Maja Tarp AARHUS UNIVERSITET
|
|
|
- August Torp
- 9 år siden
- Visninger:
Transkript
1 AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET
2 HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjylland Student år 005 fra Dronninglund Gymnasium Efter gymnasiet: Militæret Australien Startede på matematik på Aarhus Universitet i 007 Sommeren 00: BSc i matematik Nu: Stud.cand.scient i statistik
3 STUDIERNES OPBYGNING Her er jeg
4 HVORDAN SER EN UGE UD?
5 JOBMULIGHEDER Private erhvervsliv et hav af muligheder: Handel Banker Konsulent- og rådgivningsvirksomhed Medicinalindustri Sundhed Forskning: Universiteter Interesseorganisationer Private virksomheder Undervisning: Gymnasier Handelsskoler Seminarer Ikke Gallup!
6 Hvorfor statistik? Kan forudsige fremtiden Kan bruges som beslutningsgrundlag: Politik Aktiekurser Medicinske forsøg Risikovurdering Spilteori
7 Statistik og virkeligheden I perioden faldt antallet af fødsler samtidig med at antallet af storkepar i Danmark faldt. Klar sammenhæng mellem drukneulykker og issalg! Når der sælges mange is, er der mange der drukner! Bør der investeres mere i rynkecreme? Der er en overdødelighed blandt folk med rynker!
8 Normalfordeling
9 Normalfordeling Måske den vigtigste fordeling overhovedet. Har toppunkt i sin middelværdi, og er symmetrisk fordelt her omkring. Model for hvordan et stort antal statistiske elementer fordeler sig omkring deres middelværdi.
10 Eksempler Højde, vægt Kvalitetstest Blodtryksændring IQ
11 En normalfordelt observation Vi vil nu betragte normalfordelt data. Dvs. data, som er nf ( µ ; σ) Hvor µ er middelværdien og σ er standardafvigelsen.
12 En normalfordelt observation Vi betragter altså nf ( µ ; σ ) x Vi beregner ofte som er det bedste gæt på den sande værdi af. µ Og som er det bedste gæt man kan komme på den sande værdi af. s σ
13 Normalfordelingen, grafisk Den normerede normalfordeling, dvs. nf(0;) Grafen viser tæthedsfunktionen. Areal
14 Normalfordelingen, grafisk En tilsvarende graf kan laves for enhver normalfordeling, nf( µ ; σ) Samme form som før, blot anden placering. Arealet stadig.
15 Fordelingsfunktionen Fordelingsfunktionen Φ(x) angiver sandsynligheden for, at X er mindre end et tal x, dvs Φ(x) Sandsynlighed for at x Dvs. at Φ(x) er en voksende funktion, med værdier mellem 0 og.
16 Eksempler: Fordelingsfunktionen Vi betragter altså hvor middelværdien er 30 og spredningen 4. Bestem fordelingsfunktinen. Dvs. find sandsynligheden for at x To metoder: Bestem sandsynligheden som arealet under grafen for tæthedsfunktionen fra - til 33. nf (30;4) Bestem fordelingsfunktionens værdi i 33.
17 Eksempler: Fordelingsfunktionen Bestem sandsynligheden som arealet under grafen for tæthedsfunktionen fra - til 33.
18 Eksempler: Fordelingsfunktionen Bestem fordelingsfunktionens værdi i 33.
19 Eksempler: Fordelingsfunktionen Eksempel : Intelligenskvotient scorer nf(00,5) regn selv
20 Eksempler: Fordelingsfunktionen Eksempel : En maskine på en fabrik nf(0, 0.) regn selv
21 Eksempel: Fluer og gift 6 fluer udsættes for nervegift, der måles hvor lang tid der går, før fluerne besvimer.
22 Flue nummer i Φ^(-) ((i-0.5)/6) Ln(tid) Tid
23 N(0,)-fraktil tid Hvis vores målinger er normalfordelte forventer vi at kunne indtegne dem som en ret linje i fraktilplottet. Dette er ikke tilfældet, men målingerne ser ud til at de kunne være logaritme fordelt. Derfor tages logaritmen til tiden og vi indtegner igen.
24 N(0,)-fraktil Målingerne ligger om en pæn ret linje, hvorfor vi kan antage, at logaritmen til tiden er normalfordelt. Dvs. vi betragter modellen: nf lntid ( µ ; σ )
25 Vi beregner efterfølgende skøn for standardafvigelsen og middelværdien vha. formlerne:.05 ) (4.6 5 ) ( )....6 ( n S USS n s x x x USS S n x x x x S
26 Eksempel: Læseevner Der betragtes to 3. klasser. Den ene klasse modtager ekstra læsetræning, mens den anden klasse er en kontrolklasse med almindelig læseundervisning. Efter 8 uger får eleverne en læsetest. Klasse Træning Testresultat Kontrol
27 Læseevner Fraktilplots viser at målinger i hver klasse kan beskrives med en normalfordeling, dvs:. Klasse Klasse træning kontrol følger en følger en nf nf ( µ ( µ træning kontrol ; σ ; σ træning kontrol ) ) Vi ønsker nu at finde estimater for middelværdi og standardafvigelse i hver af de to klasser.
28 Først beregnes: ) ( ) ( x x USS x x USS x x S x x S kontrol træning kontrol træning
29 Kontrol Træning USS S n Klasse 7. ) (463 ) ( 0 ) 08 ( ) ( n S USS n s n S USS n s S n x S n x kontrol træning kontrol træning
30 Vi ønsker nu at teste hypotesen H :σ σ træning kontrol altså et test for samme standardafvigelse i de to klasser. Dette gøres ved teststørrelsen: F P obs s s træning kontrol 0 7. ( x) ( F F( f 0.4, )( )) ( (0,)(0.4)) f F F F Hvor vi finder FF(0,) findes ved fcdf(-,0.4, 0, )0.05
31 Da p-værdien er større end 5 % accepterer vi hypotesen, dvs vi har modellen: Klasse Klasse træning kontrol følger en følger en nf nf ( µ ( µ træning kontrol Den fælles standardafvigelse kan estimeres ved: ; σ) ; σ) s f træning s f træning træning f f kontrol kontrol s kontrol
32 Vi ønsker nu at teste hypotesen H : µ µ træning kontrol altså et test for samme middelværdi i de to klasser. Dvs. et test for om den ekstra læsetræning har en effekt.
33 Dette gøres ved teststørrelsen: t( x) s x træning ( n træning x kontrol n kontrol ) ( 4.5 ) 3.7 P obs ( x) ( F t( f ) ( t( x))) ( F t(4) (.7)) 0.07 Hvor vi finder Ft(4) findes ved tcdf(-,.7, 4)0.9858
34 Da p-værdien er mindre end 5 % forkaster vi hypotesen om ens middelværdier. Dvs den ekstra læsetræning har en effekt.
35 Hvorfor er det godt at kunne sin statistik???
36 TV-quiz Antag, at du medvirker i et tv-program, og du får givet muligheden for at vælge mellem tre døre: Bag en af dørene er der en bil; bag de to andre en ged. Du vælger en dør, lad os sige nr., og tv-værten, som ved, hvad der er bag dørene, åbner en anden dør, lad os sige nr. 3, bag hvilken der befinder sig en ged. Han spørger dig nu: "Vil du hellere vælge dør nr.?" Er det nu en fordel af vælge om?
37 Sandsynligheden for at man vælger døren med bilen ved det første valg er /3, hvilket også vil være chancen for at vinde bilen, hvis man holder fast på sit første valg. På den anden side er sandsynligheden for at vælge en dør, som skjuler en ged /3, og en spiller, som oprindeligt har valgt en ged, vinder bilen ved at vælge om.
38 Vi har altså 3 mulige udfald.. 3.
39 I to ud af tre tilfælde kan det betale sig at skifte dør, og i et ud af tre tilfælde kan det ikke betale sig. Ens chance for at vinde fordobles altså ved at vælge om, når spilstyreren tilbyder det.
40 Er mænd klogere end kvinder?
41 Professor i psykologi ved Aarhus Universitet, Helmuth Nyborg påstod at have opdaget mænd gennemsnitligt er 7 % klogere end kvinder. Senere opdagede han en regnefejl, så forskellen kun var 5 %... Men kan dette resultat være rigtigt?
42 Problemer med Nyborgs resultat: - Lille datamateriale (5 personer) - Hvordan er disse udvalgt - Hvordan måles intelligensen? - Statistisk metode
43 Nyborg modellerede hvert køns intelligens ved en normalfordeling. Han anvendte et test, der ikke gav mulighed for kvinder kunne være klogere end mænd. Havde han i stedet anvendt et ganske almindeligt t-test for at middelværdien var den samme i de to grupper (de to køn), ville han have fået accept. Men der er flere problemer
44 Nyborg hævdede: for hver kvinde med en IQ på over 45 vil der være mænd Er Nyborgs 5 testpersoner repræsentative (og ellers giver undersøgelsen ingen mening!) må de fleste ligge nær middelværdien. Et så lille datasæt kan derfor ikke sige noget om hvordan fordelingen er i de mere ekstreme tilfælde.
45 Statistiker på prøve Klinisk Epidemiologisk Afdeling (KEA) Undersøge patient-populationers prognose Adgang til: CPR-registret Receptdatabase Operationsdatabase Cancerregister Fødsels- og dødsregister
46 Statistiker på prøve Immunforsvarets rolle i forbindelse med brystkræft-recidiv Herpes Zoster og kræft?
47 Spørgsmål og kommentarer
Maja Tarp AARHUS UNIVERSITET
AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjyllad Studet år 005 fra Droiglud Gymasium Efter gymasiet: Militæret Australie Startede på matematik
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Opgaver til kapitel 3
Opgaver til kapitel 3 3.1 En løber er interesseret i at undersøge om hendes løbeur er kalibreret korrekt. Hun udmåler derfor en strækning på præcis 1000 m og løber den 16 gange. For hver løbetur noterer
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Eksamen i Statistik for biokemikere. Blok
Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)
Vejledende løsninger kapitel 8 opgaver
KAPITEL 8 OPGAVE 1 Nej den kan også være over 1 OPGAVE 2 Stikprøvestørrelse 10 Stikprøvegennemsnit 1,18 Stikprøvespredning 0,388158 Konfidensniveau 0,95 Nedre grænse 0,902328 Øvre grænse 1,457672 Stikprøvestørrelse
Markovkæder og kodesprog
Markovkæder og kodesprog Britta Anker Bak (statistik) 1 / 61 Hvem er jeg? Britta Anker Bak, 23 år Skolegang på Mors og Thylands Ungdomsskole. Matematisk student fra Morsø Gymnasium i år 2007. Fandt i 3.
Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse
Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet
Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der
Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau
Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi
Kapitel 7 Forskelle mellem centraltendenser
Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens
Løsninger til kapitel 9
Opgave 9.1 a) test for spredning, ensidet b) test for middelværdi, ensidet c) test for andel, ensidet d) test for to andele, ensidet e) test for spredning, tosidet f) test for middelværdi, ensidet g) test
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...
Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Vejledende besvarelse af eksamen i Statistik for biokemikere, blok
Opgave 1 Vejledende besvarelse af eksamen i Statistik for biokemikere, blok 2 2006 Inge Henningsen og Niels Richard Hansen Analysevariablen i denne opgave er variablen forskel, der for hver af 10 kvinder
Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.
Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
Modelkontrol i Faktor Modeller
Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
for matematik pä B-niveau i hf
for matematik pä B-niveau i hf 014 Karsten Juul TEST 1 StikprÅver... 1 1.1 Hvad er populationen?... 1 1. Hvad er stikpråven?... 1 1.3 Systematiske fejl ved valg af stikpråven.... 1 1.4 TilfÇldige fejl
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Løsninger til kapitel 6
Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)
Personlig stemmeafgivning
Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt
Vejledende besvarelser til opgaver i kapitel 14
Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet
1. februar Lungefunktions data fra tirsdags Gennemsnit l/min
Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud
Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala
3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele
Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om
Løsning til eksamen d.27 Maj 2010
DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1
Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,
Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi
Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved
Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge
Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange
Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens
Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium
Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,
Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Statistik i basketball
En note til opgaveskrivning [email protected] 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1
Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4
BH Test for normalfordeling i WordMat Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 Grupperede observationer Vi tager udgangspunkt i
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens nye emner afsnit 6.5 Den bivariate
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1
Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke
Stastistik og Databehandling på en TI-83
Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen ([email protected]). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,
Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1
Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering
Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF
Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier
Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?
Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)
Matematisk Modellering 1 Cheat Sheet
By a team of brave computer scientists: Mads P. Buch, Tobias Brixen, Troels Thorsen, Peder Detlefsen, Mark Gottenborg, Peter Krogshede - 1 Contents 1 Basalt 3 1.1 Varianser...............................
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Dig og din puls Lærervejleding
Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet
