Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer"

Transkript

1 Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt Terminologi. Abstrakt vs. konkret datastruktur. Dynamisk vs. statisk datastruktur. Introduktion til datastrukturer

2 Stak Stak. Vedligehold en dynamisk sekvens (stakken) S af elementer under følgende operationer. PUSH(x): tilføj et nyt element x til S. POP(): fjern og returner det seneste tilføjede element i S. ISEMPTY(): returner sand hvis S ikke indeholder nogle elementer PUSH(28) 16 POP() 16 POP() 16 PUSH(7) 7 16 Kø Kø. Vedligehold en dynamisk sekvens (køen) K af elementer under følgende operationer. ENQUEUE(x): tilføj et nyt element x til K DEQUEUE(): fjern og returner det tidligst tilføjede element i K. ISEMPTY(): returner sand hvis K ikke indeholder nogle elementer ENQUEUE(1) ENQUEUE(22) DEQUEUE() DEQUEUE() ENQUEUE(6) Anvendelser Stakke. Virtuelle maskiner Parsing Funktionskald Backtracking Køer. Skedulering af processer Buffering Breddeførst søgning Implementation af stak med tabel Stak. Stak med kapacitet N vha. tabel. Datastruktur. Tabel S[0..N-1] Index top i S. Operationer. PUSH(x): Tilføj x på S[top+1], sæt top = top + 1 POP(): returner S[top], sæt top = top - 1 ISEMPTY(): returner sand hvis og kun hvis top = -1. Tjek for overløb og underløb i PUSH og POP top

3 PUSH POP Implementation af stak med tabel top top Tid. PUSH i Θ(1) tid. POP i Θ(1) tid. ISEMPTY i Θ(1) tid. Plads. Θ(N) plads. Mangler. Vi skal kende kapacitet N fra start. Vi spilder plads når antal elementer er << N. Implementation af kø med tabel Kø. Kø med kapacitet N vha. tabel. ENQUEUE DEQUEUE20 9 Datastruktur. Tabel S[0..N-1] Indeks (tidligst indsatte element) og tail (næste ledige element) i S og tæller count (antal elementer i kø). Operationer. ENQUEUE(x): Tilføj x på S[tail], opdater count og tail cyklisk. DEQUEUE(): returner S[], opdater count og cyklisk. ISEMPTY(): returner sand hvis og kun hvis count = 0. Tjek for overløb og underløb i DEQUEUE og ENQUEUE tail count = tail

4 Implementation af kø med tabel Stakke og køer count = Stak. Tid. PUSH, POP, ISEMPTY i Θ(1) tid. Plads. Θ(N) top Tid. ENQUEUE i Θ(1) tid. tail Kø. Tid. ENQUEUE, Dequeue, ISEMPTY i Θ(1) tid. Plads. Θ(N) count = tail DEQUEUE i Θ(1) tid. ISEMPTY i Θ(1) tid. Udfordring. Kan vi komme ned på lineær plads med samme tid? Plads. Θ(N) plads. Mangler. Vi skal kende kapacitet N fra start. Vi spilder plads når antal elementer er << N. Hægtede lister (linked lists) Introduktion til datastrukturer. Datastruktur til at vedligeholde en dynamisk sekvens af elementer i lineær plads. Rækkefølge af elementer bestemt af referencer/pegere kaldet hægter. Effektiv at indsætte og fjerne elementer eller sammenhængende dele af elementer. Dobbelt-hægtede vs enkelt-hægtede null null null

5 Hægtede lister Hægtede lister Dobbelt-hægtede lister i Java. Simple operationer. class Node { int key; Node next; Node prev; prev key next SEARCH(, k): returner knude med værdi k i listen. Returner null hvis den ikke findes. INSERT(, x): indsæt knude x i starten af listen. Returner ny. DELETE(, x): fjern knude x i listen. Node = new Node(); Node b = new Node(); Node c = new Node();.key = 7; b.key = 2; c.key = ;.prev = null;.next = b; b.prev = ; b.next = c; c.prev = b; c.next = null; b c null 7 null null 2 null null null b c null 7 2 null null null null Hægtede lister Operationer på dobbelthægtet liste i Java. Node Search(Node, int value) { Node x = ; while (x!= null) { if (x.key == value) return x; x = x.next; return null; Node Insert(Node, Node x) { x.prev = null; x.next = ;.prev = x; return x; Node Delete(Node, Node x) { if (x.prev!= null) x.prev.next = x.next; else = x.next; if (x.next!= null) x.next.prev = x.prev; return ; null null Hægtede lister null null null Tid. Hvor hurtigt kører operationerne? SEARCH i Θ(n) tid INSERT og DELETE i Θ(1) tid. Plads. Θ(n) Opgave. Lad p være en ny knude med værdien 10 og lad q være knuden i listen med værdi 2. Håndkør Search(,), Insert(,p) og Delete(,q).

6 Implementation af stak og kø med hægtede lister Opgave. Overvej hvordan man kan implementere stakke og køer med hægtede lister effektivt. Stak. Vedligehold en dynamisk sekvens (stakken) S af elementer under følgende operationer. PUSH(x): tilføj et nyt element x til S. POP(): fjern og returner det seneste tilføjede element i S. ISEMPTY(): returner sand hvis S ikke indeholder nogle elementer. Stakke og køer Stak og kø implementeret med hægtet liste Stak. Tid. PUSH, POP, ISEMPTY i Θ(1) tid. Plads. Θ(n) Kø. Tid. ENQUEUE, Dequeue, ISEMPTY i Θ(1) tid. Plads. Θ(n) Kø. Vedligehold en dynamisk sekvens (køen) K af elementer under følgende operationer. ENQUEUE(x): tilføj et nyt element x til K DEQUEUE(): fjern og returner det tidligst tilføjede element i K. ISEMPTY(): returner sand hvis K ikke indeholder nogle elementer. Hægtede lister Hægtet liste. Fleksibel datastruktur til at vedligeholde en sekvens af elementer i lineær plads. Andre hægtede datastrukturer. Cykliske lister, træer, grafer, null 1 root 8 null 15 Introduktion til datastrukturer 20 null null 1 null 11 1 null null null 11 1 null null

7 Stak med dynamisk tabel Udfordring. Kan vi implementere en stak effektivt med tabel(ler)? Behøver vi fastsætte en øvre grænse på antallet af elementer? Kan vi komme ned på lineær plads og konstant tid? Dynamiske tabeller Mål. Implementer en stak vha. tabel(ler) i Θ(n) plads for n elementer. Så hurtige operationer som muligt. Kun fokus på PUSH. Ignorer POP og ISEMPTY indtil videre. Løsning 1. Start med tabel af størrelse 1. PUSH(x): Opret ny tabel af størrelse +1. Flyt alle elementer til ny tabel. Slet gammel tabel. Dynamiske tabeller PUSH(x): Opret ny tabel af størrelse +1. Flyt alle elementer til ny tabel. Slet gammel tabel. Tid. Hvor meget tid tager n PUSH operationer? PUSH i tager Θ(i) tid: byg tabel af størrelse i, flyt i-1, elementer og indsæt nyt element. Samlet tid n = Θ(n 2 ) Plads. Θ(n) Dynamiske tabeller Ide. Kopier kun elementer en gang i mellem. Løsning 2. Start med tabel af størrelse 1. PUSH(x): Hvis tabel er fuld (antallet af elementer i stak er lig tabellens størrelse). Opret ny tabel af dobbelt størrelse. Flyt elementer over i ny tabel. Slet gammel tabel. Udfordring. Kan vi gøre noget smartere?

8 Dynamiske tabeller PUSH(x): Hvis tabel er fuld (antallet af elementer i stak er lig tabellens størrelse). Opret ny tabel af dobbelt størrelse. Flyt elementer over i ny tabel. Slet gammel tabel. Tid. Hvor meget tid tager n PUSH operationer? PUSH 2 k tager Θ(2 k ) tid: byg tabel af størrelse 2 k+1, flyt 2 k elementer og indsæt nyt element. Alle andre PUSH tager Θ(1) tid. Samlet tid log n + n = Θ(n) Plads. Θ(n) Dynamiske tabeller Stak med dynamisk tabel. n PUSH operationer i Θ(n) tid og plads. Kan udvides til n PUSH, POP og ISEMPTY operationer i Θ(n) tid. Køretiden er amortiseret Θ(1) per operation (een operation kan tage lang tid, men tiden for enhver sekvens af k operationer er Θ(k)) Med snedige tricks kan man deamortisere løsning til Θ(1) værstefaldskøretid per operation. Kø med dynamisk tabel. Samme resultater som stak. Global genobygning. Dynamisk tabel er eksempel på global genopbygning (global rebuilding). General teknik til at gøre statiske datastrukturer dynamiske. Stakke og køer Datastruktur PUSH POP ISEMPTY Plads Tabel med kapacitet N Θ(1) Θ(1) Θ(1) Θ(N) Hægtet liste Θ(1) Θ(1) Θ(1) Θ(n) Dynamisk tabel med udvidelse Θ(n) Θ(1) Θ(1) Θ(n) Dynamisk tabel med fordobling Θ(1) Θ(1) Θ(1) Θ(n) Dynamisk tabel med deamortiseret fordobling = amortiseret Θ(1) Θ(1) Θ(1) Θ(n) Introduktion til datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Introduktion til datastrukturer

Introduktion til datastrukturer Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller Philip Bille Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller

Læs mere

Introduktion til datastrukturer. Philip Bille

Introduktion til datastrukturer. Philip Bille Introduktion til datastrukturer Philip Bille Plan Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller Datastrukturer Datastrukturer Datastruktur: Metode til at organise data så det kan søges

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer

Læs mere

Hashing. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Philip Bille

Hashing. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Philip Bille Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Ordbøger Ordbøger. Vedligehold en dynamisk mængde S af elementer.

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Stakke, køer og lidt om hægtede lister - kapitel 16 og 17

Stakke, køer og lidt om hægtede lister - kapitel 16 og 17 Datastrukturer & Algoritmer, Datalogi C Forelæsning 2/11-2004 Henning Christiansen Stakke, køer og lidt om hægtede lister - kapitel 16 og 17 Fundamentale datastrukturer man får brug for igen og igen Et

Læs mere

Stakke, køer og lidt om hægtede lister

Stakke, køer og lidt om hægtede lister Datastrukturer & Algoritmer, Datalogi C Forelæsning 4/11-2003 Henning Christiansen Stakke, køer og lidt om hægtede lister - kapitel 16 og 17 Hvorfor? Fundamentale datastrukturer man får brug for igen og

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille Ordbøger. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[x] fra et univers af nøgler U og satellitdata data[x]. Ordbogsoperationer. SEARCH(k): afgør om element

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer 1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer på disse. Typer af lister: Array Enkelt linket liste Dobbelt linket Cirkulære lister Typer af køer: FILO FIFO

Læs mere

Abstrakte datatyper C#-version

Abstrakte datatyper C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Abstrakte datatyper C#-version Finn Nordbjerg 1/9 Abstrakte Datatyper Denne note introducerer kort begrebet abstrakt datatype

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering

Læs mere

Introduktion. Philip Bille

Introduktion. Philip Bille Introduktion Philip Bille Plan Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer og datastrukturer Hvad er det? Algoritmisk problem: præcist defineret relation mellem

Læs mere

Mm8: Hash tables, Hashing and binary search trees - November 7, 2008

Mm8: Hash tables, Hashing and binary search trees - November 7, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm8: Hash tables, Hashing and binary search trees - November 7, 2008 1 Algorithms and Architectures II 1. Introduction

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt.

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Merging og hashing Mål Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Dette emne er et uddrag af kurset DM507 Algoritmer og datastrukturer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 036, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 036. Varighed: timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Førsteårsprojekt F2008. Nogle algoritmer på grafer

Førsteårsprojekt F2008. Nogle algoritmer på grafer Førsteårsprojekt F2008 Nogle algoritmer på grafer Peter Sestoft 2008-02-19 Oversigt for i dag Definition: graf og orienteret graf Repræsentation ved kantlister Bredde-først gennemløb Dybde-først gennemløb

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter Skriftlig eksamen i Datalogi Modul 1 Sommer 1999 Opgavesættet består af 5 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 15% Opgave 2 15% Opgave 3 8% Opgave

Læs mere

I denne artikel vil vi bruge en User klasse som vi så vil gruppere på forskellige måder.

I denne artikel vil vi bruge en User klasse som vi så vil gruppere på forskellige måder. Denne guide er oprindeligt udgivet på Eksperten.dk Collections i.net Når du kigger i namespacet System.Collections finder du over 10 forskellige klasser. At vælge den rigtige til netop din applikations

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Design by Contract Bertrand Meyer Design and Programming by Contract. Oversigt. Prædikater

Design by Contract Bertrand Meyer Design and Programming by Contract. Oversigt. Prædikater Design by Contract Bertrand Meyer 1986 Design and Programming by Contract Michael R. Hansen & Anne Haxthausen mrh@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark Design

Læs mere

DM507 - Algoritmer og datastrukturer

DM507 - Algoritmer og datastrukturer - Algoritmer og datastrukturer Køretid g(n) Udtryk Beskrivelse lim n f(n) o(f) Vokser langsommere end f = 0 O(f) Vokser højst så hurtigt som f < Θ(f) Vokser som f = c(c > 0) Ω(f) Vokser mindst så hurtigt

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Programmeringscamp. Implementer funktionerne én for én og test hele tiden.

Programmeringscamp. Implementer funktionerne én for én og test hele tiden. Programmeringscamp De to opgaver træner begge i at lave moduler som tilbyder services der kan bruges af andre, samt i at implementere services efter en abstrakt forskrift. Opgave 1 beder jer om at implementere

Læs mere

Analyse af algoritmer

Analyse af algoritmer Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid

Læs mere

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter

Læs mere

Bits DM534. Rolf Fagerberg, 2012

Bits DM534. Rolf Fagerberg, 2012 Bits DM534 Rolf Fagerberg, 2012 Resume af sidst Overblik over kursus Introduktion. Tre pointer: Datalogi er menneskeskabt og dynamisk. Tidslinie over fremskridt mht. ideer og hardware. Algoritme er et

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Førsteårsprojekt F2008 Flere grafalgoritmer, og visualisering SØGES

Førsteårsprojekt F2008 Flere grafalgoritmer, og visualisering SØGES Førsteårsprojekt F2008 Flere grafalgoritmer, og visualisering Peter Sestoft 2008-03-11* SØGES 1-2 studerende til Åbent Hus torsdag 10. april kl 1700-1800 Skal kunne fortælle 5-10 minutter om hvad hvordan

Læs mere

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Finn Nordbjerg 1/9 Indledning I det følgende introduceres et par abstrakte

Læs mere

DM02 Kogt ned. Kokken. Januar 2006

DM02 Kogt ned. Kokken. Januar 2006 DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte

Læs mere

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer.

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. Merging og Hashing Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang (API =

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

Søgning og Sortering. Philip Bille

Søgning og Sortering. Philip Bille Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre

Læs mere

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key fra et univers af nøgler U og satellitdata x.data. Ordbogsoperationer. SEARCH(k): afgør om element med nøgle

Læs mere

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm6: More sorting algorithms: Heap sort and quick sort - October 9, 008 Algorithms and Architectures II. Introduction

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Løsning af møntproblemet

Løsning af møntproblemet Løsning af møntproblemet Keld Helsgaun RUC, oktober 1999 Antag at tilstandene i problemet (stillingerne) er repræsenteret ved objekter af klassen State. Vi kan da finde en kortest mulig løsning af problemet

Læs mere

Plan. Introduktion. Eks: Max i tabel. Algoritmer og datastrukturer. Algoritmer og datastrukturer. Toppunkter. Algoritme 1. Algoritme 2.

Plan. Introduktion. Eks: Max i tabel. Algoritmer og datastrukturer. Algoritmer og datastrukturer. Toppunkter. Algoritme 1. Algoritme 2. Plan Algoritmer og datastrukturer Toppunkter Introduktion Philip Bille Algoritme Algoritme Algoritme Algoritmer og datastrukturer Eks: Max i tabel Hvad er det? Algoritmisk problem: præcist defineret relation

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Datastrukturer. Datastruktur = data + operationer herpå

Datastrukturer. Datastruktur = data + operationer herpå Prioritetskøer Prioritetskøer? Datastrukturer Datastruktur = data + operationer herpå Datastrukturer Data: Datastruktur = data + operationer herpå Ofte en ID + associeret data. ID kaldes også en nøgle

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm8: Hash tables og Hashing - November 10, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm8: Hash tables og Hashing - November 10, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm8: Hash tables og Hashing - November 10, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms (RLO

Læs mere

Programmeringscamp Opbygning og specialisering af klassehierarki. Simulering af en kasselinje

Programmeringscamp Opbygning og specialisering af klassehierarki. Simulering af en kasselinje Programmeringscamp Opgave 9 var helt tydeligt for svær det var imponerende at 7 faktisk afleverede! Vi bruger uge 48 til at gå lidt grundigere igennem objektorienteret programmering, specielt teknikken

Læs mere

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )?

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )? Eksamen juni Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) I det følgende angiver log n -tals-logaritmen af n. n+n er O(n)? n 6 er O(n )? nlogn er O(n /logn)? n er O(n )? n er O(n )?

Læs mere

15 Arrays og Lister samt Stakke og Køer.

15 Arrays og Lister samt Stakke og Køer. 15 Arrays og Lister samt Stakke og Køer. Introduktion til arrays. Algebraisk specifikation af arrays. Arrays i Eiffel. Introduktion til lister og kædede lister. Fælles egenskaber ved stakke og køer. Algebraisk

Læs mere

Datastrukturer. Datastruktur = data + operationer herpå

Datastrukturer. Datastruktur = data + operationer herpå Prioritetskøer Prioritetskøer? Datastrukturer Datastruktur = data + operationer herpå Datastrukturer Data: Datastruktur = data + operationer herpå Ofte en ID + associeret data. ID kaldes også en nøgle

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Databaseadgang fra Java

Databaseadgang fra Java Databaseadgang fra Java Grundlæggende Programmering med Projekt Peter Sestoft Fredag 2007-11-23 Relationsdatabasesystemer Der er mange databaseservere Microsoft Access del af Microsoft Office MySQL god,

Læs mere

Oversættere, ugeopgave 3

Oversættere, ugeopgave 3 Oversættere, ugeopgave 3 Anders jerg Pedersen (andersbp@me.com) 29. november 2009 Opgave 1 Vi konsrer først NFA er for grammatikken fra opgave 3.22 med produktionen tilføjet: Produktion NFA 0 A 1 C D 2

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Philip Bille Introduktion Kortete veje. Givet

Læs mere

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Philip Bille Introduktion Kortete veje. Givet

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 29. februar, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 3

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 3 DM502 Forelæsning 3 Indlæsning fra tastatur Udskrift til skærm Repetition Beregning af middelværdi Gentagelse med stop-betingelse (while) Heltalsdivision Division med nul Type-casting ( (double) ) Betinget

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb.

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb. Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

BRP Sortering og søgning. Hægtede lister

BRP Sortering og søgning. Hægtede lister BRP 18.10.2006 Sortering og søgning. Hægtede lister 1. Opgaver 2. Selection sort (udvælgelsessortering) 3. Kompleksitetsanalyse 4. Merge sort (flettesortering) 5. Binær søgning 6. Hægtede lister 7. Øvelser:

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2015 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 3. marts, 2015 Dette projekt udleveres i to dele. Hver del har sin deadline, således

Læs mere