enkelte afkast standardiseres med T+1:, = (, ) (A.14), =, () (A.15) Det gennemsnits værdien ved rangering bliver:, = ( )()/() () = (A.16) På baggrund af ovenstående defineres standardafvigelsen som: = ( (. )) (A.17) = ( (. )) ~ (0,1) (A.18) Test 6 Sign test Sign testen tester om der forekommer lige mange negative som positive anormale afkast på event dagene. Den der baseret på fraktionen om at der forekommer positive anormale afkast i event perioden. Sign(x) kan antage værdien -1, 0, +1, og måler det anormale afkast fortegn. Det udtrykkes: (A.19), = (,, )
5 Standardafvigelsen for denne test er givet ved at kvadrere fortegnene og addere summen. () = ( (. )) (A.20) = ( ), () (A.21) Test 7 Generaliseret Sign test Sandsynligheden for et positivt anormalt afkast er i sign testen lig 0,5under nul hypotesen. ) = (, (A.22), = 1 hvis A i,t > 0 og ellers 0. Dette giver os følgende test statistik: = ( ) () (A.23)
6 Appendiks B Forudsætninger for multivariate regression Der gælder en række antagelser og forudsætninger for multiple regressionsanalyser, at kunne analysere de statistiske resultater af OLS estimaterne (Heij, 2004). Forudsætning 1: Simpel tilfældig udvalgt stikprøve Forudsætning 2: Variablen X er ikke stokastisk Forudsætning 3:, = 0 Forudsætning 4: Homoskedasticitet Forudsætning 5: Konstante parametre Forudsætning 6: Lineære sammenhæng mellem Y og X Forudsætning 7: Fejlleddene skal normalfordelte
7 Appendiks C Test for heteroskedacitet og normalitet Panel A Test for Heteroskedacitet for event vinduet [-10;+10] Breusch-Pagan test for heteroskedasticity chi2(1) = 58,55 Prob > chi2 = 0,0000 Panel B Test for Heteroskedacitet for event vinduet [-1;+1] Breusch-Pagan test for heteroskedasticity chi2(1) = 47,14 Prob > chi2 = 0,0000 Breusch-Pagan testen viser at der forekommer problemer med heteroskedacitet i afhandlingens anvendte stikprøve. Nul hypotesen om homoskedacitet afvises og der er dermed tegn på heteroskedacitet. På grund af dette problem er regressionerne kørt robuste i STATA. Panel C Histogram af residualerne for event vinduet [-10;+10]
8 Panel D Histogram af residualerne for event vinduet [-1;+1] Som det ses af panel A forekommer der outliers, hvilket ifølge teorien giver biased og misspecificerede resultater. Stikprøven vil dog ikke blive ændret. Ved at fjerne outliers, fortæller man at disse anormaliteter aldrig vil forekomme igen, og at det derfor blot er engangstilfælde. I stedet for at fjerne disse outliers køres regressionerne robuste der giver unbiased og bedre specificeret resultater.
9 Appendiks D Udvælgelseskriterier (Zephyr) Afhandlingen har anvendt følgende procedure i forbindelse med dataudvælgelses.: Geography country - Acquirer Sweden Deal location Scandinavia Denmark, Finland, Norway and Domestic/Cross Border Time Period Current Deal Status Deal Type Method of Payment Completed Acquisition, Merger Cash/Shares Acquired stake Acquired Stake Min = 100 % Acquiring company Stock Exchange (Acquirer) Quoted Oslo Axess Stock Exchange NASDAQ OMX Copenhagen/Helsinki/Stockholm and
10 Appendiks F Cross-sectionel regressions resultater inkl. Ejerforhold Variabler [-10;+10] [-1;+1] Konstant 0,0816 0,0907* (0,35) (0,07) Handels - og markedsspecifikke variabler Kontantbetaling -0,0287-0,0090 (0,22) (0,54) Indenlandsk -0,0377 0,0013 (0,26) (0,94) Relateret 0,0208 0,0012 (0,39) (0,41) Finanskrise 0,0142-0,0051 (0,67) (0,74) Virksomhedsspecifikke variabler Opkøbers størrelse 0,0176-0,048 (0,76) (0,20) Relativ størrelse 0,0185* 0,0016 (0,06) (0,77) Kultur variabel Engelsktalende -0,0142 0,0226 (0,69) (0,29) Geografiske variabler Europa - Nordamerika -0,0521-0,0296 (0,29) (0,26) Asien 0,0155-0,0533 (0,79) (0,49) Øvrige -0,0360 0,0349 (0,52) (0,35) Ejer forhold Storaktionær 0,0075-0,0035 (0,72) (0,80) Industriklassifikation NACE kode 10-33: Produktion - - NACE kode 58-63: Information og kommunikation -0,0037-0,0219 (0,87) (0,23) NACE kode 64-66: Finans og forsikring 0,2305** 0,0957* (0,03) (0,10) NACE kode 69-75: Professionel, videnskabelig og teknisk 0,0626 0,0057 (0,24) (0,83) NACE kode: Andet -0,0345-0,0059 (0,25) (0,75) R(2) 5,32 % 11,83 % F-værdi 1,03 1,29
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Appendiks Økonometrisk teori... II
Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan
To samhørende variable
To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Økonometri Lektion 1 Simpel Lineær Regression 1/31
Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Kvantitative metoder 2
Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen
Simpel Lineær Regression
Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige
Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet
Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Bilag 12 Regressionsanalysens tabeller og forklaringer
Bilag 12 Regressionsanalysens tabeller og forklaringer Regressionsanalysens tabeller og forklaringer Regressionsanalysen vil være delt op i 2 blokke. Første blok vil analysere hvor meget de tre TPB variabler
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model
Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H
Kvantitative metoder 2
Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater
Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi
Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet
Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,
! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet
Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
Statistik kommandoer i Stata opdateret 22/ Erik Parner
Statistik kommandoer i Stata opdateret 22/4 2008 Erik Parner Indledning... 1 Simple beskrivelser... 1 Data manipulation... 1 Estimation af proportioner... 2 Estimation af rater... 2 Estimation af Relativ
Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning
1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
Økonometri: Lektion 2 Multipel Lineær Regression 1/27
Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere
Lineære normale modeller (4) udkast
E6 efterår 1999 Notat 21 Jørgen Larsen 2. december 1999 Lineære normale modeller (4) udkast 4.5 Regressionsanalyse 4.5.1 Præsentation 1 Regressionsanalyse handler om at undersøge hvordan én målt størrelse
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j
Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!
Statistik Lektion 16 Multipel Lineær Regression
Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
De variable, som er inkluderet i de forskellige modeller, er følgende:
DUL II. Undersøgelse af hvilke faktorer, der er væsentlige for at understøtte, at der er klare og veltilrettelagte mål tilstede i arbejdet med elevernes læring Følgende er en statistisk analyse af ovenstående
Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Simpel Lineær Regression: Model
Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]
Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning
Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,
a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?
Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
Kapitel 11 Lineær regression
Kapitel 11 Lineær regression Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 1 Indledning Vi modellerer en afhængig variabel (responset) på baggrund af en uafhængig variabel (stimulus),
Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning
1 Multipel regressions model Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning PSE (I17) ASTA - 11. lektion
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion
Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige
Fagplan for statistik, efteråret 2015
Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat
Modul 11: Simpel lineær regression
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................
! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)
Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ
Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen
Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller
Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl
Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl. 9.00 12.00 IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
Statistik Formelsamling. HA Almen, 1. semester
Statistik Formelsamling HA Almen, 1. semester Statistik - Formelsamling Indholdsfortegnelse Hvordan kan formelsamlingen bruges?... 5 Værd at vide... 5 Oversigt Mest brugte symboler... 5 Disclaimer... 5
Økonometri: Lektion 2 Multipel Lineær Regression 1/33
Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,
Modul 6: Regression og kalibrering
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Økonometri B i R. Sebastian Barfort.
Økonometri B i R Sebastian Barfort [email protected] Hvis man gerne vil igang med R, men har svært ved den stejle læringskurve, kan nedenstående måske fungere som en slags guide. For at have
Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22
Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge
Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere
Epidemiologi og biostatistik. Uge 5, torsdag 5. september 003 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver
