24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion
|
|
|
- Rudolf Jakobsen
- 9 år siden
- Visninger:
Transkript
1 . februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet Parret data (symmetrisk fordeling): Wilcoxon signed rank Association: Test baseret på Spearman s rang korrelation 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Cox proportional hazard model Det statistiske modelbegreb Modelselektion Ikke-parametrisk statistiske test Ikke-parametriske test (ordinale data) Hidtil (parametrisk statistik): Ukendt størrelse (parameter) OR, middelfødselsvægt eller lign. Estimat og standard error. Sikkerhedsinterval. Hypotese (fx OR=1). Test baseret på z = (estimat-hypotese)/se. Resultaterne bygger på en statistisk model. Baseres ikke på et parameter estimat. Men ofte på de rangordnede data. Bygger også på statistiske modeller. Men der er svagere antagelser bag dem. Ofte rang-test: De præcise observationsværdier har ingen betydning. Men det har rangene: Hvilken observation er mindst Rang=1 Hvilken observation er næstmindst Rang= Hvilken observation er trediemindst Rang= osv Et eksempel på Mann-Whitney-Wilcoxon test Table 1. Biceps skinfold thickness (mm) Crohn s Disease Coeliac Disease TYPE Coeliac RANGE Crohn s Disease Coeliac Disease Gennemsnitsrang: Vi ønsker at teste hypotesen: Ingen forskel i skinfold. Idé: Sammenlign gennemsnitsrangen blandt Coeliac patienter med gennemsnitsrangen blandt Crohn patienter. En stor forskel vil være kritisk for hypotesen. 0 SKINFOLD Crohn 1 Er der forskel? P-værdi = sandsynligheden for at observere en større forskel under antagelse af hypotesen er sand! 1
2 . februar 00 Beregning ved hjælp af computer eller tabel. p-værdi=0.1. Konklusion: Data strider ikke mod hypotesen. Hypotesen kan accepteres! Præcist samme test hvis vi regnede på ln-data. Eller kvadratroden af data. Eller en hvilken som helst monoton transformation. Kun rangordningen betyder noget. Testet hedder Mann-Whitney U-test eller Wilcoxon two-sample test. Generelt: Mann-Whitney U-test ækvivalent med Wilcoxon two sample test Data: To uafhængige sæt (ordinale) observationer. Hypotese: De to fordelinger er ens. Alternativ: De to fordelinger er forskudt i forhold til hinanden. Ide: Hvis alternativet er sandt vil gennemsnitsrangen være forskellig i de to grupper. Hvis hypotesen er sand så vil gennemsnitsrangene være næsten ens. P-værdi vha. af computer eller tabel. Et eksempel på signed Wilcoxon test En stikprøve eller parrede data Del af Table. Capillary density (per mm ) in feet of ulcerated patients. Differens mellem værste og bedste fod. Obs Obs Rang Sum af range: 1 Hypotese: Ingen forskel mellem de to fødder, mao. positive og negative differenser har ens fordelinger. Idé: Se på forskellen i sum af rangene af de positive og negative differenser. : Rangene beregnes uden fortegn. P-værdi = sandsynligheden for at observere en større forskel under antagelse af hypotesen er sand! 9 Beregning ved hjælp af computer eller tabel. p-værdi=0.. Konklusion: Data strider ikke mod hypotesen. Hypotesen kan accepteres! Ikke samme test hvis vi transformerede data inden vi beregnede differensen. Fx et andet resultat hvis vi så på relative forskelle. Testet hedder Wilxocon signed-rank test. Generelt: Wilcoxon signed rank test. Data: Et sæt uafhængige observationer. 11 Et eksempel på test for ingen sammenhæng Table 1. Incidens af Kaposi's sarcoma i Tanzania 1 Hypotese: Fordelingen er symmetrisk om 0. Alternativ: Fordelingen er ikke symmetrisk om 0. Ide: Hvis alternativet er sandt vil rangsummene for de positive og negative tal være forskellige. Hvis hypotesen er sand så vil rangsummene være næsten ens. P-værdi vha. af computer eller tabel. Bruges ofte ved parrede data - der regnes på differensen! Incidens per mio år % befolkning indenfor km fra sundhedscenter Er der en sammenhæng/association?
3 . februar 00 Forudsætninger for lineær regression ikke opfyldt! (Derfor) beregning af Pearson korrelation uden mening. Hvad så! Kan vi nøjes med et test? Til en start: Ja!? Hypotese (som sædvanlig): Ingen sammenhæng. Idé: Rangordne x erne samt y erne og beregn korrelation mellem rangene. Korrelation langt væk fra 0 kritisk. P-værdi = sandsynligheden for at observere en korrelation længere væk fra 0 under antagelse af hypotesen er sand! 1 1 Beregning ved hjælp af computer eller tabel. Korrelation mellem rangene =0.. p-værdi=0.1 Konklusion: Data strider ikke mod hypotesen. Hypotesen kan accepteres! Præcist samme test hvis vi regnede på ln(x) og y. Eller ln(x) og y. Eller en hvilkensomhelst monoton transformation. Kun rangordningerne betyder noget. Testet hedder Spearman s rang korrelation Spearmans rho (ρ) Incidens per mio år Incidens af Kaposi's sarcoma i Tanzania % befolkning indenfor km fra sundhedscenter Generelt: Test for ingen association baseret på Spearman s korrelation Data: Uafhængige par (x,y) af observationer. Hypotese: Ingen association mellem x og y. Alternativ: Monoton association. Ide: Hvis alternativet er sandt vil rangene af x erne være korrelerede med rangene af y erne. Spearman s korrelation beregnes. Hvis hypotesen er sand så vil denne korrelation være tæt på 0. 1 y Pearson og Spearman korrelationer Eksempel x Pearson 0.1 Spearman P-værdi vha. af computer eller tabel. Spearman s korrelation er ikke mulig at fortolke! Men testet er godt nok! Pearson og Spearman korrelationer 1 Pearson og Spearman korrelationer 1 y Eksempel Pearson 0. Spearman 0.0 y Eksempel Pearson 0. Spearman x Pearsons korrelationskoefficient er meget følsom overfor outliers. (i tvivl brug Spearmans ) x Lav altid en tegning før Pearsons korrelationskoefficient findes! Det kan være at den er meningsløs eller misvisende! Når man læser artikler: Overvej om forfatterne ved hvad de gør!
4 . februar 00 For: Ikke parametrisk test: Godt eller skidt?? Svage antagelser. Kan også bruges på ordinal data som meget godt; godt; rimeligt; dårligt; meget dårligt CIN 1;CIN ; CIN ; Cancer. Stort set lige så stærke som parametriske test (gælder dog ikke hvis man har få data). Imod: Der er tale om test, ingen estimater med CI. Bruges ofte bevidstløst (svage antagelser=ingen antagelser). Kan kun bruges til simple problemstillinger. 19 Overlevelses (ventetids) data Data der involverer ventetider: Tid til død af kræft efter kræft diagnose. Ventetid til operation. Tid mellem galdestensoperation og fund af ny galdesten. Sådanne data er ofte censurere: Personerne dør af anden årsag end kræft. Personerne er i live da studiet slutter. Den opererede får ikke galdesten inden studiet slutter. Den opererede flytter til et andet amt/land. =Højre censurering: Vi ved hvornår personen sidst var rask/i live 0 Ventetids data kan således være: Højre censureret: Vi ved, at personen ikke har oplevet begivenheden før sidste gang vi ser ham. Men kan også være: Venstre censureret: Vi ved, at personen har oplevet begivenheden inden vi ser ham første gang, men ikke hvornår. Interval censureret: Vi ved, at personen har oplevet begivenheden i givet tidsinterval, men ikke hvornår. Data er ofte interval censurerede: Vi ved, patienten var rask ved forrige kontrol, men nu er han syg. Vi ved ikke, hvornår han blev det. Interval censurerede data er svære at analysere. 1 Der kan også være andre problemer med data: Vi ved ikke om personen har oplevet begivenheden inden vi ser ham første gang. Vi ved ikke om personen har oplevet begivenheden i et givet tidsinterval. Patienter var rask ved forrige kontrol og er det også nu. Har han været syg i mellemtiden? Personer indgår kun hvis de har overlevet. Det er kun højre censurede data, der er let at analysere! Metoderne er: Kaplan-Meyer plot: Metode til at beregne/tegne ventetidsfordelingen under hensyntagen til højre censureringen. Log-rank test: Tester hypotesen: Samme ventetidsfordeling i to grupper. Cox s proportional hazard model: Regressions analyse af ventetids data. Modellerer den relative risiko på log skala. Minder meget om logistisk regression. Intet relaps Table 1.9 Kaplan-Meier survival estimate Kaplan Meyer overlevelseskurve % galdestensfrie efter ca år Tid siden operation
5 . februar 00 Relaps Kaplan-Meier survival estimate En anden akse (1- overlevelse ), her andel af nye tilfælde. Kaplan Meyer overlevelseskurve % har igen galdesten efter ca år Tid siden operation Intet relaps Kaplan-Meier survival estimates, by type Log rank test: p=0.009 Der forskel på ventetiden! Det går hurtigere hos de multiple. type = enkelt type = multipel Tid siden operation Kurverne meget usikre efter 0-0 mdr. Definitioner og sammenhænge: S( t ) = Overlevelse/Survival funktion h(t): hazard/intensitet til tidspunktet t. sands. for at 'dø'inden t + t givet man er i live til tid t h( t) = t ( 0 ) t S ( t ) = exp h( u) du Man kan udvide sin model til at tage hensyn til flere ting på en gang (som multipel/logistisk regression). En metode er Cox proportional hazard model ( ) = 0 ( ) exp( β1 1 + β + + β p p ) h t h t x x x eller ln[ h( t) ] = ln[ h ( t )] + β x + β x + + β x intet konstantled (α) men i stedet kurven ln[h 0 (t)]. (x 1, x,..., x p ) i formlen er enten kodet (0/1) fra dichotome kategoriske variable eller kontinuerte variable (vægt, bmi osv.); dette gælder også i multipel- og logistisk regression. p p h 0 (t) er baseline hazard svarerende til hazardkurven for en person med alle x er lig 0. Harzard kurven for en vilkårlig person er h 0 ganget med exp(β 1 x 1 + β x β p x p ) Sammenligner man to personer der er ens mht ( x,..., x p ) og med en forskel på 1 i x 1 er h (t)/h 0 (t) = exp(β 1 ) hazard ratio, uafhængig af t! Dvs. konstant relativ risiko. Cox s proportional hazard model minder meget om logistisk regression. 9 Tid mellem galdestensoperation og næste galdesten (table 1.1) Prediktorer: Flere galdesten fjernet Diameter af største galdesten Den tid det tog at opløse galdesten(ene) i mdr. Variable B S.E. Exp(B) Flere sten Diameter Opløsningstid Risikoen er. gange større, når flere sten er fjernet. Risikoen stiger med % per måned det tog at opløse stenene. 0
6 . februar 00 Bag alle beregninger af: Statistiske modeller Estimater, se, sikkerhedsintervaller, test og p-værdier ligger en statistisk model. Modellen er en approksimation til virkeligheden. Valget af model er et valg mellem: kompliceret model ofte god approksimation simpel model ofte dårlig approksimation kompliceret model svær at forstå og analysere simpel model let at forstå og analysere En model skal vælges så kompliceret, at den ikke er helt forkert og så simpel, at den er til at analysere og forstå. 1 Modellen er typisk baseret på antagelser, så som: de enkelte observationer er uafhængige. målefejlen er normalfordelt. variationen mellem individer er normalfordelte. Ln(odds) kan skrives som en sum af forskellige bidrag. bidraget fra alder afhænger ikke af personens køn. (ingen effektmodifikation) OR stiger eksponentielt med forskellen i BMI. Hvis antagelserne ikke er (næsten) rigtige bliver resultaterne værdiløse. Derfor bør al statistisk analyse inkludere modelkontrol. Modelselektion Ofte er den model man får præsenteret i en artikel ikke den eneste forfatterne har fittet til data. Man får kun præsenteret den bedste. Modellen er selekteret (udvalgt). Bevidst eller ubevidst. Manuelt eller automatisk (PC: Find den bedste model!). Modelselektion har (desværre) betydning for resulterne: Estimaterne er typisk for store (for langt væk fra nul). Sikkerhedsintervallerne for smalle. P-værdierne for små.
OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere
Epidemiologi og biostatistik. Uge 5, torsdag 5. september 003 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver
OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model
Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske
Statistik kommandoer i Stata opdateret 22/ Erik Parner
Statistik kommandoer i Stata opdateret 22/4 2008 Erik Parner Indledning... 1 Simple beskrivelser... 1 Data manipulation... 1 Estimation af proportioner... 2 Estimation af rater... 2 Estimation af Relativ
Morten Frydenberg Biostatistik version dato:
Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april
Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et
Overlevelsesfunktion. Vi kalder S(t) for overlevelsesfunktionen.
1 Levetidsanalyse Overlevelsesfunktionen Censurering Kaplan-Meier estimatoren Hazard funktionen Proportionale hazards Multipel regression PSE (I17) FSV1 Statistik - 5. lektion 1 / 19 Overlevelsesfunktionen
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
MPH specialmodul Epidemiologi og Biostatistik
MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation
Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)
Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
1. februar Lungefunktions data fra tirsdags Gennemsnit l/min
Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected]
Epidemiologi og Biostatistik
Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Dag 6: Interaktion. Overlevelsesanalyse
Dag 6: Interaktion. Overlevelsesanalyse How does CHD depend on gender and hypertension? Males: hypertension chd01 Females: Frequency Row Pct 0 1 Total ---------+--------+--------+ 0 352 95 447 78.75 21.25
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Modul 12: Regression og korrelation
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Epidemiologi og Biostatistik
Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.
Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i
Morten Frydenberg Biostatistik version dato:
Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Korrelation Pearson korrelationen
-9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Basal statistik. 30. januar 2007
Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1
Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger
Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: [email protected] I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt
Kapitel 7 Forskelle mellem centraltendenser
Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts
Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Ikke-parametriske tests
Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Regressionsanalyser. Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer.
Regressionsanalyser Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer. Hvilke faglige problemer kan man løse vha. regressionsanalyser? 1 Regressionsanalyser Det primære problem
Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet
Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev
Overlevelsesanalyse. Faculty of Health Sciences
Faculty of Health Sciences Overlevelsesanalyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Program Overlevelsesdata Kaplan-Meier estimatoren
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Faculty of Health Sciences. Basal Statistik. Overlevelsesanalyse. Lene Theil Skovgaard. 12. marts 2018
Faculty of Health Sciences Basal Statistik Overlevelsesanalyse Lene Theil Skovgaard 12. marts 2018 1 / 12 APPENDIX vedr. SPSS svarende til diverse slides: Kaplan-Meier kurver, s. 3 Kumulerede incidenser
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.
Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
Kapitel 11 Lineær regression
Kapitel 11 Lineær regression Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 1 Indledning Vi modellerer en afhængig variabel (responset) på baggrund af en uafhængig variabel (stimulus),
Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.
Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes
Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser
Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mantel-Haenszel analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Mantel-Haenszel analyser Mantel-Haenszel analyser Sidst lærte vi om stratificerede analyser. I dag kigger vi på et specialtilfælde: både exposure
Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test
Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test Formålet med øvelsen er at analysere risikoen for død forbundet med forskelligt alkoholforbrug. I denne øvelse skal analyserne foretages
Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.
Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
6. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag)
Institut for Epidemiologi og Socialmedicin Institut for Biostatistik. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag) Opgave 1 Læs afsnit.1 i An Introduction to Medical Statistics, specielt
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j
Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Kursushjemmeside:
Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning
1 Multipel regressions model Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning PSE (I17) ASTA - 11. lektion
Kapitel 10 Simpel korrelation
Kapitel 10 Simpel korrelation Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Pearsons r 3 Spearmans ρ 1 Indledning 2 Pearsons r 3 Spearmans ρ Indledning Korrelation
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Seniorkursus i Biostatistik og Stata, Dag 2
SENIORKURSUS STATA OG BIOSTATISTIK Aarhus Universitet juni DAGENS TEMA: SAMMENLIGNINGER FORMIDDAG: KONTINUERTE DATA EFTERMIDDAG: KATEGORISKE DATA STATISTISK ANALYSE AF TO UAFHÆNGIGE STIKPRØVER FRA NORMALFORDELTE
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts
Århus 19. marts 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts Epibasic er nu opdateret til version 2.04 med arkene Str any og weighted Alle tabeller og tegninger
Statistik II 1. Lektion. Analyse af kontingenstabeller
Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
