OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere
|
|
|
- Gudrun Jepsen
- 7 år siden
- Visninger:
Transkript
1 Epidemiologi og biostatistik. Uge 5, torsdag 5. september 003 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske modelbegreb Cox proportional hazard model Modelselektion Ikke parametrisk statistiske test : Ideen bag To grupper: Mann-Whitney / Wilcoxon testet Parret data (symmetrisk fordeling): Wilcoxon signed rank Association: Test baseret på Spearman s rang korrelation Bag alle beregninger af: Statistiske modeller Estimater, se, sikkerhedsintervaller, test og p-værdier ligger en statistisk model. Modellen er en approksimation til virkeligheden. Valget af model er et valg mellem: kompliceret model ofte god approksimation 3 Modellen er typisk baseret på antagelser, så som: de enkelte observationer er uafhængige. målefejlen er normalfordelt. variationen mellem individer er normalfordelte. Ln(odds) kan skrives som en sum af forskellige bidrag. bidraget fra alder afhænger ikke af personens køn. (ingen effektmodifikation) simpel model ofte dårlig approksimation OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere Hvis antagelserne ikke er (næsten) rigtige simpel model let at forstå og analysere bliver resultaterne værdiløse. En model skal vælges så kompliceret, at den ikke er helt forkert og så simpel, at den er til at analysere og forstå. Derfor bør al statistisk analyse inkludere modelkontrol. Modelselektion 5 Ikke-parametrisk statistiske test Ofte er den model man får præsenteret i en artikel ikke den eneste forfatterne har fittet til data. Man får kun præsenteret den bedste. Modellen er selekteret (udvalgt). Bevidst eller ubevidst. Manuelt eller automatisk (PC: Find den bedste model!). Modelselektion har (desværre) betydning for resulterne: Estimaterne er typisk for store (for langt væk fra nul). Sikkerhedsintervallerne for smalle. P-værdierne for små. Hidtil (parametrisk statistik): Ukendt størrelse (parameter) OR, middelfødselsvægt eller lign. Estimat og standard error. Sikkerhedsinterval. Hypotese (fx OR=1). Test baseret på z = (estimat-hypotese)/se. Resultaterne bygger på en statistisk model. 1
2 Ikke-parametriske test 7 Et eksempel på Mann-Whitney-Wilcoxon test Baseres ikke på et parameter estimat. Men ofte på de rangordnede data. Bygger også på statistiske modeller. Men der er svagere antagelser bag dem. Ofte rang-test: De præcise observationsværdier har ingen betydning. Table 1.3 Biceps skinfold thickness (mm) Crohn s Disease Coeliac Disease Men det har rangene: Hvilken observation er mindst Hvilken observation er næstmindst Hvilken observation er trediemindst osv Rang=1 Rang= Rang=3 0 SKINFOLD TYPE Coeliac Crohn 1 Er der forskel? RANGE Crohn s Disease Coeliac Disease Gennemsnitsrang: Vi ønsker at teste hypotesen: Ingen forskel i skinfold. Idé: Sammenlign gennemsnitsrangen blandt Coeliac patienter med gennemsnitsrangen blandt Crohn patienter. En stor forskel vil være kritisk for hypotesen. P-værdi = sandsynligheden for at observere en større forskel under antagelse af hypotesen er sand! 9 p-værdi=0.15. Præcist samme test hvis vi regnede på ln-data. Eller kvadratroden af data. Eller en hvilken som helst monoton transformation. Kun rangordningen betyder noget. Testet hedder Mann-Whitney U-test eller Wilcoxon two-sample test. Mann-Whitney U-test ækvivalent med Wilcoxon two sample test 11 Et eksempel på signed Wilcoxon test Del af Table. Capillary density (per mm ) in feet of ulcerated patients. Differens mellem værste og bedste fod. 1 Data: To uafhængige sæt observationer. Hypotese: De to fordelinger er ens. Alternativ: De to fordelinger er forskudt i forhold til hinanden. Ide: Hvis alternativet er sandt vil gennemsnitsrangen være forskellig i de to grupper. Hvis hypotesen er sand så vil gennemsnitsrangene være næsten ens. Obs Obs Rang Sum af range: 7 31 Hypotese: Ingen forskel mellem de to fødder, mao. positive og negative differenser har ens fordelinger. Idé: Se på forskellen i sum af rangene af de positive og negative differenser. : Rangene beregnes uden fortegn. P-værdi = sandsynligheden for at observere en større forskel under antagelse af hypotesen er sand!
3 13 Wilcoxon signed rank test. 1 p-værdi=0.53. Ikke samme test hvis vi transformerede data inden vi beregnede differensen. Fx et andet resultat hvis vi så på relative forskelle. Testet hedder Wilxocon signed-rank test. Data: Et sæt uafhængige observationer. Hypotese: Fordelingen er symmetrisk om 0. Alternativ: Fordelingen er ikke symmetrisk om 0. Ide: Hvis alternativet er sandt vil rangsummene for de positive og negative tal være forskellige. Hvis hypotesen er sand så vil rangsummene være næsten ens. Bruges ofte ved parrede data - der regnes på differensen! Et eksempel på test for ingen sammenhæng 15 1 Forudsætninger for lineær regression ikke opfyldt! Table 1.7 Incidens af Kaposi's sarcoma i Tanzania (Derfor) beregning af Pearson korrelation uden mening. Incidens per mio år % befolkning indenfor km fra sundhedscenter Er der en sammenhæng/association? Hvad så! Kan vi nøjes med et test? Til en start: Ja!? Hypotese (som sædvanlig): Ingen sammenhæng. Idé: Rangordne x erne samt y erne og beregn korrelation mellem rangene. Korrelation langt væk fra 0 kritisk. P-værdi = sandsynligheden for at observere en korrelation længere væk fra 0 under antagelse af hypotesen er sand! Korrelation mellem rangene =0.3. p-værdi=0.1 Præcist samme test hvis vi regnede på ln(x) og y. Eller ln(x) og y. Eller en hvilkensomhelst monoton transformation. Kun rangordningerne betyder noget. Testet hedder Spearman s rang korrelation Spearmans rho (ρ) 17 Spearman s korrelation beregnes. Hvis hypotesen er sand så vil denne korrelation være tæt på 0. Spearman s korrelation er ikke mulig at fortolke! Men testet er godt nok! Test for ingen association baseret på Spearman s korrelation Data: Uafhængige par (x,y) af observationer. Hypotese: Ingen association mellem x og y. Alternativ: Monoton association. Ide: Hvis alternativet er sandt vil rangene af x erne være korrelerede med rangene af y erne. 1 3
4 For: Ikke parametrisk test: Godt eller skidt?? Svage antagelser. Kan også bruges på ordinal data som meget godt; godt; rimeligt; dårligt; meget dårligt CIN 1;CIN ; CIN 3; Cancer. Stort set lige så stærke som parametriske test (gælder dog ikke hvis man har få data). Imod: Der er tale om test, ingen estimater med CI. Bruges ofte bevidstløst (svage antagelser=ingen antagelser). Kan kun bruges til simple problemstillinger. 19 Overlevelses (ventetids) data Data der involverer ventetider: Tid til død af kræft efter kræft diagnose. Ventetid til operation. Tid mellem galdestensoperation og fund af ny galdesten. Sådanne data er ofte censurere: Personerne dør af anden årsag end kræft. Personerne er i live da studiet slutter. Den opererede får ikke galdesten inden studiet slutter. Den opererede flytter til et andet amt/land. =Højre censurering: Vi ved hvornår personen sidst var rask/i live 0 Ventetids data kan således være: Højre censureret: Vi ved, at personen ikke har oplevet begivenheden før sidste gang vi ser ham. Men kan også være: Venstre censureret: Vi ved, at personen har oplevet begivenheden inden vi ser ham første gang, men ikke hvornår. Interval censureret: Vi ved, at personen har oplevet begivenheden i givet tidsinterval, men ikke hvornår. Data er ofte interval censurerede: Vi ved, patienten var rask ved forrige kontrol, men nu er han syg. Vi ved ikke, hvornår han blev det. Interval censurerede data er svære at analysere. 1 Der kan også være andre problemer med data: Vi ved ikke om personen har oplevet begivenheden inden vi ser ham første gang. Vi ved ikke om personen har oplevet begivenheden i et givet tidsinterval. Patienter var rask ved forrige kontrol og er det også nu. Har han været syg i mellemtiden? Personer indgår kun hvis de har overlevet. Det er kun højre censurede data, der er let at analysere! Metoderne er: Kaplan-Meyer plot: Metode til at beregne/tegne ventetidsfordelingen under hensyntagen til højre censureringen. Log-rank test: Tester hypotesen: Samme ventetidsfordeling i to grupper. Cox s proportional hazard model: Regressions analyse af ventetids data. Modellerer den relative risiko på log skala. Minder meget om logistisk regression. 3 Intet relaps Table 15.9 Kaplan-Meier survival estimate Kaplan Meyer overlevelseskurve 75% galdestensfrie efter ca år
5 Relaps Kaplan-Meier survival estimate En anden akse (1- overlevelse ), her andel af nye tilfælde. Kaplan Meyer overlevelseskurve 5% har igen galdesten efter ca år Intet relaps Kaplan-Meier survival estimates, by type Log rank test: p=0.009 Der forskel på ventetiden! Det går hurtigere hos de multiple. type = enkelt type = multipel Kurverne meget usikre efter 30-0 mdr. Cox s proportionale hazard model ultra kort 7 Tid mellem galdestensoperation og næste galdesten h(t): hazard/intensitet til tidspunktet t. Prediktorer: Flere galdesten fjernet sands. for at 'dø' inden t + t givet man er i live til tid t h( t) = t Diameter af største galdesten Den tid det tog at opløse galdesten(ene) i mdr. Model: h( t ) = h0 ( t ) exp( β1 x1 + β x + + β p x p ) Variable B S.E. Exp(B) Flere sten Diameter Opløsningstid Baseline hazard Log hazard ratio (relativ risiko) Risikoen er.3 gange større, når flere sten er fjernet. Risikoen stiger med 5% per måned det tog at opløse stenene. 5
OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model
Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske
24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion
. februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet
Statistik kommandoer i Stata opdateret 22/ Erik Parner
Statistik kommandoer i Stata opdateret 22/4 2008 Erik Parner Indledning... 1 Simple beskrivelser... 1 Data manipulation... 1 Estimation af proportioner... 2 Estimation af rater... 2 Estimation af Relativ
Morten Frydenberg Biostatistik version dato:
Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard
Overlevelsesfunktion. Vi kalder S(t) for overlevelsesfunktionen.
1 Levetidsanalyse Overlevelsesfunktionen Censurering Kaplan-Meier estimatoren Hazard funktionen Proportionale hazards Multipel regression PSE (I17) FSV1 Statistik - 5. lektion 1 / 19 Overlevelsesfunktionen
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april
Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et
Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)
Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Dag 6: Interaktion. Overlevelsesanalyse
Dag 6: Interaktion. Overlevelsesanalyse How does CHD depend on gender and hypertension? Males: hypertension chd01 Females: Frequency Row Pct 0 1 Total ---------+--------+--------+ 0 352 95 447 78.75 21.25
MPH specialmodul Epidemiologi og Biostatistik
MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:
1. februar Lungefunktions data fra tirsdags Gennemsnit l/min
Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud
Epidemiologi og Biostatistik
Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Epidemiologi og Biostatistik
Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik
Modul 12: Regression og korrelation
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected]
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter
Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger
Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: [email protected] I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Faculty of Health Sciences. Basal Statistik. Overlevelsesanalyse. Lene Theil Skovgaard. 12. marts 2018
Faculty of Health Sciences Basal Statistik Overlevelsesanalyse Lene Theil Skovgaard 12. marts 2018 1 / 12 APPENDIX vedr. SPSS svarende til diverse slides: Kaplan-Meier kurver, s. 3 Kumulerede incidenser
Regressionsanalyser. Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer.
Regressionsanalyser Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer. Hvilke faglige problemer kan man løse vha. regressionsanalyser? 1 Regressionsanalyser Det primære problem
Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Ikke-parametriske tests
Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Morten Frydenberg Biostatistik version dato:
Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev
Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test
Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test Formålet med øvelsen er at analysere risikoen for død forbundet med forskelligt alkoholforbrug. I denne øvelse skal analyserne foretages
Basal statistik. 30. januar 2007
Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet
Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.
Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes
Kapitel 11 Lineær regression
Kapitel 11 Lineær regression Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 1 Indledning Vi modellerer en afhængig variabel (responset) på baggrund af en uafhængig variabel (stimulus),
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1
Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j
Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Kapitel 7 Forskelle mellem centraltendenser
Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts
Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
Korrelation Pearson korrelationen
-9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.
Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts
Århus 19. marts 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts Epibasic er nu opdateret til version 2.04 med arkene Str any og weighted Alle tabeller og tegninger
Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22
Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som
Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet
Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mantel-Haenszel analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Mantel-Haenszel analyser Mantel-Haenszel analyser Sidst lærte vi om stratificerede analyser. I dag kigger vi på et specialtilfælde: både exposure
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
6. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag)
Institut for Epidemiologi og Socialmedicin Institut for Biostatistik. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag) Opgave 1 Læs afsnit.1 i An Introduction to Medical Statistics, specielt
Kirsten Avlund Prisen Dansk Gerontologisk Selskab DARC
Kirsten Avlund Prisen Dansk Gerontologisk Selskab Hvem er jeg? How people in science see each other 2006: Cand.Scient. i Matematik, KU 2015: Ph.d. i Sundhedsvidenskab, SDU 2017: Adjunkt ved EBB, SDU Exceptionelt
Overlevelsesanalyse. Faculty of Health Sciences
Faculty of Health Sciences Overlevelsesanalyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Program Overlevelsesdata Kaplan-Meier estimatoren
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.
Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser
Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul
Kursus i Epidemiologi og Biostatistik Epidemiologiske mål Studiedesign Svend Juul 1 Pludselig uventet spædbarnsdød (vuggedød, Sudden Infant Death Syndrome, SIDS) Uventet dødsfald hos et rask spædbarn (8
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning
1 Multipel regressions model Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning PSE (I17) ASTA - 11. lektion
Epidemiologi og Biostatistik. Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002
Epidemiologi og Biostatistik Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002 1 Statestik Det hedder det ikke! Statistik 2 Streptomycin til behandling af lunge-tuberkulose?
