Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Nykøbing Falster

Størrelse: px
Starte visningen fra side:

Download "Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Nykøbing Falster"

Transkript

1 Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Nykøbing Falster

2

3 Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater vedr. indpasning af geotermi (Ea) Geologisk vurdering (GEUS) Introduktion Dette er én ud af 28 områderapporter, som viser specifikke økonomiske og produktionsmæssige resultater for hvert enkelt område. Rapporten er et bilag til hovedrapporten Landsdækkende screening af geotermi i 28 fjernvarmeområder, og bør læses i sammenhæng med denne, da hovedrapporten indeholder information, der er væsentlig for at forstå resultatet. Rapporten er udarbejdet for Energistyrelsen af Dansk Fjernvarmes Geotermiselskab, COWI og Ea Energianalyse i perioden efteråret 2013 til sommeren Områderapporten indeholder den af GEUS udførte geologiske vurdering, COWIs beskrivelse af fjernvarmeområdet og den fremtidige forsyningsstruktur, Dansk Fjernvarmes Geotermiselskabs beregninger af de økonomiske og tekniske forhold i et geotermianlæg i fjernvarmeområdet, og Ea Energianalyses modelresultater fra Balmorel med varmeproduktionskapaciteter, fjernvarmeproduktion og -omkostninger over året for de fire scenarier i årene 2020, 2025 og Resultaterne skal tages med en række forbehold. Først og fremmest skal det understreges, at der er tale om en screening med det formål at give en indikation af mulighederne for geotermi. Der er ikke foretaget en fuldstændig analyse af den optimale fremtidige fjernvarmeforsyning i området. Den geologiske vurdering er alene foretaget for en enkelt lokalitet, svarende til en umiddelbart vurderet fordelagtig placering af geotermianlægget. Der kan derfor ikke drages konklusioner om hele områdets geologisk potentiale og den optimale placering for et eventuelt geotermianlæg. Modellering af områdets nuværende og forventede fremtidige fjernvarmeproduktion og -struktur er sket ud fra de data, som de var oplyst og forelå i år Endvidere indeholder optimeringsmodellen en række forudsætninger og forsimplinger, som ikke nødvendigvis afspejler de aktuelle forhold præcist. Der tages således for eksempel ikke hensyn til kapitalomkostninger for eksisterende produktionsenheder, kun for enheder modellen investerer i. Eksisterende anlæg forudsættes at kunne levetidsforlænges indtil år 2035 uden væsentlige reinvesteringer ud over normalt vedligehold. Der skal endvidere tages højde for, at resultaterne ikke er baseret på optimeringer for hver enkelt by, men en optimering for hele systemets energiomkostninger.der er ikke udført usikkerheds- og følsomhedsberegninger for hvert område, men derimod lavet et generelt eksempel på geotermianlæggets følsomhed overfor ændringer af de vigtigste inputparametre, se afsnit 5.2 i hovedrapporten.

4

5 MEMO TITEL Nykøbing - Beskrivelse fjernvarmeområde DATO 17. februar 2014 TIL Energistyrelsen KOPI FRA PROJEKTNR COWI (Else Bernsen/Kurt Madsen) A ADRESSE COWI A/S Parallelvej Kongens Lyngby TLF FAX WWW cowi.dk SIDE 1/4 1 Nykøbing - Falster - Guldborgsund Forsyning 1.1 Nuværende forsyning Guldborgsund Varme forsyner ca kunder i Nykøbing F., Ønslev, Eskilstrup, Ovstrup og Gundslevmagle med fjernvarme. Varmen leveres fra REFA affaldsfyrede kraftvarmeværk samt et flisfyret varmeproduktionsanlæg placeret meget tæt på affaldsforbrændingsanlægget. Biovarmeværket producerer megawatttimer om året. Energiproduktionen er 100 procent CO2-neutral. REFA leverer fjernvarme til forsyningsselskaberne i Nykøbing F., Sakskøbing og Maribo. Desuden driver REFA Energi varmeværker i Stubbekøbing, Horbelev og Holeby. Forsyningen aftager desuden overskudsvarme fra Nordsukker i visse perioder af året. Herudover findes nogle oliefyrede spids- og reservelastcentraler placeret forskellige steder i byen. Sammen med Guldborgsund Forsyning arbejder REFA for en fortsat udbygning af fjernvarmenettet på Falster. Op mod 1/3 af ledningsnettet er fra starten af 70 erne og Guldborgsund varme arbejder med en strategisk renoveringsplan med henblik på at mindske varmetabet i ledningsnettet med i alt 5 10% ved udgangen af I sammen periode antages at antallet af kunder øges med 5%. Den nuværende forsyningsstruktur er illustreret på nedenstående figur: dokumenter/cowi - spørgeskemaer, input, rapporter/endelige cowi filer /Nykoebing.docx

6 SIDE 2/4 Guldborgsund Forsyning har oplyst nedenstående prognose for udviklingen af var- megrundlaget- Varmegrundlag Guldborgsund Fjernvarme MWh/år Varmesalg Konvertering Varmesalg efter konvertering Distributionstab An net TJ/år Nettovarme Distributionstab An net Energistyrelsens Udbud angiver som gns 5 år 734 TJ/år samlet an net dokumenter/cowi - spørgeskemaer, input, rapporter/endelige cowi filer /Nykoebing.docx

7 SIDE 3/4 DF har gennemført en treårig strukturanalyse for medlemsselskaberne og har i denne angivet nedenstående temperaturforhold for fjernvarmesystemet i Nykøbing Falster. Sommer an net Vinter an net Fremløb Retur Fremløb Retur [ C] årig strukturanalyse Nuværende produktionsstruktur Nedenstående figur og tabel illustrerer den geografiske placering samt produktionsstrukturen i Nykøbing Falster. dokumenter/cowi - spørgeskemaer, input, rapporter/endelige cowi filer /Nykoebing.docx

8 SIDE 4/4 Eksisterende produktionsanlæg - baseret på energiproducenttællingen 2012 Varme produktion i 2012 (TJ) *Brændsels forbrug 2012 (TJ) Indfyret effekt (MW) Eleffekt (MW) Varme effekt (MW) Elvirknings grad **Varme virknings grad Etablerings år Anlægsnavn Anlægstype Hovedbrændsel Nykøbing Affaldsforbrændingsanlæg I/S REFA Dampturbine Affald % 52% Kedler Affald % Forventet udfasning år Bioenergi, Nyk. F,Skovalleen Kedel Flis % Nordic Sugar, Nykøbing Sukkerfabrik Erhvervsvej Dampturbine % 79% Dampturbine % 76% Kedler % Central Nord Nordre Ringvej 15 Kedel Bioolie % CentralØst Åge Sørensensgade 16 Kedel Bioolie % Total Oplysningerne i energiproducenttællingen er baseret på indmeldinger fra selskaberne. Data skal suppleres/verificeres i forbindelse med den videre proces. 1.3 Fremtidig forsyning Guldborgsund Forsyning har ingen aktuelle udbygningsplaner for forsyningsområdet bortset fra forsyning til Systofte området etableres Affaldskraftvarmeværket udbygges 2015 med kondenseringsanlæg. Selskabet har ingen aktuelle planer relateret til etablering og placering af et eventuelt geotermianlæg. Afhængig af aktuelle behov / produktionskapacitet samt temperaturprofil vil det være muligt at anvende nuværende forsyningskilder herunder REFA s anlæg, som drivenergi. Muligheden for at anvende spildevand på NYK renseanlæg har været undersøgt men er ikke økonomisk rentabelt. I forbindelse med screeningen er det valgt at tage udgangspunkt i en placering af et eventuelt geotermianlæg på adressen Energivej 4, 4800 Nykøbing F., dvs. ved affaldsforbrændingsanlægget. dokumenter/cowi - spørgeskemaer, input, rapporter/endelige cowi filer /Nykoebing.docx

9 Notat Projekt: Til: Kopi: Fra: Landsdækkende screening af geotermi i fjernvarmesystemerne Ea Energianalyse & COWI GEUS Birte Røgen, Allan Mahler, Malthe Jacobsen & Asger Løngreen, Dansk Fjernvarmes Geotermiselskab Dato: 3. juli 2015 Emne: Beregning af et geotermianlæg i Nykøbing Falster 1 Indledning Dansk Fjernvarmes Geotermiselskab, COWI og Ea Energianalyse har for Energistyrelsen udført beregninger af de økonomiske og tekniske forhold i et geotermianlæg ved Nykøbing Falster. Beregningerne er udført som en del af et større analysearbejde omfattende 28 fjernvarmeområder i Danmark. Anlægsberegningerne er udført på baggrund af geologiske data leveret af De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS) og data for fjernvarmeforsyningen i Nykøbing Falster leveret af COWI på baggrund af forskellige datakilder, herunder data indhentet hos Guldborgsund Forsyning. Anlægsberegningerne tager udgangspunkt i en placering på Energivej 4, 4800 Nykøbing F, ved REFA affaldskraftvarmeværket. 2 De geologiske forudsætninger Fastlæggelsen af de geologiske forudsætninger bygger på GEUS notat Falster_2014_01_23.docx. Geologisk set ligger Nykøbing Falster i det Nordtyske Bassin, som har mere end 3 km tykke sedimenter. Der forventes et potentielt geotermisk sandstensreservoir i Bunter Sandstens Formationen. Det forventes også at Gassum Formationen indeholder sandsten, men at de er så højtliggende at de er for kolde til at udgøre geotermisk reservoir for et fjernvarmesystem. I regionen er lagene i flere områder påvirket af saltbevægelse og ledsagende forkastningsaktivitet, hvilket gør, at nogle lag varierer meget i dybde, tykkelse og kontinuitet. De geologiske data, der indgår i beregningerne, er vist i Tabel 1. Formation Bunter Sst. Fm. Dybde@midt reservoir m TVD 1058 Temperatur@midt reservoir C 39 Tykkelse af formation m 115 Tykkelse af potentielt reservoirsand m 29 Transmissivitet Dm 15 Tabel 1:Geologiske reservoirdata for et geotermianlæg ved Nykøbing Falster. Screening NykobingF DFGanlægsnotat docx Side 1 af 6

10 3 Forudsætninger for fjernvarmesystemet Forudsætningerne for fjernvarmesystemet er beskrevet i rapporten Beskrivelse af fjernvarmeområder gruppe 1 og 2, COWI 17. februar Data fra denne rapport er til brug for beregningerne sammenfattet i Tabel 2. Varmegrundlag TJ/år 825 Eksisterende produktionsanlæg med forret. MW 22* Antages tilgængelig som drivvarme. Fremløbstemperatur vinter C 78 Returløbstemperatur vinter C 38 Fremløbstemperatur sommer C 76 Returløbstemperatur sommer C 40 Mindste varmeeffekt (sommereffekt) MW Standard kurve Tabel 2: Energiforudsætninger for et geotermianlæg ved Nykøbing Falster. * Effekten er ikke oplyst men tilpasset affaldsforbrændingens årlige varmeproduktion (453 TJ/år). 4 Beregninger for et geotermianlæg Beregningerne er udført med geotermipro, en konceptberegningsmodel for geotermiske anlæg. Programmet arbejder ud fra en anlægskonstellation med varmevekslere og varmepumper og muligheden for at opdele anlægget med geotermivandskreds og varmepumpekreds på to lokaliteter (se bilag om geotermipro). I beregningerne er varmegrundlaget taget i betragtning i form af en varighedskurve, og der er foretaget en vægtet midling af temperaturniveauerne over året. Det forudsættes at geotermien sammen med anlæggene til driv- og eftervarme vil udgøre grundlast i fjernvarmeforsyningen, idet affaldsvarmen dog har forret. De tekniske og økonomiske forudsætninger for beregningerne fremgår i øvrigt af notatet Generelle forudsætninger for beregning af geotermianlæg. I standardberegningen forudsættes der anvendt absorptionsvarmepumper, og drivvarme forudsættes at være til stede ved 160 C. Det forudsættes at varmen fra eksisterende forbrændingsanlæg kan benyttes som drivvarme. På anlægsskitsen i output fra geotermipro, som vises i resultatafsnittet er der kun vist én absorptionsvarmepumpe, mens der i praksis kan være tale om et antal absorptionsvarmepumper i serie. 5 Resultater Resultaterne af anlægsberegningerne er samlet i den følgende Tabel 3. Desuden vises resultater for geotermipro-beregning i figur 1, der indeholder anlægsskitse med energibalance, varighedskurve med geotermibidrag samt økonomiske nøgletal. En anlægsberegning for et anlæg med absorptionsvarmepumper og placeret på én lokalitet, standardberegningen, viser at der med en samlet investering på 200 mio. kr. kan etableres et Screening NykobingF DFGanlægsnotat docx Side 2 af 6

11 geotermianlæg med en kapacitet på 6,6 MW varme fra undergrunden og en total effekt inklusiv driv- og eftervarme på 15,9 MW. Med de generelle forudsætninger, herunder antagne energipriser og kalkulationsrente, resulterer dette i en årlig varmeproduktion fra undergrunden på 26 GWh, med en forventet varmepris på 714 kr/mwh. Resultaterne i Tabel 3 skal benyttes i de videre beregninger af scenarier og landsbilleder for geotermi i fjernvarmesystemerne, og indeholder derfor ikke omkostninger til energikøb i de variable drift- og vedligeholdelsesomkostninger. Ligeledes er afskrivning og forrentning af anlægsinvesteringerne ikke medtaget i tabellen. Usikkerheden på anlægsstørrelsen er vurderet til at være høj. Screening NykobingF DFGanlægsnotat docx Side 3 af 6

12 Figur 1: Output fra geotermipro, standardberegning. Screening NykobingF DFGanlægsnotat docx Side 4 af 6

13 Beregningsresultater A) Absorptions varmepumper Enhed Samlet anlæg Anlægskapacitet (vinter) 1) Effekt fra geotermivand MW 6,551 2) Effekt fra drivvarme MW 9,344 3) Effekt fra eftervarme MW 0,000 4) Varmeeffekt til fjernvarmevand MW 15,895 5) Proces el MW 1,004 6) Varmepumpe el MW N/A Årsenergiomsætning, forholdstal 7) Varme fra geotermivand % 100,000 8) Drivvarme % 142,608 9) Eftervarme % 0,000 10) Varme til fjernvarmevand % 242,608 11) Proces el forbrug % 13,697 12) Varmepumpe el forbrug % N/A Investeringsomkostninger 13) Samlet investering mio. kr 192,075 14) Byggerenter mio. kr 11,015 Driftsomkostninger 15) Faste D&V omkostninger mio. kr./år 3,017 16) Variable D&V omkostninger, kr./mwh eksklusiv energiforbrug, per MWh varme produceret fra geotermivand 57,526 Tabel 3: Resultater fra anlægsberegninger i geotermipro. Noter til Resultatark: Opdelt anlæg B) Elvarmepump er Samlet anlæg C) Kombination Absorptions og el VP 1) Effekt fra geotermivand: Den effekt, der stammer fra undergrunden, ved drift i vinterperioden. 2) Effekt fra drivvarme: Effekt i form af varme til absorptionsvarmepumper, ved drift i vinterperioden. 3) Effekt fra eftervarme: Effekt i form af eftervarme til at hæve temperaturen efter varmepumperne, ved drift i vinterperioden. 4) Total effekt til fjernvarmevandet, ved drift i vinterperioden (inkl. efter- og drivvarme) 5) Proces el effekt til geotermianlæg, ved drift i vinterperioden 6) El effekt til varmepumper, ved drift i vinterperioden 7) Årsenergiomsætning, varmemængde produceret fra geotermivand (%). Årsenergiomsætningerne er beregnet med en vægtet kombination af sommer- og vinterdrift. 8) Årsenergiomsætning, drivvarmemængde per varmemængde produceret fra geotermivand (%) 9) Årsenergiomsætning, eftervarmemængde per varmemængde produceret fra geotermivand (%) 10) Årsenergiomsætning, total varmemængde til fjernvarmevand per varmemængde produceret fra geotermivand (%) Screening NykobingF DFGanlægsnotat docx Side 5 af 6

14 11) Årsenergiomsætning, proces el forbrug per varmemængde produceret fra geotermivand (%) 12) Årsenergiomsætning, varmepumpe el forbrug per varmemængde produceret fra geotermivand (%) 13) Samlet investering i geotermianlæg inklusiv varmepumper men ekskl. drivvarmeanlæg. Prisniveau 2015 (uden byggerenter) 14) Byggerenter for mellemfinansiering i byggeperioden (3% realrente p.a.) 15) Faste drifts- og vedligeholdelsesomkostninger for anlægget (uanset driftstid) 16) Variable drifts- og vedligeholdelsesomkostninger ekskl. energiforbrug. Årlige variable omkostninger til drift og vedligehold i forhold til årlig varmemængde produceret fra geotermivand. Kolonne C): Svarende til et geotermianlæg med både absorptions- og el varmepumper. Anlægget kan skiftevis drives med absorptions- eller el-varmepumper. Screening NykobingF DFGanlægsnotat docx Side 6 af 6

15 Balmorel modelresultater Nykøbing Falster De efterfølgende sider indeholder en specifik resultatrapport for Nykøbing Falster. De fire scenarier som der vises resultater for er: 1. Ref.: Reference scenarie med fastholdelse af det nuværende system og de af fjernvarmeselskaberne planlagte udvidelse indtil Fra 2020 er "verden forlænget med brædder". Dette scenarie er altså et "status-quo" scenarie. 2. Ref.m.geo.: Reference scenariet med anlagt geotermianlæg. Anlæggets størrelse og tekniske specifikationer er udregnet af Dansk Fjernvarmes Geotermiselskab. Scenariet kan sammenlignes med Reference scenariet og vise hvorledes et geotermianlæg vil konkurrere i områdets nuværende system. 3. Alt.: Alternativ scenariet er hvor systemerne ikke er forlænget med brædder, men i stedet har investeret i nye teknologier, primært biomasse kraftvarme, solvarme og varmepumper. 4. Alt.m.geo.: Dette er et alternativt scenarie, hvor der før man har investeret i nye teknolgier har implemeteret et geotermianlæg. Det vil derfor stadig investere i nye teknologier, men i mindre omfang. Dette scenarie kan sammenlignes med Alternativ scenariet og se geotermianlægs konkurrenceforhold i et mere grønt system. De to scenarier Ref. og Alt. er valgt for at ramme en stagnering og ekspanderende udvikling af grønne teknologiindfasning. I nogle systemet vil man være tættest på det ene og i andre tættest på det andet. De fire scenarier er forklaret i større detalje i hovedrapporten "Landsdækkende screening af geotermi i 28 fjernvarmeområder - Beregning af geotermianlæg og muligheder for indpasning i fjernevarmeforsyningen." Denne rapport viser varmeproduktionskapaciteter, årlig fjernvarmeproduktion og månedlig fjernvarmeproduktion. Figur- og tabelforklaring er som følger: - Figur 1: Fjernvarmeproduktionskapacitet fordelt på brændsler og anlægstyper - Figur 2: Fjernvarmeproduktion i forhold til fjernvarmebehov - Figur 3: Fjernvarmeproduktion fordelt på brændsler og anlægstyper - Figur 4: Brændselsforbrug for fjernvarmeproduktion fordelt på brændsler - Figur 5: Varmelastfordeling over året fordelt på brændsler og anlægstyper - Figur 6: Samlede varmeproduktionsomkostninger for området (mio. kr.) - Figur 7: Samlede varmeproduktionsomkostninger for området (kr./gj) - Tabel 1: Fjernvarmeproduktionskapacitet fordelt på brændsler og anlægstyper - Tabel 2i: Solvarmeanlæg i m² - Tabel 2ii: Fjernvarmeproduktion fordelt på brændsler og anlægstyper - Tabel 3: Brændselsforbrug for fjernvarmeproduktion fordelt på brændsler - Tabel 4: Fuldlasttimer for varmeproduktionsenhederne.

16 Kapaciteter Fjernvarmeproduktionskapacitet - fordelt på brændsler og anlægstyper Fjernvarmeproduktionskapacitet - fordelt på brændsler og anlægstyper MW Brædsel og Anlægstyper Ref. Ref. med Geo. Alt. Alt. med Geo. Ref. Ref. med Geo. Alt. Alt. med Geo. Ref. Ref. med Geo. Alt. Alt. med Geo. Affald - Kedel Træflis - Kedel GeoFlis - Kedel Affald - KV Tabel 1: Udvikling i fjernvarmeproduktionskapacitet for Nykøbing Falster. For alle fjernvarmeområder er der yderligere indsat tilstrækkelig oliespidslastkapacitet til at dække spidsbehovet.

17 Fjernvarmeproduktion Fjernvarmeproduktion i forhold til fjernvarmebehov Fjernvarmeproduktion fordelt på brændsler og anlægstyper TJ Brændsler og Anlægstype Ref. Ref. med Geo. Alt. Alt. med Geo. Ref. Ref. med Geo. Alt. Alt. med Geo. Ref. Ref. med Geo. Alt. Alt. med Geo. GeoFlis - Kedel 159,4 159,4 271,6 271,6 270,1 270,1 Bio olie - Kedel 7,8 7,8 2,4 2,4 1,2 1,2 Affald - Kedel 234,9 218,2 234,9 218,2 231,0 87,0 231,0 87,0 229,5 81,5 229,5 81,5 Træflis - Kedel 93,1 93,1 83,4 83,4 79,1 79,1 Affald - KV 465,1 423,3 465,1 423,3 460,5 418,7 460,5 418,7 458,9 417,1 458,9 417,1 Tabel 2: Fjernvarmeproduktion fordelt på brændsler og anlægstyper for Nykøbing Falster.

18 Fuldlasttimer for varmeproduktion Fuldlast timer Brændsler og anlæg Ref. Ref. med Geo. Alt. Alt. med Geo. Ref. Ref. med Geo. Tabel 4: Antal af fuldlasttimer for varmeproduktion i Nykøbing Falster. Alt. Alt. med Geo. Ref. Ref. med Geo. Alt. Alt. med Geo. GeoFlis - Kedel Bio olie - Kedel Affald - Kedel Træflis - Kedel Affald - KV

19 Månedlig varmeproduktion fordelt på brændsler og anlægstyper for Nykøbing Falster. Ref

20 Ref. med Geo

21 Alt

22 Alt. med Geo Figur 5: Fjernvarmeproduktion over året fordelt på brændsler og anlægstyper for Nykøbing Falster.

23

24

25 Det geotermiske screeningsprojekt Nykøbing Falster-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth Hjuler & Troels Laier D E N A T I O N A L E G E O L O G I S K E U N D E R S Ø G E L S E R F O R D A N M A R K O G G R Ø N L A N D

26 Indhold 1. Introduktion 3 2. Geologisk baggrund 5 3. Resultater for Nykøbing Falster-lokaliteten Anbefalinger Datagrundlag Gennemgang af data Udbredelse og kontinuitet af formationer og interne reservoirer Seismisk tolkning og kortlægning Boringsdata Reservoirkvalitet Tolkning af lithologi Vurdering af tykkelser, lerindhold og porøsitet Permeabilitet Transmissivitet Temperatur Salinitet Referencer 30 G E U S 2

27 1. Introduktion I denne rapport præsenteres relevante geologiske data som grundlag for en vurdering af de dybe geotermiske muligheder ved en lokalitet ved Nykøbing på adressen Energivej 4, 4800 Nykøbing F (Figur 1). Udvælgelsen af lokaliteten er sket under hensynstagen til infrastrukturen på overfladen, herunder beliggenheden af eksisterende fjernvarmeanlæg og - net, samt ud fra driftsbetragtninger (primært temperatur og lastforhold). Nykøbing Falster fjernvarmeområde udgør ét af 28 fjernvarmeområder, der skal screenes for de geotermiske muligheder ved en udvalgt lokalitet. Screeningen sker for midler afsat i den Energipolitiske aftale af 22. marts De 28 fjernvarmeområder er i udgangspunktet valgt ud fra, at deres varmemarked er større end 400 TJ/år, og at de dækker områder, hvor der forekommer formationer i undergrunden, som kan indeholde geotermiske sandstensreservoirer i det rette dybdeinterval for geotermisk indvinding. De geologiske data skal efterfølgende indgå som et input til at estimere varmeeffekt, geotermisk indvindingspotentiale, økonomi m.v. ved en eventuel realisering af et geotermianlæg og til efterfølgende at vurdere samfundsøkonomi samt selskabsøkonomi på det samlede varmemarked ved inkludering af geotermisk varmeproduktion. De geologiske data fra screeningen af de 28 fjernvarmeområder indgår i en Geotermi WebGIS portal, hvori relevante geologiske data sammenholdes med henblik på at lave en screening af det geotermiske potentiale på landsplan. WebGIS portalen er under udarbejdelse af GEUS for midler, der ligeledes er afsat i den Energipolitiske aftale af 22. marts Undergrundens geologiske opbygning kan variere betydeligt over selv korte afstande og som følge heraf, kan det geotermiske potentiale variere tilsvarende. En kortlægning af denne variation over større områder er meget omfattende, kræver ofte indsamling af supplerende geologiske data og ligger som følge heraf udenfor rammerne af indeværende screening. Den valgte lokalitet udgør derfor muligvis heller ikke det mest optimale sted for udnyttelse af geotermi i Nykøbing Falster-området, hvis der udelukkende tages udgangspunkt i de geologiske forhold. Geotermi WebGIS portalen vil udgøre et godt udgangspunkt til at vurdere geologien og variationen af det geotermiske potentiale over større områder. Gennemgangen af Nykøbing Falster-lokaliteten er opbygget således, at der i afsnit 2 gøres rede for regionale geologiske forhold og undergrundens opbygning. Det vurderes, at den primære dybe geotermiske reservoirmulighed ved lokaliteten udgøres af knap 30 meter sandsten, der er beliggende mere end 1000 meter under terræn. Sandstenene indgår i Bunter Sandsten Formationen, og den geologiske gennemgang og vurdering af undergrunden fokuserer derfor på denne formation. Geologiske nøgledata, der danner grundlag for en vurdering af det geotermiske potentiale ved prognoselokaliteten, og som udgør et input til økonomiske beregninger mm., er samlet i Tabel 3.1 i afsnit 3. Det er også i dette afsnit, at det geotermiske potentiale vurderes, og der gives anbefalinger til eventuelle G E U S 3

28 supplerende undersøgelser. I de efterfølgende afsnit dokumenteres datagrundlaget, og hvordan de geologiske nøgledata er fremkommet samt delvist hvilke betragtninger og antagelser, der ligger bag dem. For en generel introduktion til anvendelsen af geotermisk energi i Danmark ud fra en geologisk synsvinkel henvises der til WebGIS portalen. Heri gennemgås blandt andet hvilke typer geologiske data (reservoirdata, seismiske data, temperaturdata og salinitetsdata m.fl.), der indgår i vurderingen af et geotermisk potentiale og hvilke usikkerheder, der overordnet knytter sig til beregningen af disse. Figur 1: Kort visende den omtrentlige beliggenhed af prognoselokaliteten (rød cirkel) ved Nykøbing Falster. G E U S 4

29 2. Geologisk baggrund Nykøbing Falster-området er beliggende i det Nordtyske Bassin, som blev dannet ved strækning af skorpen i Tidlig Perm tid. Ringkøbing Fyn Højderyggen adskiller mod nord bassinet fra det Danske Bassin (Figur 2). Ringkøbing Fyn Højderyggen er en del af et regionalt VNV ØSØ-gående strøg af højtliggende grundfjeldsområder i undergrunden, der gennemskæres af nord syd orienterede riftstrukturer og mindre trug. Efter en indledende aflejring af Rotliegend grovkornede klastiske sedimenter i det Nordtyske Bassin og det Danske Bassin fulgte en lang periode med indsynkning, hvor tykke aflejringer af Zechstein-salt blev dannet i bassinerne efterfulgt af aflejring af sand, mudder, karbonat og mindre saltdannelser i Trias og Tidlig Jura. Regional hævning i Mellem Jura førte til en betydelig erosion af underliggende sedimenter, specielt op mod flankerne af og over det højtliggende grundfjeld i Ringkøbing Fyn Højderyggen. Denne, og senere erosionshændelser, er repræsenteret ved en markant erosionsflade, der overlejres af en Nedre Kridt lagserie bestående af muddersten og siltsten samt enkelte sandstenslag. Herefter følger en tyk serie af karbonat- og kalkaflejringer, der udgør den øverste del af den mesozoiske lagserie i bassinerne. De betydelige mængder sedimenter, der blev aflejret gennem Mesozoikum, førte i perioder til, at underliggende aflejringer af Zechstein-salt blev plastisk deformeret og nogle steder søgte opad langs svaghedszoner. Dette resulterede nogle steder i, at de overliggende lag blev løftet op (på saltpuder) eller gennembrudt af den opstigende salt (af saltdiapirer). Over saltstrukturerne kan lagene være eroderet helt eller delvis bort eller ikke være aflejret, hvorimod forøget indsynkning nedenfor saltstrukturernes flanker (i randsænkerne) kan have ført til, at selvsamme lag er ekstra tykke i disse områder. Saltbevægelsen har endvidere mange steder været ledsaget af forkastningsaktivitet, og da tektonisk betinget forkastningsaktivitet også har fundet sted, er den strukturelle kontinuitet som følge heraf lille i dele af det Nordtyske Bassin. I Nykøbing Falster-området er Øvre Perm Kvartær lagserien 1,5 2,0 km tyk (Vejbæk & Britze 1994). Potentielle geotermiske sandstensreservoirer i den sydlige del af Danmark vurderes primært at være til stede i den Nedre Triassiske Bunter Sandsten Formation og i den Øvre Triassiske Nedre Jurassiske Gassum Formation (Mathiesen et al. 2013). Dette er baseret på, at disse formationer vides at kunne indeholde geotermiske sandstensreservoirer, og at de i større områder vurderes til at være beliggende indenfor dybdeintervallet meter, der anses for egnet til dyb geotermisk indvinding. Kortlægningen af dybdeintervaller og indhold af sandsten er baseret på tilgængelige seismiske data og data fra dybe boringer i undergrunden. Den geografiske dækning og kvaliteten af disse data er dog meget varierende, og det er som følge heraf også meget forskelligt med hvilken grad af sikkerhed, man kan udtale sig om det geotermiske potentiale fra område til område. Ud fra den regionale seismiske kortlægning og brønddata vurderes Gassum Formationen til at være beliggende på lavere dybde end 800 meter i store dele af Lolland og Falster, inklusiv Nykøbing Falster-området. Derimod er Bunter Sandsten Formationen til stede i det rette G E U S 5

30 dybdeinterval for dyb geotermisk indvinding, og fokus er derfor på denne formation i vurderingen af det geotermiske potentiale ved prognoselokaliteten. Bunter Sandsten Formationen kendes fra adskillige dybe boringer i Danmark og Sverige og er vidt udbredt i det Danske Bassin og det Nordtyske Bassin. Det geotermiske anlæg ved Margretheholm på Amager udnytter varmt vand fra sandstenslag i Bunter Sandsten Formationen. Formationen er mindre end 300 meter tyk i det syddanske område, og henover Ringkøbing Fyn Højderyggen er formationen tynd eller mangler helt. Højderyggen var sandsynligvis delvis blottet som øer i Tidlig Trias, hvor mindre trug mellem øerne forbandt det Nordtyske Bassin med det Danske Bassin (Michelsen et al. 1981). Bunter Sandsten Formationen består af rødbrune og gulbrune, fin- til mellemkornede sandsten, foruden silt- og lersten. Lokalt er aflejringerne stærkt kalk-, anhydrit- og glimmerholdige. I det Danske Bassin afløses Bunter Sandsten Formationen mod nord af grovkornede sandsten tilhørende Skagerrak Formationen. Bunter Sandsten Formationen blev dannet i Tidlig Trias i et tørt og varmt ørkenklima. Vidtforgrenede og periodisk vandførende floder transporterede sand ind i den centrale del af aflejringsbassinet, hvor sandet blev aflejret i flodkanaler. Vegetationen var yderst sparsom, og i nedbørspauser dannede vinden sandklitter. I mellem flodkanal- og klitsandet blev lag af ler afsat i søer. Det syddanske område, som Nykøbing Falster-området er en del af, fik tilført sedimenter fra nord stammende fra erosion af Ringkøbing Fyn Højderyggen, og endvidere blev æolisk (vindtransporteret) sand i perioder tilført området fra syd (Olivarius 2015). På denne måde blev der dannet forholdsvist sammenhængende lag af fin- til mellemkornede sandsten, som havde stor geografisk udbredelse uden væsentlige primære hydrauliske barrierer. Senere forkastningsaktivitet har i nogle områder dog ændret på dette, ligesom senere kompaktion og mineraludfældninger (diagenese) har modificeret reservoiregenskaberne. G E U S 6

31 Figur 2: De væsentligste strukturelle elementer i det sydlige Skandinavien inklusiv den nordligste del af det Nordtyske Bassin, Ringkøbing Fyn Højderyggen, det Danske Bassin, Sorgenfrei Tornquist Zonen og Skagerrak Kattegat Platformen. Modificeret figur fra Nielsen (2003). G E U S 7

32 3. Resultater for Nykøbing Falster-lokaliteten De geologiske data for Bunter Sandsten Formationen ved Nykøbing Falster-lokaliteten er samlet i Tabel 3.1. Usikkerheden på de angivne estimater bygger på en generel og erfaringsmæssig vurdering af tolkningsusikkerheden ved de forskellige typer af data (borehulslogs, porøsitet-permeabilitetssammenhænge, seismiske dybdekort etc.) samt ekstrapoleringen af disse data til prognoselokaliteten. Nogle af parametrene er indbyrdes afhængige, men de angivne usikkerheder knytter sig generelt til den enkelte parameter, og der er således ikke tale om akkumulerede usikkerheder. Specielt på reservoirdata er der store usikkerheder, og på GEUS pågår derfor et arbejde med at vurdere, om der er belæg for generelt at kunne reducere usikkerhedsbåndet på estimerede reservoirværdier. Af tabellen fremgår det, at formationen vurderes til at være til stede ca meter under havniveau (m.u.h.) og dermed i en dybde, der er positiv i relation til dyb geotermisk indvinding. Dette afspejler sig i temperaturen, der vurderes til at være 39 ⁰C i midten af formationen. De øvrige parameterværdier vurderes ligeledes positive med hensyn til det geotermiske potentiale. Reservoirtransmissiviteten er et udtryk for reservoirsandets geotermiske ydeevne og er dermed en vigtig parameter. Denne bør være større end 10 Darcymeter (Mathiesen et al. 2013*), og er vurderet til ca. 15 Darcy-meter ved prognoselokaliteten. Usikkerheden, der knytter sit til estimeringen af værdien, udelukker dog ikke transmissivitetsværdier på under 10 Darcy-meter (Tabel 3.1). Transmissiviteten er beregnet ud fra de log-bestemte porøsiteter, men kun zoner med reservoir-kvalitet indgår i beregningen (zonerne er markeret som Potentielt reservoirsand i Figur 6 og 7). I beregningen er der således forudsat en vis minimumsporøsitet (>15 %) samt et relativt lavt ler-indhold (<30 %). Det er problematisk, at der er identificeret forkastninger i nærheden af lokaliteten, som opsplitter Bunter Sandsten Formationen. Hvis der er forkastninger til stede, og disse ikke kortlægges, er der en risiko for, at eventuelt kommende geotermiske produktions- og injektionsboringer placeres, så de ikke er i tilstrækkelig hydraulisk kontakt med hinanden. Derudover er der risiko for mættede saltforhold i formationsvandet, hvilket vil skulle håndteres ved en geotermisk produktion og vil fordyre driften. Med hensyn til dæklag, der erfaringsmæssigt kan være nødvendige at fokusere på i boreprocessen, vurderes Fjerritslev Formationen til at være omkring 100 meter tyk med toppen liggende ca. 380 m.u.h. Kridt og Danien lagseriens kalkaflejringer vurderes til at være ca. 350 meter tykke og beliggende ca m.u.h. *I Mathiesen et al angives det, baseret på foreløbige kriterier, at reservoirets gennemsnitlige gastransmissivitet i udgangspunktet er rimelig, hvis denne er større end 8 Darcy-meter. Værdien svarer efter GEUS vurdering til en væsketransmissivitet på ca. 10 Darcy-meter. G E U S 8

33 Tabel 3.1: Nøgledata, der danner grundlag for en vurdering af det geotermiske potentiale ved Nykøbing Falster lokaliteten, og som vil udgøre et input til økonomiske beregninger mm. Nykøbing Falster-lokaliteten UTMz32 X: m; Y: m Terrænkote: 5 meter over havniveau (m.o.h.) Bunter Sandsten Formationen Estimeret værdi Vurderet usikkerhed 1 Usikkerhedsinterval 2 [MinCase - MaxCase] Makro reservoirparametre Dybde til top af formation [m.u.h.] Tykkelse af formation [m] Andel af sandsten i formationen Tykkelse af Gross sand [m] Tykkelse af Potentielt reservoirsand 4 [m] Potentielt reservoirsand/formation 5 0, ,21 0,29 3 Potentielt reservoirsand/gross sand 6 0, ,68 0,93 3 Vandledende egenskaber (reservoirsand) Porøsitet [%] Gas-permeabilitet [md] Reservoir-permeabilitet 8 [md] Reservoir-transmissivitet (Kh) 9 [Dm] Temperatur Temperatur 10 [⁰C] Tekstur og cementering (sandsten) Vurdering Kornstørrelse/sortering/afrundingsgrad Diagenese/cementering Andre betydende parametre Salinitet Sedimentologisk kontinuitet Meget fin til fin, lokalt mellem til grovkornet; moderat sorteret, stedvis dårlig sorteret; subafrundede til afrundede korn, lokalt subkantede Kalkfri til kalkholdig, løs til hård Vurdering Risiko for mættede forhold i formationsvandet Stor Lokalt strukturelt komplekst, forkastninger identificeret i området omkring prognoselokaliteten 1 Vurderet usikkerhed benyttes til udregning af Usikkerhedsinterval og er erfarings- og vidensbaseret (se tekst Strukturel kontinuitet for nærmere uddybning). 2 Usikkerhedsinterval angiver variationsbredden for Estimeret værdi og kontrolleres af omfang og kvalitet af det tilgængelige datagrundlag. 3 Vurderet usikkerhed (målt i relative %). Usikkerhedsinterval givet ved Estimeret værdi +/- Vurderet usikkerhed (målt i relative %). 4 Tykkelse af Potentielt reservoirsand er estimeret ud fra afskæringskriterier på Vshale (< 30 %) og logporøsitet (> 15 %). 5 Tykkelse af Potentielt reservoirsand divideret med Tykkelse af formation. 6 Tykkelse af Potentielt reservoirsand divideret med Tykkelse af Gross sand. 7 Usikkerhedsinterval givet ved Estimeret værdi divideret/ganget med Vurderet usikkerhed. 8 Reservoir-permeabilitet er den permeabilitet, som forventes målt i forbindelse med en pumpetest eller en brøndtest. Reservoir-permeabiliteten er estimeret ved at multiplicere Gas-permeabilitet med en opskaleringsfaktor på 1,25. 9 Reservoir-transmissiviteten er estimeret ud fra tolkning af logdata samt analyse af kernedata. Reservoirtransmissiviteten er opskaleret til reservoirforhold. 10 Temperatur er estimeret for midten af formationen ud fra en generel dybde-temperatur relation for det sydlige Danmark. G E U S 9

34 3.1 Anbefalinger Den tilgængelige seismiske kortlægning viser, at der forekommer forkastninger i nærheden af prognoselokaliteten. Inden en geotermisk efterforskningsboring udføres, bør der laves en seismisk dataindsamling med henblik på at kunne kortlægge forkastningerne mere præcist. Endvidere vil dybden til Bunter Sandsten Formationen og dens tykkelse herved kunne fastlægges mere præcist og dermed indirekte også flere af reservoirværdierne, herunder transmissiviteten og temperaturen. Den seismiske linjeføring bør lægges således, at den knytter prognoselokaliteten til Ørslev-1 brønden, samt at den omkring prognoselokaliteten muliggør en rumlig kortlægning af forkastninger, der gennemskærer Bunter Sandsten Formationen. Det vurderes, at der skal indsamles i størrelsesordenen af 40 km ny seismik. G E U S 10

35 4. Datagrundlag I Figur 3 er den tilgængelige database i Nykøbing Falster-området og i regionen vist i form af placeringen af Ørslev-1 brønden samt placering og kvalitet af seismiske linjer. Afstanden fra prognoselokaliteten til Ørslev-1 er ca. 6,5 km, mens de næstnærmeste brønde, Rødby- 1, Rødby-2 og Søllested-1, befinder sig henholdsvis ca. 32, 34 og 38 km fra prognoselokaliteten (Figur 2). I alle brøndene, på nær Rødby-2, er der optaget logs, som kan anvendes til vurdering af reservoirkvalitet. Overordnet set vurderes brønddækningen og kvaliteten af brønddata som værende rimelig, først og fremmest på grund af den nære beliggenhed af Ørslev-1 brønden til prognoselokaliteten. Det fremgår af Tabel 4.1, at i alle brønde, på nær Søllested-1, er Gassum Formationen til stede i for lav dybde (<800 m) til udnyttelse i forbindelse med dyb geotermisk indvinding. Derimod er den stratigrafisk dybereliggende Bunter Sandsten Formation til stede indenfor det geotermiske dybdeinterval, idet dens øvre grænse befinder sig omkring 1100 m.u.h.; dog lidt dybere i Søllested-1 boringen (ca m.u.h.). I tabellen er dybdeinterval og tykkelse af Kridt-lagseriens kalkaflejringer samt den lerstens-dominerede Fjerritslev Formation endvidere vist. Kridt-lagserien og Fjerritslev Formationen udgør dæklag for både Gassum og Bunter Sandsten formationerne. Dybde og tykkelse af dæklagene er også vurderet for prognoselokaliteten (afsnit 5) og er interessante, da de kan indgå i vurderingen af omkostninger til borefasen ved en eventuel etablering af et geotermisk anlæg. Kvaliteten af de seismiske linjer, der er indsamlet i regionen, er markeret med farver i Figur 3 og 4. Farverne angiver, hvor anvendelige de seismiske data er til at kortlægge formationer i det geotermiske dybdeinterval. Det er en overordnet kvalitetsangivelse, der i høj grad afspejler i hvilket år, de seismiske data blev indsamlet. Både den seismiske datadækning, såvel som kvaliteten af de seismiske data, vurderes som værende ringe omkring prognoselokaliteten. Ud fra den seismiske kortlægning vurderes det, at Gassum Formationen ved prognoselokaliteten er til stede ca m.u.h., hvilket er for grundt i forhold til dybdeintervallet for dyb geotermi. Som følge heraf fokuseres der i de følgende afsnit på udbredelsen, kontinuiteten og reservoiregenskaberne af Bunter Sandsten Formationen, som ved lokaliteten vurderes at være til stede ca m.u.h. (se afsnit 5.1). G E U S 11

36 Tabel 4.1: De enkelte brøndes omtrentlige afstand til prognoselokaliteten er angivet i parentes under brøndnavnet. Brøndenes omtrentlige placeringer fremgår endvidere på oversigtskortet i Figur 2. Tykkelse er i meter, og dybdeinterval er i meter under havniveau (data fra Nielsen & Japsen 1991). Kalkgruppen Fjerritslev Fm Gassum Fm Bunter Sandsten Fm Ørslev-1 (6,5 km) Rødby-1 (32 km) Rødby-2 (34 km) Søllested-1 (38 km) Dybdeinterval (m.u.h.) Tykkelse (m) Dybdeinterval (m.u.h.) Tykkelse (m) Dybdeinterval (m.u.h.) Tykkelse (m) Dybdeinterval (m.u.h.) Tykkelse (m) G E U S 12

37 Figur 3: Placering af prognoselokalitet (rød cirkel) samt placering og kvalitet af seismiske linjer i regionen. Ørslev-1 er den nærmeste brønd til prognoselokaliteten, hvori der er optaget en log-suite, der kan anvendes til vurdering af reservoirkvalitet. De dele af de seismiske linjer 8102, 8104 og 7928, der er fremhævet med fed lilla streg, er anvendt til at fremstille et sammensat seismisk profil med tolkede seismiske horisonter i Figur 5. G E U S 13

38 5. Gennemgang af data I dette afsnit dokumenteres datagrundlaget, og hvordan de geologiske nøgledata i Tabel 3.1 er fremkommet samt delvis hvilke betragtninger og antagelser, der ligger bag dem. 5.1 Udbredelse og kontinuitet af formationer og interne reservoirer Seismisk tolkning og kortlægning Dybder og tykkelser af udvalgte lagserier i undergrunden ved prognoselokaliteten ses i Tabel 5.1 og er baseret på delresultater af en igangværende og meget omfattende seismisk kortlægning, der vil munde ud i landsdækkende dybdekort til vigtige seismiske horisonter og formationsgrænser. Ud fra den seismiske kortlægning vurderes Bunter Sandsten Formationens top at være til stede ca m.u.h. ved prognoselokaliteten med en vurderet usikkerhed på ± 7 %. Tykkelsen af formationen vurderes til at være 115 meter, dog med en større usikkerhed (35 %) som følge af, at basis af formationen er vanskeligere at identificere seismisk end toppen af formationen. Dele af de seismiske linjer 8102, 8104 og 7928 (Figur 3 og 4) er anvendt til at fremstille et sammensat seismisk profil, der er vist med tolkede seismiske horisonter i Figur 5. Bunter Sandsten Formationen fremstår forholdsvis uforstyrret langs med profilet bortset fra i nærområdet til prognoselokaliteten, hvor formationen er opbrudt af forkastninger. Det er ikke muligt ud fra de tilgængelige seismiske data at lave en rummelig kortlægning af forkastningerne og dermed udtale sig mere præcist om deres beliggenhed i forhold til prognoselokaliteten. Tabel 5.1: Dybdeintervaller og tykkelser af udvalgte lagserier ved prognoselokaliteten, som er estimeret på baggrund af den igangværende landsdækkende seismiske kortlægning. Prognoselokalitet Dybdeinterval (m.u.h.) Tykkelse (m) Danien kalksten og Kalk Gruppen Fjerritslev Fm Gassum Fm Bunter Sandsten Fm G E U S 14

39 Figur 4: Indsamlede seismiske linjer omkring prognoselokaliteten. Dele af de seismiske linjer 8102, 8104 og 7928 (markeret i Figur 3) er anvendt til at fremstille et sammensat seismisk profil med tolkede seismiske horisonter i Figur 5. G E U S 15

40 Figur 5: Sammensat seismisk profil baseret på de seismiske linjer 8102, 8104 og 7928 (Figur 3 og 4). Profilet passerer tæt forbi Ørslev-1 og prognoselokaliteten, der begge er projiceret vinkelret ind på profilet og er markeret med henholdsvis en sort og en rød lodret streg. Bunter Sandsten Formationen fremstår forholdsvis uforstyrret langs med profilet bortset fra i nærområdet til prognoselokaliteten, hvor formationen er opbrudt af forkastninger (forkastninger er markeret som stejle hvide streger). Dybde er angivet som seismisk to-vejs-tid i millisekunder. Oppefra og ned er følgende tolkede horisonter vist på figuren: Basis af Kalkgruppen (orange), Basis Nedre Kridt/Top Fjerritslev Fm (lyseblå), Top Gassum Fm (lyserød), Top Oddesund Fm (gul), Top Falster Fm (lysegul), Top Ørslev Fm (turkisgrøn), Top Bunter Sandsten Fm (lyseblå), Basis Bunter Sandsten Fm/Top Bunter Shale Fm (orange), Top Zechstein (lysegrøn) og Top Pre-Zechstein (lilla) Boringsdata Tabel 5.2 giver en oversigt over tykkelsen af Bunter Sandsten Formation i de nærmeste brønde, der er beliggende syd for eller på Ringkøbing Fyn Højderyggen. Et par af disse er beliggende mere end 100 km fra prognoselokaliteten (Ringe-1 og Kegnæs-1). Af tabellen fremgår det også hvor mange meter sandsten (Gross sand), og heraf meter sandsten med gode reservoiregenskaber (Potentielt reservoirsand), formationen er estimeret til at indeholde i brøndene. I afsnit 5.2, og mere udførligt i Geotermi WebGIS portalen, gøres der rede for, hvordan disse størrelser estimeres på baggrund af logdata. G E U S 16

41 Det fremgår af Tabel 5.2, at Bunter Sandsten Formationen er til stede i alle brøndene med en tykkelse, der i de fleste brønde er på mere end 200 meter. Ringe-1 og Ørslev-1 udgør markante undtagelser, idet tykkelserne af formationen i disse brønde kun er på henholdsvis 12 og 115 meter. Ringe-1 brønden er beliggende på Ringkøbing Fyn Højderyggen og Ørslev-1 muligvis på flanken af højderyggen. Den forholdsvis lille tykkelse af Bunter Sandsten Formationen i disse brønde afspejler sandsynligvis, at dele af højderyggen var blotlagt som øer gennem aflejringsperioden, og at de lavere liggende dele af ryggen kun efterlod begrænset plads til aflejring af sedimenter. Nogle af variationerne i formationens tykkelse i regionen kan dog muligvis også tilskrives tektoniske pulser i Nedre Trias, som førte til mindre omarrangeringer af bassin-geometrien og dannelse af lokale nedforkastede blokke, mens højereliggende områder stedvis blev udsat for intens erosion (Bachmann et al. 2010). Det er mest oplagt at anvende data fra Ørslev-1 brønden til vurderingen af sandstensindholdet og reservoirkvaliteten af sandstenene i Bunter Sandsten Formationen ved prognoselokaliteten. Dette skyldes, at denne brønd ligger tættest ved prognoselokaliteten (afstand på ca. 6,5 km) samt at tykkelsen af Bunter Sandsten Formationen i brønden er på 115 meter, hvilket svarer til den tykkelse som formationen er estimeret til at have ved prognoselokaliteten på baggrund af de seismiske data. I Ørslev-1 brønden er formationen endvidere beliggende m.u.h., hvilket er tæt på det estimerede dybdeinterval på m.u.h. ved prognoselokaliteten. Bunter Sandsten Formationen må derfor formodes at have været udsat for en ensartet tryk- og temperaturpåvirkning ved prognoselokaliteten og ved Ørslev-1. Bunter Sandsten Formationen er i Ørslev-1 estimeret til at have et sandstensindhold (Gross sand) på omkring 36 meter, hvoraf meter sandsten med gode reservoiregenskaber (Potentielt reservoirsand) er estimeret til at udgøre ca. 29 meter (Tabel 5.2). Det fremgår af Figur 6, at formationens sandsten er koncentreret i to dybdeintervaller i Ørslev-1, og at disse adskilles af et interval med lersten. I modsætning hertil forekommer der i både Rødby-1 og Sølledsted-1 sandstens-dominerede intervaller i bunden, midten og den øverste del af formationen, som adskilles af lerstens-dominerede intervaller (Figur 6). Ligeledes fremgår det af figuren, at Bunter Sandsten Formationen er betydelig tyndere i Ørslev-1 i forhold til i de to andre brønde. I det Nordtyske Bassin inddeles Bunter Sandsten Formationen i fire enheder, der hver består af en sandstensserie efterfulgt af en forholdsvis tyk lerstensserie. To af disse enheder (Volpriehausen og Solling members) kan også erkendes i de fleste dybe danske landboringer, der når ned i Bunter Sandsten Formationen (Bachmann et al. 2010, Michelsen & Clausen 2002). Det nederste og øverste sandstensinterval (inklusiv efterfølgende lerstensinterval) i Søllested-1, Rødby-1 og Ørslev-1 svarer sandsynligvis til henholdsvis Volpriehausen og Solling members (Michelsen & Clausen 2002). Disse enheder har altså en stor geografisk udbredelse og deres sedimentologiske kontinuitet kan som følge heraf også beteg- G E U S 17

42 nes som værende stor. Det midterste sandstensinterval og efterfølgende lerstens-interval i Søllested-1 og Rødby-1, svarer til Detfurth Member, der sandsynligvis også er til stede i blandt andet Slagelse-1, Stenlille-1 og Kegnæs-1. Denne enhed har ikke en helt så stor udbredelse i det danske område, da den mange steder blev fjernet ved en markant erosionshændelse, der fandt sted forud for afsætningen af Solling Member (Bachmann et al. 2010, Michelsen & Clausen 2002). Ved prognoselokaliteten formodes Bunter Sandsten Formationen at ligne Ørslev-1 i fordelingen af ler- og sandsten, således at der også her forekommer sandstensintervaller i 2 niveauer. Denne antagelse baseres på den korte afstand samt den ensartede tykkelse af formationen i Ørslev-1 og ved prognoselokaliteten. Ørslev-1 ligger så tæt ved prognoselokaliteten, at det ikke vurderes relevant at inddrage betragtninger om nærhed til sedimentkilden, når indholdet af sandsten i formationen skal estimeres ved prognoselokaliteten i forhold til indholdet i Ørslev-1. Tabel 5.2: Tykkelser af Bunter Sandsten Formationen, estimerede antal meter sandsten (Gross sand), og heraf meter sandsten med gode reservoiregenskaber (Potentielt reservoirsand), i udvalgte brønde hvis omtrentlige placeringer ses på oversigtskortet i Figur 2. Skraverede felter angiver, at andelen af Potentielt reservoirsand ikke kan beregnes på baggrund af de givne logdata. Tykkelser/antal meter Formation Gross sand Potentielt reservoirsand Rødby Rødby Søllested Ørslev Slagelse Ringe Kegnæs G E U S 18

43 Figur 6: Sammenligning af Bunter Sandsten Formationen i Søllested-1, Rødby-1 og Ørslev- 1, som er de nærmeste brønde til prognoselokaliteten (placering af brønde ses i Figur 2). Formationen er i brøndene vist med dens vertikale tykkelser, og der er således korrigeret for boringernes eventuelle afbøjning. MD: Målt dybde fra referencepunkt på boreplatform (venstre dybdeskala), TVDSS: Vertikale dybde under havniveau (højre dybdeskala). G E U S 19

44 5.2 Reservoirkvalitet Som der er gjort rede for i de foregående afsnit, tager vurderingen af mængden af sandsten i Bunter Sandsten Formationen ved prognoselokaliteten udgangspunkt i data fra den nærtliggende Ørslev-1 brønd. Selve vurderingen af formationens lithologi og reservoirkvalitet ved prognoselokaliteten bygger på en tolkning af borehulslogs kombineret med eksisterende beskrivelser af borespåner fra Ørslev-1 og sekundært fra Rødby-1 og Søllested-1 boringerne. Fra Rødby-1 foreligger der endvidere kernedata fra nogle korte kerner udtaget i det nederste og i det øverste sandstensinterval i formationen (Tabel 5.3, Figur 7). De optagne og tolkede logs i de tre brønde er nærmere beskrevet i Tabel 5.4. Reservoirkvaliteten af Bunter Sandsten Formationen ved prognoselokaliteten antages at svare til de reservoirværdier, som er estimeret for formationen i Ørslev-1, og som er samlet i Tabel 5.5. Usikkerheden på de angivne estimater bygger på en generel og erfaringsmæssig vurdering af tolknings-usikkerheden ved de forskellige typer af data (borehulslogs, porøsitet-permeabilitetssammenhænge etc.). Ved sammenligning af Tabel 5.5 med Tabel 3.1 fremgår det, at usikkerheden på reservoirværdierne ved prognoselokaliteten generelt er større end de angivne usikkerheder på reservoirværdierne for Ørslev-1. Dette er en naturlig følge af, at en ekstrapolering af dataværdier altid vil medføre en ekstra usikkerhed. Tabel 5.3: Overblik over dybdeintervaller i målt dybde fra referencepunkt på boreplatform (MD) af Bunter Sandsten Formationen i de nærmeste dybe brønde med tilhørende kommentarer om tilgængeligt kernemateriale. Brønd Dybdeinterval Formationstykkelse Kerner Sidevægskerner [m MD] [m MD] Ørslev Ingen Ingen Rødby korte kerner Ingen Søllested Ingen Ingen G E U S 20

45 Tabel 5.4: Liste over rå-logs anvendt i danske onshore boringer og tolkede logkurver. Beskrivelse Log-navn Enhed Log-funktion GR API Måler naturlig radioaktivitet Gamma logs GR_DEN API Måler naturlig radioaktivitet sammen med densitetslog GR_SON API Måler naturlig radioaktivitet sammen med sonic log Spontaneous potential log SP mv Måler spontaneous potential ( selv-potentialet ) GRpseudo mv Re-skaleret SP log Sonic logs DT microsek/ft Akustisk log; måler intervalhastighed DTCO microsek/ft Akustisk log; måler intervalhastighed Caliper logs CALI/CAL Inch/tommer Måler borehullets diameter CAL_NUC Inch/tommer Måler borehullets diameter, med neutron log ILD Ohm-m Induktion log; dybt-læsende modstandslog ILM Ohm-m Induktion log; medium-læsende modstandslog LLS Ohm-m Laterolog; medium-læsende modstandslog Resistivitetslogs/ LLD Ohm-m Laterolog; dybt-læsende modstandslog Modstandslogs 16ft Ohm-m Normal modstandslog af ældre dato 38in Ohm-m Normal modstandslog af ældre dato 10in Ohm-m Normal modstandslog af ældre dato 18F8 Ohm-m Lateral modstandslog af ældre dato 64in Ohm-m Normal modstandsslog af ældre dato Neutron log NPHI fraction Måler den tilsyneladende porøsitet (neutronloggen kan være forkortet NEU ) Densitets logs RHOB g/cm 3 Måler bulk-densiteten af bjergarten RHOZ g/cm 3 Måler bulk-densiteten af bjergarten Log-beregnet permeabilitet PERM_log md Beregnet log-kurve baseret på PHIE Log-beregnet effektiv porøsitet PHIE fraction Beregnet/tolket log kurve Kernepermeabilitet Kh_a md Målt horisontal gas permeabilitet (på plugs) CPERM_GEUS md Målt gas permeabilitet (på plugs; GEUS data) Kerneporøsitet CPOR % Målt porøsitet (på plugs) CPOR_GEUS % Målt porøsitet (på plugs; GEUS data) Normaliset gamma log GRnorm API Beregnet/tolket log kurve Log-beregnet lermængde Vshale fraktion Beregnet/tolket log kurve Indikator for potentielt reservoirsand (PRS) PRS m Log-udledt kurve ( flag ) der indikerer, hvor der er potentielt reservoirsand (PRS) G E U S 21

46 Bunter Sandsten Formationen Ørslev-1 Estimeret værdi Vurderet usikkerhed 1 Tabel 5.5: Estimerede reservoirværdier for Bunter Sandsten Formationen i Ørslev-1 brønden. Usikkerhedsinterval 2 [MinCase - MaxCase] Makro reservoirparametre Dybde til top af formation [m.u.h.] Tykkelse af formation [m] Andel af sandsten i formationen Tykkelse af Gross sand [m] Tykkelse af Potentielt reservoirsand 4 [m] Potentielt reservoirsand/formation 5 0, ,24 0,27 3 Potentielt reservoirsand/gross sand 6 0, ,78 0,86 3 Vandledende egenskaber (reservoirsand) Porøsitet [%] Gas-permeabilitet [md] Reservoir-permeabilitet 8 [md] Reservoir-transmissivitet (Kh) 9 [Dm] Tekstur og cementering (sandsten) Vurdering Kornstørrelse/sortering/afrundingsgrad Meget fin til fin, lokalt mellem- til grovkornet; ingen oplysninger om sortering; subafrundede til afrundede korn Ingen oplysninger Diagenese/cementering 1 Vurderet usikkerhed benyttes til udregning af Usikkerhedsinterval og er erfarings- og vidensbaseret (se tekst for nærmere uddybning). 2 Usikkerhedsinterval angiver variationsbredden for Estimeret værdi og kontrolleres af omfang og kvalitet af det tilgængelige datagrundlag. 3 Vurderet usikkerhed (målt i relative %). Usikkerhedsinterval givet ved Estimeret værdi +/- Vurderet usikkerhed (målt i relative %). 4 Tykkelse af Potentielt reservoirsand er estimeret ud fra afskæringskriterier på Vshale (< 30 %) og logporøsitet (> 15 %). 5 Tykkelse af Potentielt reservoirsand divideret med Tykkelse af formation. 6 Tykkelse af Potentielt reservoirsand divideret med Tykkelse af Gross sand. 7 Usikkerhedsinterval givet ved Estimeret værdi divideret/ganget med Vurderet usikkerhed. 8 Reservoir-permeabilitet er den permeabilitet, som forventes målt i forbindelse med en pumpetest eller en brøndtest. Reservoir-permeabiliteten er estimeret ved at multiplicere Gas-permeabilitet med en opskaleringsfaktor på 1,25. 9 Reservoir-transmissiviteten er estimeret ud fra tolkning af logdata samt analyse af kernedata. Reservoir-transmissiviteten er opskaleret til reservoirforhold Tolkning af lithologi På baggrund af logdata og eksisterende beskrivelser af opboret materiale har GEUS tolket variationen af den bjergartsmæssige sammensætning indenfor Bunter Sandsten Formationen, dvs. en tolkning af lithologien og primært fordelingen af sand- og lersten (Figur 6 og 7). G E U S 22

47 Eksisterende beskrivelser af borespåner fra Ørslev-1 (Gulf Denmark 1968) understøtter log-tolkningen, men er dog meget sparsomme og overfladiske. Sandstenene beskrives som værende meget fin til fin i kornstørrelse, lokalt medium til grov, og sandskornene er subafrundede til afrundede. Sorterings- og cementeringsgrad er ikke beskrevet nærmere. Lidt supplerende information kan hentes fra beskrivelser af borespåner fra Rødby-1 og Søllested-1, hvor sandstenene angives til at være moderat sorterede, stedvis dårligt sorterede samt kalkfrie til kalkholdige (Dansk Boreselskab 1983, DGU/DAPCO 1952). G E U S 23

48 Figur 7: Petrofysisk log-tolkning af Bunter Sandsten Formationen i Ørslev-1. Lithologikolonnen er afgrænset af gamma (GR) og sonic (DT) loggene. Sektioner med potentielt reservoirsand (PRS) er markeret med rødt fyld. Porøsitetsestimatet (PHIE) er fremhævet med lyseblåt fyld, og permeabilitetsestimatet (PERM_log) er plottet som en rød kurve. Logforkortelserne er forklaret i Tabel 5.4. Formationen er i boringen vist med dens vertikale tykkelse. MD: Målt dybde fra referencepunkt på boreplatform, TVDSS: Vertikal dybde under havniveau. G E U S 24

49 5.2.2 Vurdering af tykkelser, lerindhold og porøsitet I Ørslev-1 er Bunter Sandsten Formationen 115 meter tyk, hvoraf andelen af sandsten (Gross sand) udgør knap 36 meter (Tabel 5.2). Logtolkningerne viser, at formationens sandsten er koncentreret i to dybdeintervaller, som adskilles af et interval med ler (Figur 6); en fordeling som også antages at gøre sig gældende for formationen ved prognoselokaliteten. Tolkningen af Gross-sandets tykkelse er baseret på en forudgående tolkning af lermængden ud fra gamma-log, idet det antages, at mængden af ler er proportional med gamma-loggens respons fratrukket baggrundsstrålingen (Tabel 5.6). På baggrund af tolkningen af lermængden er andelen af Gross sand herefter bestemt som den del af et givet dybdeinterval, der har et lerindhold på mindre end 30 %. For Ørslev-1 er det endvidere muligt at tolke formationens porøsitet samt hvor mange meter af formationens sandsten, der vurderes at have gode reservoiregenskaber (givet ved Potentielt reservoirsand). Potentielt reservoirsand er vurderet ud fra den log-tolkede porøsitet samt lermængden, idet der både stilles krav til en vis minimumsporøsitet og et maksimalt lerindhold. GEUS har i den forbindelse valgt at definere Potentielt reservoirsand ud fra følgende kriterier: den effektive porøsitet (PHIE) skal være større end 15 %, og samtidig skal lerindholdet (Vshale) være mindre end 30 %. Ud fra disse kriterier er mængden af Potentielt reservoirsand i Ørslev-1 vurderet til ca. 29 meter, mens den gennemsnitlige porøsitet af reservoir-sandet er bestemt til ca. 20 %. Med hensyn til Ørslev-1 er porøsitetstolkningen baseret på densitetslog (RHOB), der er korrigeret for ler-effekt ved hjælp af gamma-loggen. Tabel 5.6: Responsparametre for gamma-ray (GR) log for Ørslev-1 boringen. Responsparametre for gamma-ray (GR) log GR_min (baggrundsstråling) GR_max (respons for rent ler) Ørslev Permeabilitet Permeabiliteten er bestemt på kerner fra det nederste og øverste sandstensinterval i Bunter Sandsten Formationen i Rødby-1. Disse målinger indgår i en porøsitetpermeabilitetsrelation, der er baseret på kerneanalysedata fra en række danske landboringer beliggende i Jylland og på Sjælland, foruden en i Skåne (Figur 8). GEUS forventer, at denne landsdækkende korrelation også gælder for Nykøbing Falster-området, og permeabiliteten er dernæst beregnet for hver log-læsning, dvs. log-porøsiteterne er omregnet til log-permeabiliteter for hver halve fod (15 cm). Under anvendelse af de føromtalte cut-off værdier er den gennemsnitlige gas-permeabilitet for reservoirsandstenen i Ørslev-1 estimeret til ca. 400 md (vægtet gennemsnit) svarende til en reservoir-permeabilitet på ca. 500 md. Beregningen af reservoir-permeabiliteten bygger på opskalering af de laboratoriebestemte gas-permeabiliteter til reservoirforhold efterfulgt af en omregning til væske- G E U S 25

50 permeabilitet. Ørslev-1 brønden blev ikke prøvepumpet, og det er således ikke muligt at vurdere permeabiliteten ud fra testdata. Vurderingen af permeabiliteten bygger derfor i dette tilfælde på erfaringsmæssige sammenhænge, f.eks. som vist i Figur 8, og herudover er tidligere foretagne vurderinger af Bunter Sandsten Formationen udenfor studieområdet udnyttet. Figur 8: Generaliseret sammenhæng mellem porøsitet og permeabilitet estimeret ud fra kerneanalysedata, dvs. målinger af porøsitet og permeabilitet på små plug prøver primært fra sandstenslag i Bunter Sandsten Formationen. Korrelationen er ikke entydig, og derfor er variationsbredden belyst med 3 tendens-linjer (Høj, Medium og Lav cases ). Det antages, at linjen med rød farve (Medium) med god tilnærmelse gælder for Nykøbing Falsterområdet. Bemærk at de plottede data stammer fra to Tønder-boringer samt boringerne Stenlille-19, Rødby-1, Mors-1 og Gassum-1, foruden Höllviksnäs-1 i Sverige Transmissivitet Endelig er den forventede transmissivitet beregnet på baggrund af den estimerede reservoir-permeabilitet ganget med tykkelsen af Potentielt reservoirsand. Kort beskrevet er transmissiviteten beregnet som en akkumuleret værdi baseret på de enkelte loglæsninger, de foretagne vurderinger af Potentielt reservoirsand efterfulgt af en erfaringsbaseret opskalering. Transmissiviteten er således en forventet reservoir-transmissivitet; denne er i Ørslev-1 og ved prognoselokaliteten vurderet til ca. 15 Darcy-meter. På baggrund af det tilgængelige datamateriale vurderer GEUS, at usikkerheden på den forventede transmissivitet ved prognoselokaliteten mest hensigtsmæssigt kan beskrives ved en G E U S 26

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen Præsentation 28 juni 216 Overblik 28 udvalgte fjernvarmeområder

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen Præsentation Geotermi i Danmark 12 maj 216 Overblik 28 udvalgte

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Maribo

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Maribo Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Maribo Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Horsens

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Horsens Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Horsens Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Brønderslev

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Brønderslev Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Brønderslev Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Slagelse

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Slagelse Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Slagelse Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Ringsted

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Ringsted Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Ringsted Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Kalundborg

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Kalundborg Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Kalundborg Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Frederiksværk

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Frederiksværk Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Frederiksværk Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG)

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for DTU - Holte - Nærum

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for DTU - Holte - Nærum Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for DTU - Holte - Nærum Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Grenå

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Grenå Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Grenå Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Frederikshavn

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Frederikshavn Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Frederikshavn Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG)

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Skive

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Skive Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Skive Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Haderslev

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Haderslev Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Haderslev Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Nyborg

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Nyborg Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Nyborg Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Aabenraa - Rødekro - Hjordkær

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Aabenraa - Rødekro - Hjordkær Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Aabenraa - Rødekro - Hjordkær Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Aalborg

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Aalborg Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Aalborg Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Hjørring

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Hjørring Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Hjørring Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Randers

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Randers Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Randers Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Helsingør (Nordøstsjælland)

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Helsingør (Nordøstsjælland) Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Helsingør (Nordøstsjælland) Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Holstebro

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Holstebro Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Holstebro Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Thisted

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Thisted Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Thisted Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Herning - Ikast

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Herning - Ikast Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Herning - Ikast Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG)

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/52 Det geotermiske screeningsprojekt Roskilde-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 215/36 Det geotermiske screeningsprojekt Maribo-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 5 / 5 8 Det geotermiske screeningsprojekt DTU-lokaliteten Det geotermiske screeningsprojekt: Energipolitisk aftale af 22. marts 2012 Henrik Vosgerau,

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/54 Det geotermiske screeningsprojekt Helsingør-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Roskilde (Storkøbenhavn)

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Roskilde (Storkøbenhavn) Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Roskilde (Storkøbenhavn) Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Viborg

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Viborg Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Viborg Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Silkeborg

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Silkeborg Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Silkeborg Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Hillerød - Farum - Værløse

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Hillerød - Farum - Værløse Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Hillerød - Farum - Værløse Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Sønderborg

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Sønderborg Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Sønderborg Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/35 Det geotermiske screeningsprojekt Haderslev-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/37 Det geotermiske screeningsprojekt Nykøbing Falster-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen,

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/55 Det geotermiske screeningsprojekt Hillerød-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Aarhus

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 3: Områderapport for Aarhus Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 3: Områderapport for Aarhus Indholdsfortegnelse Introduktion Data for fjernvarmeområder (COWI) Beregning af geotermianlæg (DFG) Beregningsresultater

Læs mere

Varmelagring i dybe formationer ved Aalborg

Varmelagring i dybe formationer ved Aalborg Temadag om geotermi og varmelagring Dansk Fjervarme, møde i Kolding den 20. november 2018 Varmelagring i dybe formationer ved Aalborg En undersøgelse af de geologiske muligheder for varmelagring i undergrunden

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/59 Det geotermiske screeningsprojekt Ringsted-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/39 Det geotermiske screeningsprojekt Århus-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/60 Det geotermiske screeningsprojekt Frederiksværk-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/42 Det geotermiske screeningsprojekt Randers-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 215/38 Det geotermiske screeningsprojekt Silkeborg-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 5 / 49 Det geotermiske screeningsprojekt Brønderslev-lokaliteten Det geotermiske screeningsprojekt: Energipolitisk aftale af 22. marts 2012 Henrik

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/45 Det geotermiske screeningsprojekt Horsens-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/44 Det geotermiske screeningsprojekt Hjørring-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/46 Det geotermiske screeningsprojekt Grenå-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 215/41 Det geotermiske screeningsprojekt Herning-Ikast lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 215/5 Det geotermiske screeningsprojekt Viborg-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/47 Det geotermiske screeningsprojekt Thisted-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten Leth

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 2015/51 Det geotermiske screeningsprojekt Frederikshavn-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten

Læs mere

Baggrundsviden om geotermi med vægt på geologiske data et supplement til Geotermi WebGIS portalen

Baggrundsviden om geotermi med vægt på geologiske data et supplement til Geotermi WebGIS portalen Baggrundsvidenomgeotermimedvægtpågeologiskedata etsupplementtilgeotermiwebgis portalen Forord I denne rapport kan du læse om hvordan de mange typer geologiske data, der indgår i Geotermi WebGIS portalen,

Læs mere

4000 C magma. Fjernvarme fra geotermianlæg

4000 C magma. Fjernvarme fra geotermianlæg Fjernvarme fra geotermianlæg Geotermianlæg producerer varme fra jordens indre ved at pumpe varmt vand op fra undergrunden og overføre varmen til fjernvarmenet med varmevekslere og varmepumper. Vind og

Læs mere

HGS. Geotermisk Demonstrationsanlæg. Varmepumpebygning. Geotermivandskreds med boringer. Varmepumpe bygning. Kastrup Luftfoto

HGS. Geotermisk Demonstrationsanlæg. Varmepumpebygning. Geotermivandskreds med boringer. Varmepumpe bygning. Kastrup Luftfoto HGS Geotermisk Demonstrationsanlæg Geotermivandskreds med boringer Geotermivandskreds med boringer Varmepumpebygning Varmepumpe bygning Kastrup Luftfoto HGS - Princip for geotermisk indvinding Drivvarme

Læs mere

Det geotermiske screeningsprojekt

Det geotermiske screeningsprojekt DANMARKS OG GRØNLANDS GEOLOGSKE UNDERSØGELSE RAPPORT 2015/33 Det geotermiske screeningsprojekt Sønderborg-lokaliteten Henrik Vosgerau, Anders Mathiesen, Lars Kristensen, Morten Sparre Andersen, Morten

Læs mere

Samfundsøkonomiske fjernvarmepriser på månedsbasis

Samfundsøkonomiske fjernvarmepriser på månedsbasis 17 10 2016 Samfundsøkonomiske fjernvarmepriser på månedsbasis Analyse af årlig samfundsøkonomisk fjernvarmepris ved konvertering af naturgas til fjernvarme Baggrund og opgave Ea Energianalyse gennemførte

Læs mere

Skal vi satse på geotermisk varme? Med udsigt til at skaffe varme til den halve pris og en mere bæredygtig varmeproduktion

Skal vi satse på geotermisk varme? Med udsigt til at skaffe varme til den halve pris og en mere bæredygtig varmeproduktion Skal vi satse på geotermisk varme? Med udsigt til at skaffe varme til den halve pris og en mere bæredygtig varmeproduktion Giv din mening til kende på Tønder Fjernvarmes generalforsamling den 7. september

Læs mere

Hvorfor lagre varme der er varme i undergrunden

Hvorfor lagre varme der er varme i undergrunden Allan Mahler am@geotermi.dk Specialist og tekniksansvarlig Præsentation ved kursus i Ingeniørforeningen: Varmeproduktion og varmelagring ved geotermi, 30-31 januar 2012 Gengivelse er tilladt med kildeangivelse:

Læs mere

Svar på 14 spørgsmål fra Enhedslisten om geotermi

Svar på 14 spørgsmål fra Enhedslisten om geotermi N O T AT 22. december 2011 J.nr. 3401/1001-3680 Ref. Svar på 14 spørgsmål fra Enhedslisten om geotermi Spørgsmål 1: Hvad er potentialet for udnyttelse af geotermisk energi i Danmark og hvor stor en del

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 1: Generelle forudsætninger for beregning af geotermianlæg til screening

Landsdækkende screening af geotermi i 28 fjernvarmeområder. Bilag 1: Generelle forudsætninger for beregning af geotermianlæg til screening Landsdækkende screening af geotermi i 28 fjernvarmeområder Bilag 1: Generelle forudsætninger for beregning af geotermianlæg til screening Notat Projekt: Til: Kopi: Fra: Landsdækkende screening af geotermi

Læs mere

Undersøgelse af de geologiske muligheder for lagring af varmt vand i undergrunden ved Aalborg

Undersøgelse af de geologiske muligheder for lagring af varmt vand i undergrunden ved Aalborg D A N M A R K S O G G R Ø N L A N D S G E O L O G I S K E U N D E R S Ø G E L S E R A P P O R T 2 0 1 6 / 4 0 Undersøgelse af de geologiske muligheder for lagring af varmt vand i undergrunden ved Aalborg

Læs mere

GEOTHERM. Projekt støttet af Innovationsfonden. Følgegruppemøde. 16. april Anders Mathiesen

GEOTHERM. Projekt støttet af Innovationsfonden. Følgegruppemøde. 16. april Anders Mathiesen Projekt støttet af Innovationsfonden Følgegruppemøde 16. april 2018 Anders Mathiesen De Nationale Geologiske Undersøgelser for Danmark og Grønland Energi-, Forsynings- og Klimaministeriet GEOTHERM (Projektperiode:

Læs mere

Geotermi i Danmark, 12. maj 2016. Web-GIS portal. Geotermisk screening. Status på de aktive værker

Geotermi i Danmark, 12. maj 2016. Web-GIS portal. Geotermisk screening. Status på de aktive værker Geotermi i Danmark, 12. maj 2016 Web-GIS portal Geotermisk screening Status på de aktive værker De Nationale Geologiske Undersøgelser for Danmark og Grønland Energi-, Forsynings- og Klimaministeriet Velkommen

Læs mere

Vision for en bæredygtig varmeforsyning med energirenovering i fokus

Vision for en bæredygtig varmeforsyning med energirenovering i fokus DEBATOPLÆG Vision for en bæredygtig varmeforsyning med energirenovering i fokus Plan C: http://www.gate21.dk/projekter/planc/ Svend Svendsen og Maria Harrestrup samt PlanC s forsyningsgruppe Regeringens

Læs mere

CASE: FJERNVARMEUDBYGNING I FREDENSBORG BY. Projektbeskrivelse af udbredelsen af fjernvarme i eksisterende bebyggelse

CASE: FJERNVARMEUDBYGNING I FREDENSBORG BY. Projektbeskrivelse af udbredelsen af fjernvarme i eksisterende bebyggelse CASE: FJERNVARMEUDBYGNING I FREDENSBORG BY Projektbeskrivelse af udbredelsen af fjernvarme i eksisterende bebyggelse I Energi på Tværs samarbejder 33 kommuner, 10 forsyningsselskaber og Region Hovedstaden.

Læs mere

2 Supplerende forudsætninger

2 Supplerende forudsætninger MEMO TITEL DATO 21. juli 2016 TIL Samfundsøkonomiske beregninger Boligselskabet Sjælland - Afdeling Knolden Boligselskabet Sjælland ADRESSE COWI A/S Parallelvej 2 2800 Kongens Lyngby TLF +45 56 40 00 00

Læs mere

Vurderinger af samfunds- og selskabsøkonomi ved udvidelser af fjernvarmeprojektet i Vindinge - Rosilde. Nyborg Forsyning og Service (Jimmy Jørgensen)

Vurderinger af samfunds- og selskabsøkonomi ved udvidelser af fjernvarmeprojektet i Vindinge - Rosilde. Nyborg Forsyning og Service (Jimmy Jørgensen) MEMO TITEL DATO 8. maj 2018 TIL Vurderinger af samfunds- og selskabsøkonomi ved udvidelser af fjernvarmeprojektet i Vindinge - Rosilde Nyborg Forsyning og Service (Jimmy Jørgensen) ADRESSE COWI A/S Parallelvej

Læs mere

Geotermi på Sjælland: muligheder og barrierer

Geotermi på Sjælland: muligheder og barrierer Geotermi på Sjælland: muligheder og barrierer Paul Thorn Niels Schrøder Ole Stecher Institut for Miljø, Samfund og Rumlig Forandring Roskilde Universitet Boks 260 4000 Roskilde pthorn@ruc.dk Introduktion:

Læs mere

4000 C magma. Fjernvarme fra geotermianlæg

4000 C magma. Fjernvarme fra geotermianlæg Fjernvarme fra geotermianlæg Geotermianlæg producerer varme fra jordens indre ved at pumpe varmt vand op fra undergrunden og overføre varmen til fjernvarmenet med varmevekslere og varmepumper. Vind og

Læs mere

Nye samfundsøkonomiske varmepriser i hovedstadsområdets fjernvarmeforsyning

Nye samfundsøkonomiske varmepriser i hovedstadsområdets fjernvarmeforsyning Nye samfundsøkonomiske varmepriser i hovedstadsområdets fjernvarmeforsyning VEKS, 1. november 2016 Hans Henrik Lindboe og Jesper Werling Ea Energianalyse a/s 1 Formålet med samfundsøkonomiske analyser

Læs mere

NYK1. Delområde Nykøbing F. Nakskov - Nysted. Lokalitetsnummer: Lokalitetsnavn: Figur 1: Oversigtskort: Figur 2: TEM middelmodstandskort kote -50 m:

NYK1. Delområde Nykøbing F. Nakskov - Nysted. Lokalitetsnummer: Lokalitetsnavn: Figur 1: Oversigtskort: Figur 2: TEM middelmodstandskort kote -50 m: Delområde Nykøbing F. Lokalitetsnummer: NYK1 Lokalitetsnavn: Nakskov - Nysted Figur 1: Oversigtskort: Figur 2: TEM middelmodstandskort kote -50 m: Figur 3: TEM middelmodstandskort kote -100 m: Figur 4:

Læs mere

2. årlige geotermikonference

2. årlige geotermikonference 2. årlige geotermikonference Christiansborg, København 19. februar 2018 Perspektiver for geotermi i hovedstadsområdet - hvilke barrierer er der? Lars Gullev Formand for HGS CEO, VEKS Agenda Hovedstadens

Læs mere

Energiaftalens Fjernvarmeanalyse Fjernvarmens fremtid

Energiaftalens Fjernvarmeanalyse Fjernvarmens fremtid Energiaftalens Fjernvarmeanalyse Fjernvarmens fremtid Fjernvarmens udbredelse Varmeatlas præsentation ved Else Bernsen, COWI (ebe@cowi.dk) 1 Bygningsatlas 2013 for alle byområder i Danmark BBR oplyser

Læs mere

Hvad har vi lært? del 2:

Hvad har vi lært? del 2: Hvad har vi lært? del 2: Tekniske forhold og erfaringer Varmepumper i forhold til biomasse Fleksibelt elforbrug Kombinationer med solfangere Køling af returvand Fjernvarmetemperaturenes betydning Specialkonsulent

Læs mere

TILSLUTNING AF OKSBØLLEJREN

TILSLUTNING AF OKSBØLLEJREN SEPTEMBER 2018 OKSBØL VARMEVÆRK TILSLUTNING AF OKSBØLLEJREN FORBRUGER OG SELSKABSØKONOMI ADRESSE COWI A/S Jens Chr. Skous vej 9 8000 Aarhus C TLF +45 56 40 00 00 FAX +45 56 40 99 99 WWW cowi.dk SEPTEMBER

Læs mere

Brugen af seismik og logs i den geologiske modellering

Brugen af seismik og logs i den geologiske modellering Brugen af seismik og logs i den geologiske modellering Med fokus på: Tolkningsmuligheder af dybereliggende geologiske enheder. Detaljeringsgrad og datatæthed Margrethe Kristensen GEUS Brugen af seismik

Læs mere

GEOTHERM. Reservoir egenskaber. Diagenese og geokemisk modellering

GEOTHERM. Reservoir egenskaber. Diagenese og geokemisk modellering GEOTHERM Reservoir egenskaber Diagenese og geokemisk modellering De Nationale Geologiske Undersøgelser for Danmark og Grønland Energi-, Forsynings- og Klimaministeriet I samarbejde med BRGM, LU, GFZ Thisted

Læs mere

Modellering af energisystemet i fjernvarmeanalysen. Jesper Werling, Ea Energianalyse Fjernvarmens Hus, Kolding 25. Juni 2014

Modellering af energisystemet i fjernvarmeanalysen. Jesper Werling, Ea Energianalyse Fjernvarmens Hus, Kolding 25. Juni 2014 Modellering af energisystemet i fjernvarmeanalysen Jesper Werling, Ea Energianalyse Fjernvarmens Hus, Kolding 25. Juni 2014 MODEL, SCENARIER OG FORUDSÆTNINGER 2 Model af el- og fjernvarmesystemet Balmorel

Læs mere

PROJEKTFORSLAG FJERNVARMEFORSYNING AF 25 BOLIGER I KÆRUM

PROJEKTFORSLAG FJERNVARMEFORSYNING AF 25 BOLIGER I KÆRUM Til Assens Fjenvarme Dokumenttype Rapport Dato februar 2012 PROJEKTFORSLAG FJERNVARMEFORSYNING AF 25 BOLIGER I KÆRUM PROJEKTFORSLAG FJERNVARMEFORSYNING AF 25 BOLIGER I KÆRUM Revision V01 Dato 2012-02-28

Læs mere

PERSPEKTIVER OG BARRIERER FOR GEOTERMI I HOVEDSTADEN

PERSPEKTIVER OG BARRIERER FOR GEOTERMI I HOVEDSTADEN PERSPEKTIVER OG BARRIERER FOR GEOTERMI I HOVEDSTADEN GEOTHERM Følgegruppemøde 16. april 2018 Catarina Marcus-Møller, HOFOR cmmo@hofor.dk Tlf.: 27952760 www.hofor.dk AGENDA 1. Hovedstadens Geotermiske Samarbejde

Læs mere

Varmeplanlægning - etablering af solfangeranlæg, Mou Kraftvarmeværk A.m.b.a. Projektgodkendelse.

Varmeplanlægning - etablering af solfangeranlæg, Mou Kraftvarmeværk A.m.b.a. Projektgodkendelse. Punkt 6. Varmeplanlægning - etablering af solfangeranlæg, Mou Kraftvarmeværk A.m.b.a. Projektgodkendelse. 2012-33569. Forsyningsvirksomhederne indstiller, at Forsyningsudvalget godkender projekt for etablering

Læs mere

BÆREDYGTIG VARMEFORSYNING AF LAVENERGIBYGGERI

BÆREDYGTIG VARMEFORSYNING AF LAVENERGIBYGGERI BÆREDYGTIG VARMEFORSYNING AF LAVENERGIBYGGERI -SPÆNDINGSFELTET MELLEM KOLLEKTIV OG LOKAL FORSYNING V. Magnus Foged, Planchef, Københavns Energi, TRANSFORM, Energisporet d. 21. november 2012 DISPOSITION

Læs mere

Investering i elvarmepumpe og biomassekedel. Hvilken kombination giver laveste varmeproduktionspris?

Investering i elvarmepumpe og biomassekedel. Hvilken kombination giver laveste varmeproduktionspris? Investering i elvarmepumpe og biomassekedel Hvilken kombination giver laveste varmeproduktionspris? Grøn Energi er fjernvarmens tænketank. Vi omsætter innovation og analyser til konkret handling til gavn

Læs mere

Geothermal energy from sedimentary reservoirs Removing obstacles for large scale utilization GEOTHERM

Geothermal energy from sedimentary reservoirs Removing obstacles for large scale utilization GEOTHERM Geothermal energy from sedimentary reservoirs Removing obstacles for large scale utilization GEOTHERM Advisory Board / Følgegruppe møde 16. april 2018 Lars Henrik Nielsen De Nationale Geologiske Undersøgelser

Læs mere

Vurdering af det geotermiske potentiale i området omkring Rødding-1 boringen vest for Skive by

Vurdering af det geotermiske potentiale i området omkring Rødding-1 boringen vest for Skive by Side 1/15 Til: Skive Geotermi A/S, ved Direktør Lars Yde Fra: GEUS, L.H. Nielsen, C.M. Nielsen, A. Mathiesen, L. Kristensen & J. Therkelsen Kopi til: Jens Jørgen Møller; Flemming G. Christiansen; Journalen

Læs mere

Projekt: 100.108 Næstved Varmeværk Dato: 17. april 2012. Udvidelse af Næstved Varmeværks eksisterende forsyningsområde

Projekt: 100.108 Næstved Varmeværk Dato: 17. april 2012. Udvidelse af Næstved Varmeværks eksisterende forsyningsområde Nordre Strandvej 46 NOTAT Projekt: 100.108 Næstved Varmeværk Dato: 17. april 2012 Til: NVV Fra: Lasse Kjelgaard Jensen Vedrørende: Udvidelse af Næstved Varmeværks eksisterende forsyningsområde Formål Formålet

Læs mere

Geotermisk energi er der en fremtid?

Geotermisk energi er der en fremtid? Energipolitisk åbningsdebat Årets energikonference 2017 Geotermisk energi er der en fremtid? De Nationale Geologiske Undersøgelser for Danmark og Grønland Energi-, Forsynings- og Klimaministeriet Statsgeolog

Læs mere

Modellering af vand og stoftransport i mættet zone i landovervågningsoplandet Odderbæk (LOOP2) Delrapport 1 Beskrivelse af modelopsætning.

Modellering af vand og stoftransport i mættet zone i landovervågningsoplandet Odderbæk (LOOP2) Delrapport 1 Beskrivelse af modelopsætning. Modellering af vand og stoftransport i mættet zone i landovervågningsoplandet Odderbæk (LOOP2) Delrapport 1 Beskrivelse af modelopsætning Bilag Bilag 1 - Geologiske profiler I dette bilag er vist 26 geologiske

Læs mere

4 Årsager til problemet med vandlidende arealer på bagsiden af dæmningen 3. Oversigtskort med boringsplaceringer. Håndboringer (fra Rambøll)

4 Årsager til problemet med vandlidende arealer på bagsiden af dæmningen 3. Oversigtskort med boringsplaceringer. Håndboringer (fra Rambøll) NATURSTYRELSEN UNDERSIVNING AF DIGER VED SIDINGE ENGE VÅDOMRÅDE ADRESSE COWI A/S Parallelvej 2 2800 Kongens Lyngby TLF +45 56 40 00 00 FAX +45 56 40 99 99 WWW cowi.dk VURDERING AF ÅRSAG OG MULIGHED FOR

Læs mere

1 Udførte beregninger

1 Udførte beregninger MEMO TITEL Skanderborg-Hørning Fjernvarme A.m.b.a. biomassefyret fjernvarmeanlæg DATO 31. marts 2015 TIL Skanderborg Kommune (Susanne Skårup) KOPI SkHø (Torkild Kjærsgaard) FRA COWI (Jens Busk) ADRESSE

Læs mere

Fremtidens gasanvendelse i fjernvarmesektoren

Fremtidens gasanvendelse i fjernvarmesektoren Fremtidens gasanvendelse i fjernvarmesektoren Jan de Wit og Jan Jensen, Dansk Gasteknisk Center Webartikel, GASenergi, 4. januar 2018 Baggrund Dansk Fjernvarme publicerede i slutningen af 2016 resultatet

Læs mere

Flisfyret varmeværk i Grenaa

Flisfyret varmeværk i Grenaa Flisfyret varmeværk i Grenaa Tillæg til projektforslag i henhold til varmeforsyningsloven ADRESSE COWI A/S Visionsvej 53 9000 Aalborg TLF +45 56400000 FAX +45 56409999 WWW cowi.dk PROJEKTNR. A054732 DOKUMENTNR.

Læs mere

Vurdering af høringssvar fra HMN GasNet P/S vedrørende projektforslag for fjernvarmeforsyning af Alfred Hansens Plads og Marienlystvej.

Vurdering af høringssvar fra HMN GasNet P/S vedrørende projektforslag for fjernvarmeforsyning af Alfred Hansens Plads og Marienlystvej. MEMO TITEL DATO 5. december 2017 TIL Vurdering af høringssvar fra HMN GasNet P/S vedrørende projektforslag for fjernvarmeforsyning af Alfred Hansens Plads og Marienlystvej. Egedal Kommune (Carsten Nøhr)

Læs mere

BUSINESS CASE: ØKONOMISKE VILKÅR FOR GEOTERMI. Potentialer i udbygning af geotermi

BUSINESS CASE: ØKONOMISKE VILKÅR FOR GEOTERMI. Potentialer i udbygning af geotermi BUSINESS CASE: ØKONOMISKE VILKÅR FOR GEOTERMI Potentialer i udbygning af geotermi I Energi på Tværs samarbejder 33 kommuner, 10 forsyningsselskaber og Region Hovedstaden. Sammen står de på en fælles energivision

Læs mere

OPTIMERING AF GEOLOGISK TOLKNING AF SKYTEM MED SEISMIK OG SSV - CASE LOLLAND

OPTIMERING AF GEOLOGISK TOLKNING AF SKYTEM MED SEISMIK OG SSV - CASE LOLLAND OPTIMERING AF GEOLOGISK TOLKNING AF SKYTEM MED SEISMIK OG SSV - CASE LOLLAND PETER THOMSEN, JOHANNE URUP RAMBØLL FRANK ANDREASEN - NATURSTYRELSEN INDHOLD Baggrund for opdateringen af Lollandsmodellen Problemstillinger

Læs mere

2.1 Priser på gaskedler (store og små)

2.1 Priser på gaskedler (store og små) MEMO TITEL Vurdering af Næstved Varmeværks muligheder efter ophævelse af Næstved Kommunes godkendelse af projektforslag for biomasseværk mv. DATO 19. maj 2015 TIL Næstved Varmeværk A.m.b.a. (Jens Andersen)

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen Energi-, Forsynings- og Klimaudvalget 2015-16 EFK Alm.del Bilag 216 Offentligt Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen

Læs mere

Fremtidsperspektiver for kraftvarme. Jesper Werling, Ea Energianalyse Erfa-møde om kraftvarme og varmepumper Kolding, 19. maj 2016

Fremtidsperspektiver for kraftvarme. Jesper Werling, Ea Energianalyse Erfa-møde om kraftvarme og varmepumper Kolding, 19. maj 2016 Fremtidsperspektiver for kraftvarme Jesper Werling, Ea Energianalyse Erfa-møde om kraftvarme og varmepumper Kolding, 19. maj 2016 Ea Energianalyse Systemanalyse Strategier Marked F&U Konsulentfirma. Rådgivning

Læs mere

Notat vedrørende strategiplan

Notat vedrørende strategiplan Dato: 22.03.2019 Udgave: A Projekt nr.: 1010896 Udarbejdet af: JEHU Notat vedrørende strategiplan Bæredygtig energi i Egedal Kommune Indholdsfortegnelse 1 Indledning... 3 2 Ansvarlig for notatet... 4 3

Læs mere

Varmeplan Hovedstaden 3

Varmeplan Hovedstaden 3 Varmeplan 3 Hovedkonklusioner og resultater fra 2035- og perspektiv-scenarier 7. oktober 2014 Nina Holmboe, projektleder Formål med projektet Omstillingen til VE under hensyntagen til økonomi og forsyningssikkerhed

Læs mere

JESPER KOCH, ANALYSECHEF I GRØN ENERGI KIG I KRYSTALKUGLEN DREJEBOG OG INSPIRATION FOR STORE VARMEPUMPER I FJERNVARMEN

JESPER KOCH, ANALYSECHEF I GRØN ENERGI KIG I KRYSTALKUGLEN DREJEBOG OG INSPIRATION FOR STORE VARMEPUMPER I FJERNVARMEN JESPER KOCH, ANALYSECHEF I GRØN ENERGI KIG I KRYSTALKUGLEN DREJEBOG OG INSPIRATION FOR STORE VARMEPUMPER I FJERNVARMEN 1 VINDKRAFT OMKRING DANMARK 128 Norge Det nordiske prisområde Samlet for det Det nordiske

Læs mere