Faculty of Health Sciences. Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier
|
|
|
- Johan Stefan Olesen
- 9 år siden
- Visninger:
Transkript
1 Faculty of Health Sciences Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier
2 Forsøgsplanlægning Sammenligning af to grupper : Hvor mange personer skal vi bruge? Det kommer an på hvor store effekter man leder efter hvor sikker man vil være på at finde dem 2 / 32
3 Hypoteseprøvning Et test af en hypotese H 0 kan give to typer af fejl: Type I: Forkaste nulhypotesen selvom den er sand. Type II: Acceptere nulhypotesen selvom den er falsk. Sandsynlighed for type I fejl: α = signifikansniveau. Sandsynligheden for type II fejl: β. 1 β = styrke. Virkelighed Konklusion Hypotese sand Hypotese falsk Accept Korrekt konklusion Type II fejl 1 α β Afvis Type I fejl Korrekt konklusion α 1 β 3 / 32
4 Sammenligning af to grupper Bestemmer antal individer n i hver gruppe. Binær respons: Fastsæt p 1, p 2, α og β. Sæt = p 1 p 2. n = p 1(1 p 1 ) + p 2 (1 p 2 ) 2 f (α, β) Kvantitativ respons: Fastsæt µ 1, µ 2, SD, α og β. Sæt = µ 1 µ 2. n = 2 SD2 f (α, β) 2 Bemærk at vi kan nøjes med at fastsætte isf. µ 1 og µ 2. 4 / 32
5 Hvad bestemmer stikprøvestørrelsen? Ud over signifikansniveauet (α) og styrken (1 β) afhænger den nødvendige stikprøvestørrelse af forskellen mellem grupper ( ) : jo større forskel, jo mindre er det nødvendige antal observationer variationen (SD) : jo større variation, jo større er det nødvendige antal observationer 5 / 32
6 En nyttig tabel Funktionen f (α, β) er en sum af fraktiler, f (α, β) = (z 1 α/2 + z 1 β ) 2 hvor z p er fraktilerne i en normalfordeling, e.g. z = 1.96 etc. Nyttige værdier: β α / 32
7 Eksempel Antag vi vil finde en forskel i blodtryk på 10 ( = 10) for kvinder randomiseret til placebo / behandling. Vi vil være 90% sikre på at finde forskellen (1 β = 0.90) når vi tester på et 5% s-niveau (α = 0.05). I Framingham data er spredningen på SBP lig 25 (SD=25). Indsæt i formel n = 2 f (0.05, 0.10) ( = )2 Det vil sige at vi skal bruge kvinder i hver gruppe. 7 / 32
8 Styrkeberegninger i SAS I SAS kan styrkeberegninger udføres vha. proc power. Sammenligning af to grupper med binær respons: proc power; twosamplefreq test=pchi groupproportions= alpha=0.05 power=0.9 npergroup=.; run; Sammenligning af to grupper med kvantitativ respons: proc power; twosamplemeans test=diff meandiff=10 stddev=25 alpha=0.05 power=0.9 npergroup=.; run; proc power er meget fleksibel idet proceduren også kan benyttes til regressionsanalyse, levetidsdata, tillader forskellige gruppestørrelser,... 8 / 32
9 Grupper af forskellig størrelse Hvis grupperne ikke skal have samme størrelse kan det totale antal bestemmes ved følgende fremgangsmåde: 1) beregn først N = 2n som hvis grupperne skulle være lige store 2) beregn dernæst k = n 1 /n 2 som forholdet mellem gruppestørrelserne 3) beregn endelig det totale antal observationer som N = N (1+k)2 4k. Eksempel: Hvis, i eksemplet ovenfor, vi vil have gruppe 1 dobbelt så stor som gruppe 2: 9 / 32 1) N = = 264 2) k = 2 3) N = N (1+k)2 4k = = 297, dvs. n 1 = 198 og n 2 = 99.
10 Levetidsdata Responsvariablen er en levetid, dvs. tid til en hændelse indtræffer Tid fra exposure til sygdom Tid fra start behandling til recidiv (eller død) Tid fra tandfyldning til fyldningen falder ud Levetidsdata er specielt ved at være skævt mod højre ufuldstændigt observeret: Censurering 10 / 32
11 Censurering Højre censurering hvor kun den nedre grænse for levetiden er kendt er hyppigst forekommende pga at : - studietiden udløber - individet udgår af studiet (loss to follow up) 0 Slut studie Standardmetoder for kvantitative data kan derfor ikke benyttes. I stedet fokuserer man på overlevelsesfunktionen Prob(Survival Time > t) som estimeres ved den ikke-parametriske Kaplan-Meier-estimator. 11 / 32
12 Remissionstid for patienter med akut leukæmi 42 patienter med akut leukæmi i randomiseret til: 1) Behandling: 21 patienter, 9 tilbagefald: Tid (uger) 2) Placebo: 21 patienter, 21 tilbagefald: Tid (uger) 12 / 32
13 Datasættet Første 7 observationer: log Obs time event female WBC treatment Responsen består af tid (time) og en event-indikator (event) (0/1). 13 / 32
14 Kaplan-Meier overlevelseskurver Placebo Treatment Time (weeks) 14 / 32
15 Ikke-parametrisk overlevelsesanalyse i SAS Kaplan-Meier-estimatoren og log-rank-testet findes vha. proc lifetest: proc lifetest data=remission; time weeks*event(0); strata placebo; run; 15 / 32
16 Hazardfunktionen Hazardfunktionen (eller hazard raten / intensitet): λ(t) P(t T < t + h T t) h hvor sandsynligheden i tælleren læses: Den betingede sandsynlighed for at dø i det næste lille tidsinterval (t + h) givet i live ved begyndelsen af intervallet (t). 0 t t + h Hazardfunktion giver en lokal beskrivelse af risikoen for død. 16 / 32
17 Cox-modellen Cox modellen specificerer hazarden for individ i ved λ i (t) = λ 0 (t) exp(b treatment i ) hvor treatment = 0/1 er indikator for behandling. Dvs modellen er λ i (t) = { λ0 (t) exp(b) i fik behandling λ 0 (t) i fik placebo Hazard ratio for behandling vs placebo HR = λ 0(t) exp(b) λ 0 (t) = exp(b) 17 / 32
18 Eksempel på hazardkurve og HR er Børn med Akut Lymfoblastær Leukæmi i vedligeholdelsesbehandling diagnosticeret (Schmiegelow et al., JCO 2003). Hazard for intermediær risikogruppe, tid til recidiv: hazard rate HR=2 HR=0.5 HR=3 Baseline hazard / 32 Years since cessation of therapy
19 Den multiple Cox regressions model Vi kan inkludere kategoriske forklarende variable (køn) kvantitative forklarende variable (logwbc) og teste for linearitet ved kvadratledstest interaktioner i den multiple Cox model λ i (t) = λ 0 (t) exp(b treatment i + c logwbc i + d female i ). og får justeret HR for behandlingseffekten HR = λ 0(t) exp(b + c logwbc + d) λ 0 (t) exp(c logwbc + d) = exp(b) hvis vi sammenligner to kvinder med samme WBC, den ene behandlet, den anden placebo. 19 / 32
20 Matchning Matchning er en design metode til at justere for confounding og / eller øge efficiens. Eksempel: BCG vaccine og leprosy (spedalskhed). Eksponeringen (vaccine) bedømt ved tilstedeværelse af ar. BCG Leprosy Rask population Ar Intet ar OR = 0.48 (0.37, 0.61) 20 / 32
21 Reduktion af antal kontroller Vi udvælger 1040 (4 260) tilfældige kontroller blandt den raske population: BCG Leprosy Kontrol Ar Intet ar OR = 0.52 (0.40, 0.69) Bemærk at præcisionen ikke bliver væsentligt dårligere af at vi reducerer antalet af kontroller. 21 / 32
22 Stratificering på alder Rask Odds Leprosy population ratio BCG + + estimat Alder Total OR MH = 0.59 (0.45, 0.77) 22 / 32
23 Aldersstratifikation med reduceret antal kontroller Leprosy Kontrol BCG + + Alder OR MH = 0.60 (0.44, 0.81) Her er nogle af kontrollerne spildte : Der er langt flere kontroller per case for de yngste. 23 / 32
24 Matchning på alder Ved at matche på alder bliver aldersfordelingen identisk for cases og kontroller. Her er valgt 4 kontroller per case fra samme aldersgruppe: Cases Controls BCG + + Age OR MH = 0.57 (0.42, 0.77). Bemærk at konfidensintervallet er (lidt) smallere idet (frekvens) matchningen bruger kontrollerne mere effektivt. 24 / 32
25 Logistisk regression I det oprindelige studie fås forskelle i log-odds: OR= exp( 0.547) = Parameter Estimate SE Intercept Age Age Age Age Age Age BCG / 32
26 Logistic regression i matchede data Her får man Parameter Estimate SE Intercept Age Age Age Age Age Age BCG OR= exp( 0.572) = NB: Besynderlig alderseffekt! Det skyldes at vi ikke kan estimere alderseffekten når vi har matchet på alder (aldersfordelingen er den samme hos cases og kontroller). 26 / 32
27 Justering for match-variablen Hvorfor ikke udelade alder helt af analysen? Cases Controls Odds Stratum + + ratio Total Justér ALTID for alder i en case-kontrol analyse i et alders-matched design. Ved at ignorere match-variablen opnås en bias mod / 32
28 Individuel matchning Hver kontrol (eller flere kontroller) matches til en specifik case. Eksempler: familie, skole, naboområde, kalenderår,... Det simpleste tilfælde opnås ved 1:1 matchning (matched pairs). Eksempel fra McNeil (p. 238): Cases: 223 kvinder med for tidlig fødsel Kontroller: 223 kvinder med fuldbåren fødsel på det samme hospital i Thailand i samme perode ( ), matched på alder og paritet. Eksponering: Overvejende arbejdsform i løbet af første trimester (stående vs ikke-stående). 28 / 32
29 Data For disse data er der fire mulige kombinationer for hvert par Kontrol Case stående ikke-stående Stående Ikke-stående 14 1 NB: Tabellen består af 223 par og ikke af 446 kvinder. 29 / 32
30 De fire muligheder for hvert par Konkordante par (strata) Case Control Case Control +Exp Exp Diskordante par (strata) Case Control Case Control +Exp Exp / 32
31 Analyse af matched case-kontrol studier I en Mantel-Haenszel-analyse stratificeret på par bidrager kun de diskordante par: MH-test bliver OR MH = = 2.21, 1 SE(ln(OR MH )) = X 2 MH = (31 14) = 6.42, P = og er også kendt som McNemar s test. Almindelig (unconditional) logistisk regression kan ikke benyttes for individuelt matchede case-control-studier. I stedet skal man benytte betinget (conditional) logistisk 31 / 32 regression.
32 Fordele og ulemper ved matchning Fordele intuitivt simpelt vi kan klare os med færre individer Ulemper vi kan ikke estimere effekten af match-variablene komplicerer analysen - der skal justeres for matchvariablene risiko for over-matchning hvis eksponering er stærkt relateret til en matchvariabel (e.g. matchning på familie i ernæringsmæssig epidemiologi). 32 / 32
Dag 6: Interaktion. Overlevelsesanalyse
Dag 6: Interaktion. Overlevelsesanalyse How does CHD depend on gender and hypertension? Males: hypertension chd01 Females: Frequency Row Pct 0 1 Total ---------+--------+--------+ 0 352 95 447 78.75 21.25
Faculty of Health Sciences. Styrkeberegninger Poisson regression Overlevelsesanalyse
Faculty of Health Sciences Styrkeberegninger Poisson regression Overlevelsesanalyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Forsøgsplanlægning
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected]
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Kursushjemmeside:
Overlevelsesanalyse. Faculty of Health Sciences
Faculty of Health Sciences Overlevelsesanalyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Program Overlevelsesdata Kaplan-Meier estimatoren
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression III Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Kursushjemmeside:
Morten Frydenberg Biostatistik version dato:
Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
MPH specialmodul Epidemiologi og Biostatistik
MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mantel-Haenszel analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Mantel-Haenszel analyser Mantel-Haenszel analyser Sidst lærte vi om stratificerede analyser. I dag kigger vi på et specialtilfælde: både exposure
Præcision og effektivitet (efficiency)?
Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
Analyse af binære responsvariable
Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
Morten Frydenberg Biostatistik version dato:
Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,
Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)
Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up
Besvarelse af opgavesættet ved Reeksamen forår 2008
Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Dynamisk statistisk modellering af vedligeholdelsesbehandling af børn med akut lymfoblastær leukæmi
Dynamisk statistisk modellering af vedligeholdelsesbehandling af børn med akut lymfoblastær leukæmi Susanne Rosthøj 2. oktober 2009 Akut Lymfoblastær Leukæmi (ALL) Årlig forekomst på ca 35 tilfælde i Danmark.
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
Forsøgsplanlægning Stikprøvestørrelse
Basal statistik Esben Budtz-Jørgensen 8. november 2011 Videnskabelig hypotese Planlægning af et studie Endpoints Forsøgsplanlægning Stikprøvestørrelse 1 51 Instrumentelle/eksponerings variable Variationskilder
OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model
Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere
Epidemiologi og biostatistik. Uge 5, torsdag 5. september 003 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion
. februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Logistisk regression
Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede
Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008
Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
Overlevelsesfunktion. Vi kalder S(t) for overlevelsesfunktionen.
1 Levetidsanalyse Overlevelsesfunktionen Censurering Kaplan-Meier estimatoren Hazard funktionen Proportionale hazards Multipel regression PSE (I17) FSV1 Statistik - 5. lektion 1 / 19 Overlevelsesfunktionen
Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.
Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i
Postoperative komplikationer
Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
Logistisk regression
Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Vejledende løsninger kapitel 8 opgaver
KAPITEL 8 OPGAVE 1 Nej den kan også være over 1 OPGAVE 2 Stikprøvestørrelse 10 Stikprøvegennemsnit 1,18 Stikprøvespredning 0,388158 Konfidensniveau 0,95 Nedre grænse 0,902328 Øvre grænse 1,457672 Stikprøvestørrelse
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Epidemiologi og Biostatistik. Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002
Epidemiologi og Biostatistik Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002 1 Statestik Det hedder det ikke! Statistik 2 Streptomycin til behandling af lunge-tuberkulose?
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester
D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N REEKSAMEN I EPIDEMIOLOGISKE METODER IT
Regressionsanalyser. Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer.
Regressionsanalyser Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer. Hvilke faglige problemer kan man løse vha. regressionsanalyser? 1 Regressionsanalyser Det primære problem
Logistisk regression. Statistik Kandidatuddannelsen i Folkesundhedsvidenskab
Logistis regression Statisti Kandidatuddannelsen i Folesundhedsvidensab Multipel logistis regression Antagelser: Binære observationer (Y i, i=,.,n) f.es Ja/Nej Høj/Lav Død/Levende Kodet: / 0 Y i uafhængige
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,
Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Basal Statistik Kategoriske Data
Basal Statistik Kategoriske Data 8 oktober 2013 E 2013 Basal Statistik - Kategoriske data Michael Gamborg Institut for sygdomsforebyggelse Københavns Universitetshospital [email protected]
Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher
Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf
Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser
Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp
Løsning til opgave i logistisk regression
Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator
Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.
1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
Faculty of Health Sciences. Basal Statistik. Overlevelsesanalyse. Lene Theil Skovgaard. 12. marts 2018
Faculty of Health Sciences Basal Statistik Overlevelsesanalyse Lene Theil Skovgaard 12. marts 2018 1 / 12 APPENDIX vedr. SPSS svarende til diverse slides: Kaplan-Meier kurver, s. 3 Kumulerede incidenser
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression II Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Kursushjemmeside:
6. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag)
Institut for Epidemiologi og Socialmedicin Institut for Biostatistik. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag) Opgave 1 Læs afsnit.1 i An Introduction to Medical Statistics, specielt
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
Logistisk regression
Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] 21. marts 2013 Dagens program Chi-i-anden (χ 2 )-testet Sandsynligheder,
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet
Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm
Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation
MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.
MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene
En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl
Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt
2 Logaritme- og eksponentialfunktion 6
Indhold 1 Kontingenstabeller 2 1.1 Krydstabeller....................................... 2 1.2 Forventede under nulhypotesen............................. 4 1.3 Ki-kvadrat test......................................
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ
Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Vurdering af epidemiologiske undersøgelser. Epidemiologisk forskning
Vurdering af epidemiologiske undersøgelser Epidemiologisk forskning Mogens Vestergaard Institut for Epidemiologi og Socialmedicin Aarhus Universitet [email protected] At belyse en videnskabelig hypotese ved
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Statistik II 1. Lektion. Analyse af kontingenstabeller
Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression
c) For, er, hvorefter. Forklar.
1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:
Løsning til øvelsesopgaver dag 4 spg 5-9
Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
