Dynamisk programmering

Størrelse: px
Starte visningen fra side:

Download "Dynamisk programmering"

Transkript

1 Dynamisk programmering

2 Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer fra løsninger til mindre problemer. Forskel: Divide-and-conquer: delproblemer typisk halvt så store, ingen gentagelser af delproblemer (heller ikke flere lag nede i rekursionen). Dynamisk programmering: delproblemer indeholder nogle hvis størrelse kun er reduceret med én, der er gentagelser blandt delproblemers delproblemer.

3 Eksempel Du har en guldkæde med n led. Den kan deles i mindre længder (med n led tilsammen, dvs. ingen led går tabt). Guldsmeden køber guldkæder af forskellige længder til forskellige priser: længde i pris p i $1 $5 $8 $9 $10 $17 $17 $20 $24 Hvordan skal du opdele din guldkæde for at optimere din salgspris?

4 Eksempel Du har en guldkæde med n led. Den kan deles i mindre længder (med n led tilsammen, dvs. ingen led går tabt). Guldsmeden køber guldkæder af forskellige længder til forskellige priser: længde i pris p i $1 $5 $8 $9 $10 $17 $17 $20 $24 Hvordan skal du opdele din guldkæde for at optimere din salgspris?

5 Optimale delproblemer Observation: en opdeling af en kæde af længde n må bestå af: Et sidste stykke af længde i n. En opdeling af resten, dvs. en opdeling af en kæde af længde n i. Den essentielle egenskab (optimale delproblemer): For en optimal opdelingen af kæden af længde n, må opdelingen af resten være optimal for en kæde af længde n i. For hvis der fandtes en ægte bedre opdeling af den, kunne man bruge den til at forbedre opdelingen af kæden af længde n. Kald værdien af en optimal opdeling af en kæde af længde n for r(n). Det er klart at r(0) = 0. Vi vil gerne finde r(n) for n > 0.

6 Rekursiv formel for r(n) En opdeling af en kæde af længde n består af: Et sidste stykke af længde i n. En opdeling af resten, dvs. en opdeling af en kæde af længde n i. Lad T i være opdelingen som består af et sidste stykke af længde i n, samt en optimal opdeling af resten. Pga. den essentielle egenskab: Én af T 1, T 2, T 3,...,T n er en optimale opdeling for længde n. Værdien af T i er p i + r(n i), og ingen af disse værdier kan være større end værdien af den optimale. Heraf: r(n) = max 1 i n (p i + r(n i)), r(0) = 0

7 Beregne de optimale værdier r(n) = max 1 i n (p i + r(n i)), r(0) = 0 Dvs. r(n) er (matematisk set) rekursivt defineret ud fra mindre instanser. Er rekursion også en god løsning, algoritmisk set?

8 Beregne de optimale værdier r(n) = max 1 i n (p i + r(n i)), r(0) = 0 Dvs. r(n) er (matematisk set) rekursivt defineret ud fra mindre instanser. Er rekursion også en god løsning, algoritmisk set? Man kan vise via induktion at der er 2 n knuder i rekursionstræet. Så køretiden vil blive Θ(2 n ) Problemet er gentagelser blandt delproblemers delproblemer.

9 Beregne de optimale værdier Problemet for en rekursiv algoritme er gentagelser blandt delproblemers delproblemer, dvs. gentagne beregninger af de samme løsninger. Fokusér i stedet på en tabel over værdien af de optimale løsninger. Start: n r(n)

10 Beregne de optimale værdier Problemet for en rekursiv algoritme er gentagelser blandt delproblemers delproblemer, dvs. gentagne beregninger af de samme løsninger. Fokusér i stedet på en tabel over værdien af de optimale løsninger. Start: n r(n) Beregn r(n) for stigende n: n r(n) r(n) = max 1 i n (p i + r(n i)), r(0) = 0 Tid: O( n) = O(n 2 )

11 Eksempel Brug og tabellen over p i : r(n) = max 1 i n (p i + r(n i)), r(0) = 0 længde i pris p i til at udfylde tabellen over r(n) fra højre mod venstre: længde n optimal værdi r(n)

12 Find selve løsningen Tallet r(n) er kun værdien af den optimale løsning. Hvad hvis vi gerne vil have selve løsningen (de enkelte længder, guldkæden skal brydes op i)? Gem længden s(n) af det sidste stykke for en optimal løsning for længde n. r(n) = max 1 i n (p i + r(n i)), r(0) = 0 længde i pris p i længde n optimal værdi r(n) sidste længde s(n) while n > 0 print s[n] n = n s[n]

13 Memoization Rekursion: O(2 n ). Struktureret tabeludfyldning: O(n 2 ) Kan de to kombineres?

14 Memoization Rekursion: O(2 n ). Struktureret tabeludfyldning: O(n 2 ) Kan de to kombineres?ja. GuldKæde(n) if n = 0 return 0 else if r(n) allerede udfyldt i tabel return r(n) else x = max 1 i n (p i +GuldKæde(n i)) r(n) = x return x

15 Memoization Rekursion: O(2 n ). Struktureret tabeludfyldning: O(n 2 ) Kan de to kombineres?ja. GuldKæde(n) if n = 0 return 0 else if r(n) allerede udfyldt i tabel return r(n) else x = max 1 i n (p i +GuldKæde(n i)) r(n) = x return x En kant i grafen, der viser delproblemers afhængighed af hinanden, vil blive en kant i rekursionstræet præcis én gang. Så samme køretid O(n 2 ) og pladsforbrug O(n) som for bottom-up udfyldning af tabellen. Men nok dårligere konstanter i praksis.

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z},

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Søgning og Sortering. Philip Bille

Søgning og Sortering. Philip Bille Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer (af samme type). 2. Løs delproblemerne ved rekursion (dvs. kald algoritmen

Læs mere

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er)

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er) Algoritmeanalyse Identificer essentiel(le) operation(er) Øvre grænse for algoritme Find øvre grænse for antallet af gange de(n) essentielle operation(er) udføres. Øvre grænse for problem Brug øvre grænse

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid 6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3 02105 Eksamensnoter Lasse Herskind S153746 12. maj 2017 Indhold 1 Sortering 3 2 Analyse af algoritme 4 2.1 Køretid.......................................... 4 2.2 Pladsforbrug.......................................

Læs mere

Rekursion og dynamisk programmering

Rekursion og dynamisk programmering Rekursion og dynamisk programmering Datastrukturer & Algoritmer, Dat C Forelæsning 12/10-2004 Henning Christiansen Rekursion: at en procedure kalder sig selv eller et antal metoder kalder hinanden gensidigt.

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 6. juni 2016, kl. 15:00 19:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Intervalsøgning. Algoritmisk geometri. Motivation for intervaltræer. Intervalsøgning. Lad der være givet en database over ansatte i en virksomhed

Intervalsøgning. Algoritmisk geometri. Motivation for intervaltræer. Intervalsøgning. Lad der være givet en database over ansatte i en virksomhed Algoritmisk geometri Intervalsøgning 1 2 Motivation for intervaltræer Intervalsøgning Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Vi kan

Læs mere

Introduktion Til Konkurrenceprogrammering

Introduktion Til Konkurrenceprogrammering Introduktion Til Konkurrenceprogrammering Søren Dahlgaard og Mathias Bæk Tejs Knudsen {soerend,knudsen}@di.ku.dk Version 0.1 Indhold Indhold i Introduktion 1 1 Palindromer 3 1.1 Introduktion til Python...............

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb.

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb. Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse

Læs mere

Rekursion C#-version

Rekursion C#-version Note til Programmeringsteknologi Akademiuddannn i Informationsteknologi Rekursion C#-version Finn Nordbjerg 1 Rekursion Rekursionsbegrebet bygger på, at man beskriver noget ved "sig selv". Fx. kan tallet

Læs mere

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

Symmetrisk Traveling Salesman Problemet

Symmetrisk Traveling Salesman Problemet Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,

Læs mere

Analyse af algoritmer

Analyse af algoritmer Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid

Læs mere

Programmering og Problemløsning, 2017

Programmering og Problemløsning, 2017 Programmering og Problemløsning, 2017 Rekursion Towers of Hanoi og Liniegrafik Martin Elsman Datalogisk Institut Københavns Universitet DIKU 13. Oktober, 2017 Martin Elsman (DIKU) Programmering og Problemløsning,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere