Søgning og Sortering. Philip Bille
|
|
|
- Camilla Frederiksen
- 10 år siden
- Visninger:
Transkript
1 Søgning og Sortering Philip Bille
2 Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering
3 Søgning
4 Søgning En tabel A[1..n] er sorteret (i ikke-faldende rækkefølge) hvis A[1] A[2] A[n] Søgningsproblemet: Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x.
5 Lineær søgning Undersøg for alle indgange A[i] om A[i] = x. Tid: Θ(n)
6 Binær søgning Kig på midterste indgang m i A. A[m] = x: færdig A[m] < x: fortsæt rekursivt på højre halvdel. A[m] > x: fortsæt rekursivt på venstre halvdel. Stopper når tabellen har størrelse 1
7 Analyse Hvor hurtigt kører den? Analog til analyse af rekursiv toppunktsalgoritme. Et rekursivt kald tager konstant tid. I hver rekursion halverer vi tabellen vi kigger på. Vi stopper når tabellen har størrelse 1. Køretiden er Θ(log n)
8 Alternativ analyse Lad T(n) være køretiden for binær søgning. Opskriv og udregn rekursionsligningen for T(n). T (n) = ( T (n/2) + c hvis n>1 d hvis n =1
9 T (n) = ( T (n/2) + c hvis n>1 d hvis n =1 T (n) =T = T = T n 2 n 4 n 8 + c + c + c + c + c + c. n = T 2 k + ck. n = T 2 log 2 n + c log 2 n = T (1) + c log 2 n = d + c log 2 n = (log n)
10 Søgning Lineær søgning løser søgningsproblemet i Θ(n) tid. Binær søgning løser søgningsproblemet i Θ(log n) tid.
11 Sortering
12 Sortering Sorteringsproblemet: Givet en tabel A[1..n] returner en tabel B[1..n] med samme indhold som A men i sorteret orden.
13 Anvendelser Oplagte: Sortere en liste af navne, organisere et MP3 bibliotek, vise Google PageRank resultater, vise Facebook feed i kronologisk rækkefølge. Ikke oplagte: Datakompression, computergrafik, bioinformatik, anbefalingssystemer (film på Netflix, bøger på Amazon, reklamer på Google,..). Nemme problemer for sorteret data: Binær søgning, find median, identificer duplikater, find tætteste par, find statiske perifere observationer (outliers).
14 Indsættelsessortering (insertion-sort) Start med en ikke sorteret tabel. Kig på indgangene fra venstre til højre. Ved indgang i: Indsæt A[i] i rækkefølge blandt deltabellen A[1..i-1]. For at finde rette sted sammenligner vi med indgangene fra højre til venstre.
15 Korrekthed Hvorfor virker det? Før iteration i består deltabellen A[1..i-1] af de tal der oprindeligt var i A[1..i-1] i sorteret rækkefølge. Iteration i indsætter A[i] i deltabellen A[1..i-1] Efter iteration i består deltabellen A[1..i] af de tal der oprindeligt var i A[1..i]
16 Analyse Hvor hurtigt kører den? Hvor lang tid tager det at indsætte A[i] i korrekt position? Samlet tid = Θ(tid for at indsætte alle indgangene i korrekt position)
17 Analyse Indsættelsessortering kører i Θ(n 2 ) tid.
18 Flettesortering (mergesort) Hurtigere sorteringsalgoritme. Ide: Rekursiv sortering vha. fletning af sorterede deltabeller.
19 Fletning (merge) Mål. Kombiner to sorterede tabeller til én sorteret tabel i lineær tid Ide: Hold styr på mindste element i hver sorteret tabel. Indsæt mindste af de to elementer i en ekstra tabel. Gentag indtil færdig.
20 Analyse Hvert skridt i algoritmen tager Θ(1) tid. I hvert skridt flytter vi en indgang frem i en af tabellerne. Linæer tid i sum af længde af tabellerne.
21 Flettesortering Del A i to halvdele. Sorter hver halvdel rekursivt. Flet de to halvdele sammen. Stop når tabel har størrelse 1
22
23
24
25
26
27 Analyse Lad T(n) være køretiden af flettesortering. Hvor hurtigt kører den? Ide: T(n) = Θ(total tid brugt på fletning) Fletning tager lineær tid. T(n) = Θ(total længde af tabeller over alle rekursive kald)
28
29 Analyse Flettesorting kører i Θ(nlog n) tid.
30 Del og hersk (divide-and-conquer) Flettesortering er eksempel på en del-og-hersk algoritme. Del-og-hersk: algoritmisk designparadigme Del: Opdel problemet i et eller flere delproblemer Hersk: Løs delproblemerne rekursivt Kombiner: Sæt løsningerne til delproblemerne sammen til en samlet løsning for problemet. Flettesortering: Del: Del A i to halvdele. Hersk: Sorter hver halvdel rekursivt. Kombiner: Flet de to halvdele sammen.
31 Sortering Indsættelsessortering i Θ(n 2 ) tid. Flettesortering i Θ(nlog n) tid. Fletning i Θ(n) tid.
32 Opsummering Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering
Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning
Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]
Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille
Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering
Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal
Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige
Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille
Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer
Dynamisk programmering
Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer
Sortering. Eksempel: De n tal i sorteret orden
Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer (af samme type). 2. Løs delproblemerne ved rekursion (dvs. kald algoritmen
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer
Algoritmer og invarianter
Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.
Sortering. Eksempel: De n tal i sorteret orden
Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden
Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:
Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer
Dynamisk programmering
Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde
28 Algoritmedesign. Noter. PS1 -- Algoritmedesign
28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par
Prioritetskøer og hobe. Philip Bille
Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af
Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort
Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data
02105 Eksamensnoter. Lasse Herskind S maj Sortering 3
02105 Eksamensnoter Lasse Herskind S153746 12. maj 2017 Indhold 1 Sortering 3 2 Analyse af algoritme 4 2.1 Køretid.......................................... 4 2.2 Pladsforbrug.......................................
Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo
Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):
Grundlæggende køretidsanalyse af algoritmer
Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se
Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo
Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.
Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er)
Algoritmeanalyse Identificer essentiel(le) operation(er) Øvre grænse for algoritme Find øvre grænse for antallet af gange de(n) essentielle operation(er) udføres. Øvre grænse for problem Brug øvre grænse
Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012
Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk
Danmarks Tekniske Universitet
Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning
Intervalsøgning. Algoritmisk geometri. Motivation for intervaltræer. Intervalsøgning. Lad der være givet en database over ansatte i en virksomhed
Algoritmisk geometri Intervalsøgning 1 2 Motivation for intervaltræer Intervalsøgning Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Vi kan
Sortering i CPH STL. Jakob Sloth, Morten Lemvigh & Mads Kristensen. CPH STL rapport 2003-2 maj 2003; revidered november 2003
Sortering i CPH STL Jakob Sloth, Morten Lemvigh & Mads Kristensen CPH STL rapport 2003-2 maj 2003; revidered november 2003 1 INDHOLD S. 2 Indhold Indhold 2 1 Indledning 5 1.1 Problemstilling..........................
Danmarks Tekniske Universitet
Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:
Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer.
Merging og Hashing Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang (API =
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer
1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer på disse. Typer af lister: Array Enkelt linket liste Dobbelt linket Cirkulære lister Typer af køer: FILO FIFO
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave
Hashing. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Philip Bille
Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Ordbøger Ordbøger. Vedligehold en dynamisk mængde S af elementer.
Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer
Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt
Martin Olsen. DM507 Projekt Del I. 19. marts 2012 FOTO: Colourbox
Martin Olsen DM0 Projekt 0 Del I. marts 0 FOTO: Colourbox Indhold Indledning... Opgave... Opgave... Opgave... Opgave... Opgave... Opgave... Opgave... Kildekode til SimpleInv.java... Kildekode til MergeSort.java...
Analyse af algoritmer
Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid
Introduktion Til Konkurrenceprogrammering
Introduktion Til Konkurrenceprogrammering Søren Dahlgaard og Mathias Bæk Tejs Knudsen {soerend,knudsen}@di.ku.dk Version 0.1 Indhold Indhold i Introduktion 1 1 Palindromer 3 1.1 Introduktion til Python...............
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)
Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid
Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter
Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid
6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler
Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer
Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 6. juni 2016, kl. 15:00 19:00 Besvarelsen skal afleveres elektronisk. Se
Danmarks Tekniske Universitet
Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre
Rekursion C#-version
Note til Programmeringsteknologi Akademiuddannn i Informationsteknologi Rekursion C#-version Finn Nordbjerg 1 Rekursion Rekursionsbegrebet bygger på, at man beskriver noget ved "sig selv". Fx. kan tallet
Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion
Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af
Rekursion og dynamisk programmering
Rekursion og dynamisk programmering Datastrukturer & Algoritmer, Dat C Forelæsning 12/10-2004 Henning Christiansen Rekursion: at en procedure kalder sig selv eller et antal metoder kalder hinanden gensidigt.
