Maja Tarp AARHUS UNIVERSITET

Størrelse: px
Starte visningen fra side:

Download "Maja Tarp AARHUS UNIVERSITET"

Transkript

1 AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET

2 HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjylland Student år 005 fra Dronninglund Gymnasium Efter gymnasiet: Militæret Australien Startede på matematik på Aarhus Universitet i 007 Sommeren 00: BSc i matematik Nu: Stud.cand.scient i statistik

3 STUDIERNES OPBYGNING Her er jeg

4 HVORDAN SER EN UGE UD?

5 JOBMULIGHEDER Private erhvervsliv et hav af muligheder: Handel Banker Konsulent- og rådgivningsvirksomhed Medicinalindustri Sundhed Forskning: Universiteter Interesseorganisationer Private virksomheder Undervisning: Gymnasier Handelsskoler Seminarer Ikke Gallup!

6 Hvorfor statistik? Kan forudsige fremtiden Kan bruges som beslutningsgrundlag: Politik Aktiekurser Medicinske forsøg Risikovurdering Spilteori

7 Statistik og virkeligheden I perioden faldt antallet af fødsler samtidig med at antallet af storkepar i Danmark faldt. Klar sammenhæng mellem drukneulykker og issalg! Når der sælges mange is, er der mange der drukner! Bør der investeres mere i rynkecreme? Der er en overdødelighed blandt folk med rynker!

8 Normalfordeling

9 Normalfordeling Måske den vigtigste fordeling overhovedet. Har toppunkt i sin middelværdi, og er symmetrisk fordelt her omkring. Model for hvordan et stort antal statistiske elementer fordeler sig omkring deres middelværdi.

10 Eksempler Højde, vægt Kvalitetstest Blodtryksændring IQ

11 En normalfordelt observation Vi vil nu betragte normalfordelt data. Dvs. data, som er nf ( µ ; σ) Hvor µ er middelværdien og σ er standardafvigelsen.

12 En normalfordelt observation Vi betragter altså nf ( µ ; σ ) x Vi beregner ofte som er det bedste gæt på den sande værdi af. µ Og som er det bedste gæt man kan komme på den sande værdi af. s σ

13 Normalfordelingen, grafisk Den normerede normalfordeling, dvs. nf(0;) Grafen viser tæthedsfunktionen. Areal

14 Normalfordelingen, grafisk En tilsvarende graf kan laves for enhver normalfordeling, nf( µ ; σ) Samme form som før, blot anden placering. Arealet stadig.

15 Fordelingsfunktionen Fordelingsfunktionen Φ(x) angiver sandsynligheden for, at X er mindre end et tal x, dvs Φ(x) Sandsynlighed for at x Dvs. at Φ(x) er en voksende funktion, med værdier mellem 0 og.

16 Eksempler: Fordelingsfunktionen Vi betragter altså hvor middelværdien er 30 og spredningen 4. Bestem fordelingsfunktinen. Dvs. find sandsynligheden for at x To metoder: Bestem sandsynligheden som arealet under grafen for tæthedsfunktionen fra - til 33. nf (30;4) Bestem fordelingsfunktionens værdi i 33.

17 Eksempler: Fordelingsfunktionen Bestem sandsynligheden som arealet under grafen for tæthedsfunktionen fra - til 33.

18 Eksempler: Fordelingsfunktionen Bestem fordelingsfunktionens værdi i 33.

19 Eksempler: Fordelingsfunktionen Eksempel : Intelligenskvotient scorer nf(00,5) regn selv

20 Eksempler: Fordelingsfunktionen Eksempel : En maskine på en fabrik nf(0, 0.) regn selv

21 Eksempel: Fluer og gift 6 fluer udsættes for nervegift, der måles hvor lang tid der går, før fluerne besvimer.

22 Flue nummer i Φ^(-) ((i-0.5)/6) Ln(tid) Tid

23 N(0,)-fraktil tid Hvis vores målinger er normalfordelte forventer vi at kunne indtegne dem som en ret linje i fraktilplottet. Dette er ikke tilfældet, men målingerne ser ud til at de kunne være logaritme fordelt. Derfor tages logaritmen til tiden og vi indtegner igen.

24 N(0,)-fraktil Målingerne ligger om en pæn ret linje, hvorfor vi kan antage, at logaritmen til tiden er normalfordelt. Dvs. vi betragter modellen: nf lntid ( µ ; σ )

25 Vi beregner efterfølgende skøn for standardafvigelsen og middelværdien vha. formlerne:.05 ) (4.6 5 ) ( )....6 ( n S USS n s x x x USS S n x x x x S

26 Eksempel: Læseevner Der betragtes to 3. klasser. Den ene klasse modtager ekstra læsetræning, mens den anden klasse er en kontrolklasse med almindelig læseundervisning. Efter 8 uger får eleverne en læsetest. Klasse Træning Testresultat Kontrol

27 Læseevner Fraktilplots viser at målinger i hver klasse kan beskrives med en normalfordeling, dvs:. Klasse Klasse træning kontrol følger en følger en nf nf ( µ ( µ træning kontrol ; σ ; σ træning kontrol ) ) Vi ønsker nu at finde estimater for middelværdi og standardafvigelse i hver af de to klasser.

28 Først beregnes: ) ( ) ( x x USS x x USS x x S x x S kontrol træning kontrol træning

29 Kontrol Træning USS S n Klasse 7. ) (463 ) ( 0 ) 08 ( ) ( n S USS n s n S USS n s S n x S n x kontrol træning kontrol træning

30 Vi ønsker nu at teste hypotesen H :σ σ træning kontrol altså et test for samme standardafvigelse i de to klasser. Dette gøres ved teststørrelsen: F P obs s s træning kontrol 0 7. ( x) ( F F( f 0.4, )( )) ( (0,)(0.4)) f F F F Hvor vi finder FF(0,) findes ved fcdf(-,0.4, 0, )0.05

31 Da p-værdien er større end 5 % accepterer vi hypotesen, dvs vi har modellen: Klasse Klasse træning kontrol følger en følger en nf nf ( µ ( µ træning kontrol Den fælles standardafvigelse kan estimeres ved: ; σ) ; σ) s f træning s f træning træning f f kontrol kontrol s kontrol

32 Vi ønsker nu at teste hypotesen H : µ µ træning kontrol altså et test for samme middelværdi i de to klasser. Dvs. et test for om den ekstra læsetræning har en effekt.

33 Dette gøres ved teststørrelsen: t( x) s x træning ( n træning x kontrol n kontrol ) ( 4.5 ) 3.7 P obs ( x) ( F t( f ) ( t( x))) ( F t(4) (.7)) 0.07 Hvor vi finder Ft(4) findes ved tcdf(-,.7, 4)0.9858

34 Da p-værdien er mindre end 5 % forkaster vi hypotesen om ens middelværdier. Dvs den ekstra læsetræning har en effekt.

35 Hvorfor er det godt at kunne sin statistik???

36 TV-quiz Antag, at du medvirker i et tv-program, og du får givet muligheden for at vælge mellem tre døre: Bag en af dørene er der en bil; bag de to andre en ged. Du vælger en dør, lad os sige nr., og tv-værten, som ved, hvad der er bag dørene, åbner en anden dør, lad os sige nr. 3, bag hvilken der befinder sig en ged. Han spørger dig nu: "Vil du hellere vælge dør nr.?" Er det nu en fordel af vælge om?

37 Sandsynligheden for at man vælger døren med bilen ved det første valg er /3, hvilket også vil være chancen for at vinde bilen, hvis man holder fast på sit første valg. På den anden side er sandsynligheden for at vælge en dør, som skjuler en ged /3, og en spiller, som oprindeligt har valgt en ged, vinder bilen ved at vælge om.

38 Vi har altså 3 mulige udfald.. 3.

39 I to ud af tre tilfælde kan det betale sig at skifte dør, og i et ud af tre tilfælde kan det ikke betale sig. Ens chance for at vinde fordobles altså ved at vælge om, når spilstyreren tilbyder det.

40 Er mænd klogere end kvinder?

41 Professor i psykologi ved Aarhus Universitet, Helmuth Nyborg påstod at have opdaget mænd gennemsnitligt er 7 % klogere end kvinder. Senere opdagede han en regnefejl, så forskellen kun var 5 %... Men kan dette resultat være rigtigt?

42 Problemer med Nyborgs resultat: - Lille datamateriale (5 personer) - Hvordan er disse udvalgt - Hvordan måles intelligensen? - Statistisk metode

43 Nyborg modellerede hvert køns intelligens ved en normalfordeling. Han anvendte et test, der ikke gav mulighed for kvinder kunne være klogere end mænd. Havde han i stedet anvendt et ganske almindeligt t-test for at middelværdien var den samme i de to grupper (de to køn), ville han have fået accept. Men der er flere problemer

44 Nyborg hævdede: for hver kvinde med en IQ på over 45 vil der være mænd Er Nyborgs 5 testpersoner repræsentative (og ellers giver undersøgelsen ingen mening!) må de fleste ligge nær middelværdien. Et så lille datasæt kan derfor ikke sige noget om hvordan fordelingen er i de mere ekstreme tilfælde.

45 Statistiker på prøve Klinisk Epidemiologisk Afdeling (KEA) Undersøge patient-populationers prognose Adgang til: CPR-registret Receptdatabase Operationsdatabase Cancerregister Fødsels- og dødsregister

46 Statistiker på prøve Immunforsvarets rolle i forbindelse med brystkræft-recidiv Herpes Zoster og kræft?

47 Spørgsmål og kommentarer

Maja Tarp AARHUS UNIVERSITET

Maja Tarp AARHUS UNIVERSITET AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjyllad Studet år 005 fra Droiglud Gymasium Efter gymasiet: Militæret Australie Startede på matematik

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Opgaver til kapitel 3

Opgaver til kapitel 3 Opgaver til kapitel 3 3.1 En løber er interesseret i at undersøge om hendes løbeur er kalibreret korrekt. Hun udmåler derfor en strækning på præcis 1000 m og løber den 16 gange. For hver løbetur noterer

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen

Læs mere

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Vejledende løsninger kapitel 8 opgaver

Vejledende løsninger kapitel 8 opgaver KAPITEL 8 OPGAVE 1 Nej den kan også være over 1 OPGAVE 2 Stikprøvestørrelse 10 Stikprøvegennemsnit 1,18 Stikprøvespredning 0,388158 Konfidensniveau 0,95 Nedre grænse 0,902328 Øvre grænse 1,457672 Stikprøvestørrelse

Læs mere

Markovkæder og kodesprog

Markovkæder og kodesprog Markovkæder og kodesprog Britta Anker Bak (statistik) 1 / 61 Hvem er jeg? Britta Anker Bak, 23 år Skolegang på Mors og Thylands Ungdomsskole. Matematisk student fra Morsø Gymnasium i år 2007. Fandt i 3.

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Løsninger til kapitel 9

Løsninger til kapitel 9 Opgave 9.1 a) test for spredning, ensidet b) test for middelværdi, ensidet c) test for andel, ensidet d) test for to andele, ensidet e) test for spredning, tosidet f) test for middelværdi, ensidet g) test

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau... Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok Opgave 1 Vejledende besvarelse af eksamen i Statistik for biokemikere, blok 2 2006 Inge Henningsen og Niels Richard Hansen Analysevariablen i denne opgave er variablen forskel, der for hver af 10 kvinder

Læs mere

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test. Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 014 Karsten Juul TEST 1 StikprÅver... 1 1.1 Hvad er populationen?... 1 1. Hvad er stikpråven?... 1 1.3 Systematiske fejl ved valg af stikpråven.... 1 1.4 TilfÇldige fejl

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Løsninger til kapitel 6

Løsninger til kapitel 6 Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala 3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning [email protected] 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 BH Test for normalfordeling i WordMat Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 Grupperede observationer Vi tager udgangspunkt i

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens nye emner afsnit 6.5 Den bivariate

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Stastistik og Databehandling på en TI-83

Stastistik og Databehandling på en TI-83 Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen ([email protected]). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Matematisk Modellering 1 Cheat Sheet

Matematisk Modellering 1 Cheat Sheet By a team of brave computer scientists: Mads P. Buch, Tobias Brixen, Troels Thorsen, Peder Detlefsen, Mark Gottenborg, Peter Krogshede - 1 Contents 1 Basalt 3 1.1 Varianser...............................

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere