Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid"

Transkript

1 6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler på branch-and-bound algoritmer Eksempler på grænseværdier Dominans af grænseværdi Kritiske og semikritiske knuder Selv om alle N P -fuldstændige problemer kan reduceres til hinanden skal specifik struktur udnyttes i praksis 1

2 Grænseværdier z max f x x S f.x. S delproblem nedre grænseværdi L : L z øvre grænseværdi U : U z For enhver løsning x g x S er f x nedre grænseværdi f x T S Definition 1 P : z max f x x S R : z R max g x x T R er en relaksering af P hvis (i) S T (ii) g x f x for alle x S 2

3 Grænseværdier Hvis R er en relaksering af P så er z R en øvre grænseværdi for S S Grænseværditest: hvor x optimale løsning U S i z x S i Hvis leder efter forbedret værdi f x f x U S i z x S i 3

4 Branch-and-bound 1 L : ; L : z max f x x S S 2 while L /0 3 vælg et delproblem S i fra L 4 L : L S i 5 if S i /0 then 6 find en øvre grænseværdi U S i 7 find en lovlig løsning x i S i 8 if U S i L then (grænseværditest) 9 if f x L then L : f x ; x : x 10 opdel S i i delproblemer S 1 i S k i 11 tilføj delproblemerne til L, dvs. sæt L : L Si 1 Si k 12 endif 13 endif 14 endwhile L liste af delproblemer S i ofte organiseret prioritetskø Delproblemerne i L er åbne delproblemer Behandlede deproblemer er lukkede delproblemer global nedre grænseværdi L, tilhørende løsning x 4

5 Branch-and-bound, fire komponenter 1. Øvre grænseværdifunktion lineær relaksering lagrange relaksering surrogat relaxering semidefinite relaxering 2. Nedre grænseværdi (hidtil bedst kendte løsning) i hver branch-and-bound knude, check om S i 1 omform øvre grænseværdi til lovlig løsning heuristik for hvert delproblem god initiel løsning inden branch-and-bound 3. Søgestrategi (rækkefølge af delproblemer) dybde-først søgning bedste-først søgning bredde-først søgning heuristisk styret søgning 4. Forgreningsregel (opdeling af løsningsrum) tilføj ekstra begrænsning (problem skal stadig kunne løses effektivt) opdeling i 2 eller flere delproblemer (ikke for mange) søgetræet bør vokse symmetrisk 5

6 Knapsack problem, øvre grænseværdi Fraktionelle knapsack problem i Cormen U 1 KP max n n p j x j w j x j c 0 x j 1 j 1 j 1 Køretid O n mediansøgning Relaksering Originale knapsack problem f x S n j 1 p jx j x 1 x n n j 1 w j x j c x j Fraktionelle knapsack problem 0 1 g x n j 1 p j x j T x 1 x n n j 1 w jx j c 0 x j 1 Kontrollerer betingelser (i) S T (ii) g x f x for alle x S 6

7 Knapsack problem, nedre grænseværdi Grådig algoritme j p j w j c 9, n 7 Øvre grænseværdi: genstande 1 2 brøk af b 3 U 1 KP kan rundes ned til U 1 KP 16 Nedre grænseværdi: genstande L 14 7

8 Knapsack problem, branch-and-bound j p j w j c 9, n 7 Dybde-først søgning (stak lagrer åbne delproblemer L) Heuristisk styret søgestrategi Hvor BRANCHBOUNDKNAPSACK p w i if w c then return if p L then L p; x : x if i n then return Udregn U 1 defineret på genstande i n og med kapacitet c w. KP Øvre grænseværdi for det betragtede delproblem er U p U 1 KP. if U L then x i : 1; BRANCHBOUNDKNAPSACK p p i w w i i 1 x i : 0; BRANCHBOUNDKNAPSACK p w i 1 endif i: næste genstand vi skal forgrene på p: profitsummen af valgte genstande w: vægtsummen af valgte genstande init: x 0 0 0, L 0 (eller bedre) kald: BRANCHBOUNDKNAPSACK

9 Knapsack problem, branch-and-bound 16 x 1 1 x x 2 1 x x 3 1 x 3 0 x 3 1 x x 4 1 x 4 0 x 4 1 x x 5 1 x 5 0 L

10 Dense subgraph problem komplet (orienteret) graf G udvælg U V af størrelse U k V E c, heltal k sum af kantvægte mellem knuder i U maksimeres N P -hårdt ved reduktion fra klike z max i U Eksempel G V E c k 3 Optimal løsning U c i j U V U k j U j i , løsningsværdi 48 10

11 Dense subgraph problem, øvre grænseværdi Sæt en parantes i objektfunktionen z max i U c i j U V U k j U Lad c i øvre grænse på kantvægt-sum fra knude i Grænseværdi c i max c i j U V U k j U U 1 DSP max c i U V U k i U Køretid V O V vælg k største kantvægte fra knude i (Problem 9-1 side 194 i Cormen) O V vælg k største af c 1 c 2 c n Samlet: O V 2 tid 11

12 Dense subgraph problem, øvre grænseværdi Relaksering Originale problem f x i U j U c i j S Nye problem g x i U c i T Kontrollerer betingelser (i) S T (ii) g x f x for alle x S U V U k U V U k Eksempel n 7 k 3 i j c i Øvre grænseværdi U 1 DSP 73 12

13 Dense subgraph problem, branch-and-bound Heuristisk styret søgestrategi c i øvre grænseværdi for kantvægt-summen fra knude i j i V 3 U V 3 U j i j i Knude i forbydes: slet tilhørende række og søjle Knude i vælges: slet den tilhørende række og søjle modificer c i j c j j : c j j c i j c ji for hvert j 1 n hvor j i 13

14 Traveling salesman problem Symmetrisk traveling salesman problem vægtet graf V E d, hvor d i j afstand symmetriske afstande d i j d ji find minimal længde Hamilton-kreds H z min d i j H E H er en Hamilton-kreds i j H Otte byer på Bornholm

15 Traveling salesman problem, eksempel Optimal løsning: i j længde af Hamilton-kreds z

16 Traveling salesman problem, nedre grænseværdi Vægtet graf V E d 1-træ: udspændende træ på knuderne 2 3 n knude 1 forbindes med to vilkårlige kanter minimalt 1-træ: mindste udspændende træ på knuderne 2 3 n knude 1 forbindes med billigste kanter Bevis: uafhængige delproblemer optimeres hver for sig Eksempel 1-træ relaksering L 1 TSP= 97 Køretid O E log V MST Kruskal O E V log V MST Prim, Fibonacci hobe O V to billigste kanter fra 1 Samlet: O E V log V 16

17 Traveling salesman problem, nedre grænseværdi L 1 min TSP d i j H E H er et 1-træ i j H Relaksering Originale problem f x d i j i j H Nye problem g x d i j i j H S T Kontrollerer betingelser (i) S T (ii) g x f x for alle x S H E H er en Hamilton-kreds H E H er et 1-træ 17

18 Traveling salesman problem, forgreningsstrategi Metode 1 Vælg en kant fra knude 1 Vælg næste kant Ikke god Metode 2: Udgangspunkt i 1-træ Hvis alle knuder har valens 2, har vi Hamilton-kreds (og kan bortskære delproblem) Ellers vælg en knude med valens større end 2 Forbyd på skift de kanter, som udgår fra knuden 18

19 Traveling salesman problem, forgreningsstrategi forbyd (1,7) forbyd (6,7) forbyd (7,8) Knude 7 har valens 3 Forbyd 1 7 prisen af 1-træet L 97 Forbyd 6 7 prisen af 1-træet L 98 Forbyd træet giver L U

20 Kvalitet af grænseværdifunktionen maksimeringsproblem z max f x x S to øvre grænseværdifunktioner U 1 og U 2 Definition 2 grænseværdifunktion U 1 dominerer grænseværdifunktion U 2 hvis U 1 U 1 U 2 for alle instanser U 2 for mindst en instans NB: kræver ikke at U 1 altid er bedre end U 2 20

21 Dominans af grænseværdier, knapsack problem U 0 KP max n n p j x j w j x j c x j 0 j 1 j 1 Relaksering Originale knapsack problem f x S nye knapsack problem n j 1 p j x j x 1 x n n j 1 w j x j c x j 0 1 g x n j 1 p jx j T Kontrollerer betingelser (i) S T x 1 x n n j 1 w j x j c 0 x j (ii) g x f x for alle x S Køretid Hvis sorteret profit-vægt forhold, udregnes O 1 tid U 0 c p 1 KP w 1 21

22 Dominans U 1 KP U0 KP for alle instanser To relakseringer har samme objektfuktion U 1 KP : T U 0 KP : T Da T T er x 1 x n x 1 x n max x T U 1 KP U0 KP for en instanser n w j x j c 0 x j 1 j 1 n w j x j c 0 x j j 1 f x max x T f x eksemplet: U 0 KP 27 mens U 1 KP

23 Dominans af grænseværdier, traveling salesman Strammere grænseværdi ved at omformulere afstandsmatricen d i j længden af en Hamilton-kreds er uændret 1-træ relakseringen returnerer strammere grænseværdi Vi straffer 1-træer som ikke er en Hamilton-kreds Omformuler afstandsmatrix straf knuder med valens større end 2 beløn knuder med valens mindre end 2 di j d i j v i 2 v j 2 ny grænseværdi ved mindste 1-træ for di j L 2 min TSP di j H E H er et 1-træ i j H 23

24 Dominans af grænseværdier, traveling salesman i j i j L 1 TSP 97 L 2 TSP 97 Man kan gentage iterationsprocessen et antal gange Efterfølgende iterationer L 2 TSP

25 Relaksering Originale problem f x S Nye problem g x T d i j i j H H E H er en Hamilton-kreds H i j H di j Kontrollerer betingelser (i) S T E H er et 1-træ (ii) g x f x for alle x S For enhver Hamilton-kreds H gælder g x i j H d i j i j H d i j v i 2 v j 2 v i 2 v j 2 i j H i j H d i j 2 v i 2 V d i j f x i j H i V i j H 25

26 Dominans L 3 TSP max i 1 k L 2 TSP bedste grænseværdi med k iterationer i L 3 dominerer L 1 da TSP TSP L 3 L 2 for alle instanser TSP TSP første iteration foregår med originale afstandsmatrix L 3 TSP L 2 TSP for en instanser eksemplet 26

27 Kritiske og Semikritiske delproblemer optimeringsproblem z max f x x S forgreningsregel som opdeler S i S 1 S m øvre grænseværdi-funktion U S i Definition 3 Et delproblem S i er kritisk U S i z alle kritiske delproblemer skal behandles Definition 4 Et delproblem S i er semikritisk U S i z Sætning 1 Hvis z er kendt fra starten, vil enhver branchand-bound algoritme kun gennemsøge de kritiske delproblemer (svarende til den valgte forgreningsregel og grænseværdi-funktion). 27

28 Kritiske og Semikritiske delproblemer Sætning 2 Uanset den initielle nedre grænseværdi vil bedste-først søgestrategien kun behandle de semikritiske delproblemer Indirekte bevis Antag bedste-først behandler S i hvor U S i L z på givne tidspunkt Bedste-først søgning: så for alle S j L z U S i U S j for alle S j L U S j U S i z z kan ikke findes i nogen af delløsningsrummene Dvs: Bedste-først søgning sikrer at z bliver fundet inden man betragter delproblemer S i med U S i z. 28

Tirsdag 12. december David Pisinger

Tirsdag 12. december David Pisinger Videregående Algoritmik, DIKU 2006/07 Tirsdag 12. december David Pisinger Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P = {L : L genkendes af en algoritme

Læs mere

Symmetrisk Traveling Salesman Problemet

Symmetrisk Traveling Salesman Problemet Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,

Læs mere

Branch-and-bound. David Pisinger. Videregående algoritmik, DIKU (2007-08) 1 Introduktion 5 1.1 Gennemgående eksempler... 7. 2 Brute-force metoder 10

Branch-and-bound. David Pisinger. Videregående algoritmik, DIKU (2007-08) 1 Introduktion 5 1.1 Gennemgående eksempler... 7. 2 Brute-force metoder 10 Branch-and-bound David Pisinger Videregående algoritmik, DIKU (2007-08) Indhold 1 Introduktion 5 1.1 Gennemgående eksempler..................... 7 2 Brute-force metoder 10 3 Divide and Conquer 11 4 Grænseværdier

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel I dag Løsning af NP -hårde optimeringsproblemer Repetition: branch-and-bound Flere begreber Konkret eksempel: TSP Lagrange relaxering Parallel branch-and-bound 1 Opsummering Løsning af NP -hårde optimeringsproblemer

Læs mere

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Approximations-algoritmer Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Negativt resultat om generel TSP Approximations-algoritme

Læs mere

Branch-and-bound. David Pisinger. Videregående algoritmik, DIKU (2004) 1 Introduktion 5 1.1 Gennemgående eksempler... 7. 2 Brute-force metoder 10

Branch-and-bound. David Pisinger. Videregående algoritmik, DIKU (2004) 1 Introduktion 5 1.1 Gennemgående eksempler... 7. 2 Brute-force metoder 10 Branch-and-bound David Pisinger Videregående algoritmik, DIKU (2004) Indhold 1 Introduktion 5 1.1 Gennemgående eksempler..................... 7 2 Brute-force metoder 10 3 Divide and Conquer 11 4 Grænseværdier

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Symmetrisk traveling salesman problem Dat2A godkendelsesopgave 2

Symmetrisk traveling salesman problem Dat2A godkendelsesopgave 2 Symmetrisk traveling salesman problem Dat2A godkendelsesopgave 2 Jens Kristian Jensen, David Pisinger og Martin Zachariasen 13. april 2003 1 Formalia Dette er den anden af to godkendelsesopgaver på kurset

Læs mere

Sprog L : mængden af instanser for et afgørlighedsproblem

Sprog L : mængden af instanser for et afgørlighedsproblem 26. marts Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P NP L : L genkendes af en algoritme i polynomiel tid L : L verificeres af en polynomiel tids

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 2 Juni 2008, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den Juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

Hamilton-veje og kredse:

Hamilton-veje og kredse: Hamilton-veje og kredse: Definition: En sti x 1, x 2,...,x n i en simpel graf G = (V, E) kaldes en hamiltonvej hvis V = n og x i x j for 1 i < j n. En kreds x 1, x 2,...,x n, x 1 i G kaldes en hamiltonkreds

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer Motivation Definitioner Approximations-algoritme for nudeoverdæning Approximations-algoritme for TSP med treantsulighed Negativt resultat om generel TSP Approximations-algoritme for SET-OVERING Fuldt polynomiel-tids

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Perspektiverende Datalogikursus

Perspektiverende Datalogikursus Perspektiverende Datalogikursus Uge 1 - Algoritmer og kompleksitet Gerth Stølting Brodal 27. august 2004 1 Indhold Mere om Eksempler på beregningsproblemer Algoritmer og deres analyse Korrekthed af algoritmer

Læs mere

DM02 Kogt ned. Kokken. Januar 2006

DM02 Kogt ned. Kokken. Januar 2006 DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

P2-gruppedannelsen for Mat og MatØk

P2-gruppedannelsen for Mat og MatØk Institut for Matematiske Fag Aalborg Universitet Danmark 1-02-2012 Vejledere Bo Hove E-mail: bh@thisted-gymnasium.dk 3 Mat grupper (semesterkoordinator) E-mail: diego@math.aau.dk. Web page: http://people.math.aau.dk/~diego/

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Perspektiverende Datalogikursus

Perspektiverende Datalogikursus Perspektiverende Datalogikursus Uge 1 - Algoritmer og kompleksitet Gerth Stølting Brodal 2. september 2005 1 Afleveringsopgaver... /\.. // \\ / \ / [] \ \\_// / \ / \ []._. ---------------- _ 2 Øvelse

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Tirsdag 18. december David Pisinger

Tirsdag 18. december David Pisinger Videregående Algoritmik, DIKU 00-08 Tirsdag 8. december David Pisinger Approximations-algoritmer Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP trekantsulighed)

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Approksimationsalgoritmer for k-median og facility location problemer, vha. lokalsøgning

Approksimationsalgoritmer for k-median og facility location problemer, vha. lokalsøgning Approksimationsalgoritmer for k-median og facility location problemer, vha. lokalsøgning Peter Neergaard Jensen, Christian Plum & Mette Gamst 8. januar 2006 1 Indledning I forbindelse med kurset Approkismationsalgoritmer,

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ

Læs mere

Perspektiverende Datalogi Klassiske Algoritmer

Perspektiverende Datalogi Klassiske Algoritmer Perspektiverende Datalogi Klassiske Algoritmer Gerth Stølting Brodal 1 Indhold Eksempler på beregningsproblemer Algoritmer og deres analyse Korrekthed af algoritmer Ressourceforbrug for algoritmer Kompleksitet

Læs mere

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 11 Lineær optimering Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 46, 2010 Formålet med MASO Oversigt 1 Generelle lineære programmer 2 Definition Et generelt lineært

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Kvaliteten af grænseværdier for det kvadratiske knapsackproblem. Rune Sandvik, Anders Bo Rasmussen

Kvaliteten af grænseværdier for det kvadratiske knapsackproblem. Rune Sandvik, Anders Bo Rasmussen Kvaliteten af grænseværdier for det kvadratiske knapsackproblem Rune Sandvik, Anders Bo Rasmussen Indhold 1 Indledning 3 11 et kvadratiske knapsackproblem 3 111 Kompleksitet af QK 4 112 Anvendelser 5 113

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed

Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed Videregående algoritmik Cormen et al. 34.1 34.3 Fredag den 12. december

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

Hamiltonkreds, den handelsrejsendes problem, delmængdesum-problemet

Hamiltonkreds, den handelsrejsendes problem, delmængdesum-problemet , den handelsrejsendes problem, delmængdesum-problemet Videregående algoritmik Cormen et al. 34.5.3 34.5.5 Fredag den 19. december 2008 1 N P-fuldstændige problemer 1 N P-fuldstændige problemer 2 Reduktion

Læs mere

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang 16. marts Resume sidste gang Abstrakt problem konkret instans afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret

Læs mere

Logistik og optimering

Logistik og optimering Logistik og optimering JENS LYSGAARD Professor Institut for Økonomi Aarhus Universitet Forskningscentret CORAL v. Institut for Økonomi Logistik og optimering CORAL: Cluster for Operations Research And

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Søgning og Sortering. Philip Bille

Søgning og Sortering. Philip Bille Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 036, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 036. Varighed: timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Algoritmisk geometri

Algoritmisk geometri Algoritmisk geometri 1 Intervalsøgning 2 Motivation for intervaltræer Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Antag, at vi ønsker at

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet Torsdag den 9. august, 202. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede sider med ialt 2 opgaver.

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 10. juni, 2016. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede sider med ialt 16 opgaver. Alle opgaver

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSMEN ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Mandag den. august 07, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

Vægtede grafer. I en vægtet graf har enhver kant tilknyttet en numerisk værdi, kaldet kantens vægt

Vægtede grafer. I en vægtet graf har enhver kant tilknyttet en numerisk værdi, kaldet kantens vægt Korteste veje 1 Vægtede grafer HNL I en vægtet graf har enhver kant tilknyttet en numerisk værdi, kaldet kantens vægt Vægte kan repræsentere afstande, omkostninger, o.s.v. Eksempel: I en flyrutegraf repræsenterer

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Sortering i lineær tid

Sortering i lineær tid Sortering i lineær tid Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel. Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel.

Læs mere

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned.

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. 22 Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. Indsættelse i hobe. Sletning af minimalt element i hobe. Repræsentation. 327

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Perspektiverende Datalogi Klassiske Algoritmer. Gerth Stølting Brodal

Perspektiverende Datalogi Klassiske Algoritmer. Gerth Stølting Brodal Perspektiverende Datalogi Klassiske Algoritmer Gerth Stølting Brodal Ugens Program Mandag 10.15 12.00 Introduktion til Algoritmik Gerth Stølting Brodal Tirsdag 9.15 12.00 Øvelser Open Learning Center 12.15

Læs mere

Kapitel 9: Netværksmodeller

Kapitel 9: Netværksmodeller Kapitel 9: Netværksmodeller Terminologi: Et netværk eller en graf bestar af et sæt punkter samt et sæt linier, der forbinder par af punkter; netværket betegnes som komplet, hvis ethvert par af punkter

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere