02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4
|
|
|
- Vibeke Bagge
- 9 år siden
- Visninger:
Transkript
1 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = ( )/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1 P ( < error < 0.012) = ( )/0.050 = 0.48 > punif(0.012,-0.025,0.025)-punif(-0.012,-0.025,0.025) [1] 0.48 Vejledende løsning 5.50 Idet α = 1 og β = 2 fås direkte: µ = e α+β2 /2 = e 1 = σ 2 = e 2α+β2 (e β2 1) = e 2 (e 4 1) = 396 Vejledende løsning 5.51 σ = σ 2 = e 2 (e 4 1) = 19.9 Idet vi kan anvende normalfordelingen på de logaritme transformerede data, fås F ((ln(8.4) + 1)/2) F ((ln(3.2) + 1)/2) =F (1.564) F (1.0816) = = > plnorm(8.4,-1,2)-plnorm(3.2,-1,2) [1] Og tilsvarende fås: > 1-plnorm(5,-1,2) [1] F ((ln(5.0) + 1)/2) =1 F (1.305) = =
2 Vejledende løsning 5.58 Tæthedsfunktionen for eksponentialfordelingen er { 1 f(x) = β e x/β x > 0, β > 0 0 ellers Dermed fås fordelingsfunktionen > pexp(20,1/50) [1] > 1-pexp(60,1/50) [1] F (x) = Vejledende løsning 5.59 x 0 f(s)ds = 1 e x/β P (X 20) = 1 e 20/50 = P (X 60) = 1 (1 e 60/50 ) = Idet antallet af sammenbrud er en poisson fordelt variabel med parameter λ = 0.2 (7th edition: λ = 0.3), fås at tiden mellem sammenbrud er eksponentialt fordlet med parameter λ = 0.2 (7th Edition: λ = 0.3). 8th Edition: > pexp(1,0.2) [1] > 1-pexp(5,0.2) [1] th Edition: > pexp(1,0.3) [1] > 1-pexp(5,0.3) [1] e ( 0.2)1 = e ( 0.2)5 = e ( 0.3)1 = e ( 0.3)5 =
3 Vejledende løsning 5.90 For 8.ed.: E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = 3 5 = 8 V ar(x 1 X 2 ) = V ar(x 1 ) + ( 1 2 )V ar(x 2 ) = = 6 For 6.ed. og 7.ed.: E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = 2 5 = 7 V ar(x 1 X 2 ) = V ar(x 1 ) + ( 1 2 )V ar(x 2 ) = = 7 Vejledende løsning 5.91 I denne opgave skal vi bruge formlerne for middelværdi og varians, når man lægger stokastiske variable sammen (eller trækker dem fra hinanden). Hvis vi har to stokastiske variable, X 1 og X 2, hvor E{X 1 } = µ 1, V {X 1 } = σ 2 1, E{X 2 } = µ 2, V {X 2 } = σ 2 2, og a, b og c er tre konstanter, så vil det gælde, at hvis Y = ax 1 + bx 2 + c er en ny stokastisk variabel, så er og E{Y } = E{aX 1 + bx 2 + c} = aµ 1 + bµ 2 + c V {Y } = V {ax 1 + bx 2 + c} = a 2 σ b 2 σ 2 2 Middelværdien af en konstant er konstanten selv. Variansen af en konstant er 0, dvs E{c} = c og V {c} = 0 I opgaven har vi så: For 8. ed.: Variabel Middelværdi Varians X 1 µ 1 = 1 σ 2 1 = 3(= ) X 2 µ 2 = 2 σ 2 2 = 5(= ) Y = X 1 + 2X 2 3 µ 1 + 2µ 2 3 = 6 σ σ 2 2 = = 23 = For 6. ed. og 7. ed.: Variabel Middelværdi Varians X 1 µ 1 = 1 σ 2 1 = 5(= ) X 2 µ 2 = 2 σ 2 2 = 5(= ) Y = X 1 + 2X 2 3 µ 1 + 2µ 2 3 = 6 σ σ 2 2 = = 25 = 5 2 Resultatet gælder for stokastiske variable, som er uafhængige, dvs at værdier, man f.eks. måler for dem, ikke er gensidigt påvirkede (se f.eks. bogen side (6.ed: 183 og 7.ed.: 185). I kurset opererer vi gennemgående med uafhængige stokastiske variable. Hvis man f.eks. har variansen V {X 1 } = σ 2 1 = 5, svarer det til at σ 1 = 5 = , dvs at X 1 s standard afvigelse, σ 1 = Standard afvigelsen σ 1 har samme enhed som X 1 og µ 1 (f.eks. mg alle tre, hvis det er en målefejl, vi taler om). For 8.ed.: E(X 1 +2X 2 3) = E(X 1 )+E(2X 2 ) 3 = E(X 1 )+2E(X 2 ) 3 = = 6 3
4 V ar(x 1 + 2X 2 3) = V ar(x 1 ) V ar(x 2 ) = = 23 For 6.ed. og 7.ed.: E(X 1 +2X 2 3) = E(X 1 )+E(2X 2 ) 3 = E(X 1 )+2E(X 2 ) 3 = = 6 V ar(x 1 + 2X 2 3) = V ar(x 1 ) V ar(x 2 ) = = 25 Vejledende løsning 5.92 For 7. og 8. udgave af bogen: Anvend, at tid sparet svarer til Y = X 1 X 2. Dermed E(Y ) = E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 20 c) så, så E(200Y ) = 200E(Y ) = = 4000 V ar(y ) = V ar(x 1 X 2 ) = V ar(x 1 ) + ( 1 2 )V ar(x 2 ) = 25 For 6. udgave af bogen: SD = 5 V ar(y 1 + Y Y 200 ) = 200V ar(y ) = 5000 SD = 5000 = Anvend, at tid sparet svarer til Y = X 1 X 2. Dermed E(Y ) = E(X 1 X 2 ) = E(X 1 ) E(X 2 ) = = 11 c) E(200Y ) = 200E(Y ) = = 2200 V ar(y ) = V ar(x 1 X 2 ) = V ar(x 1 ) + ( 1 2 )V ar(x 2 ) = 25 V ar(y 1 + Y Y 200 ) = 200V ar(y ) = 5000 heraf kan standardafvigelserne bestemmes Vejledende løsning 5.38 Vi har n = 84, p = 0.3, µ = 25.2, σ 2 = og σ = 4.2 F (( )/4.2) F (( )/4.2) = F (1.26) F ( 1.36) = pnorm(30.5,25.2,4.2)-pnorm(19.5,25.2,4.2) [1]
5 Vejledende løsning 5.61 Lad N være Poisson fordelt med parameter αt. Så er P (N = 0) = (αt) 0 e αt /0! = e αt. Dermed fås P (waiting time > t) = e αt og P (waiting time t) = 1 e αt Vejledende løsning (6.ed. og 7.ed.: P ( 0.03 < error < 0.04) = f(x)dx = 0.02 > punif(0.04,-0.02,0.02)-punif(-0.03,-0.02,0.02) [1] 1 P ( < error < 0.005) = dx = 0.25 > punif(0.005,-0.02,0.02)-punif(-0.005,-0.02,0.02) [1] 0.25 Vejledende løsning dec dx = 1 Orden de 7 målinger for det liggende morgenblodtryk efter størrelse: 135, 141, 143, 144, 152, 153, 159 Beregn np = = 5.25, rund op til 6 og svaret bliver derved 153, dvs. svar 3. (jvf. boksen side 34(32) i bogen) > quantile(x,0.75,type=2) 75% 153 Det er vigtigt her at være opmærksom på, at man kan udregne kvartiler på mange forskellige måder, i diskrete tilfælde svarer R s type 2 til den metode som bogen også benytter. Vejledende løsning dec04.16 Sandsynligheden for at få en dreng i den enkelte fødsel bliver p = 38100/73380 = Hvis antallet af drenge ud af 12 fødsler er binomialfordelt, bliver sandsynligheden for netop 6 drenge: ( ) ( ) 6 6 og dermed bliver det forventede antal famililer ud af de 6115 familier, der har neop 6 drenge denne sandsynlighed ganget med de 6115: ( ) ( ) 6 6 5
6 og det korrekte svar er altså svar 4. Alternativ kunne man udregne svaret i R på følgende måde og sammenligne sit resultat med de andre muligheder. I denne opgaver ville det dog være lidt besværligt,da man så var nødt til at udregne talværdierne for de enkelte muligheder. Vi starter med at udregne vores eget svar: > dbinom(6,12,0.519) [1] Vi indser nu, at vores svar stemmer overens med talværdien i svar mulighed 4. > choose(12,6)*0.519^6*( )^(12-6) [1] Vejledende løsning Ropg5.3.1 Formlen for sandsynligheden er P (X 0.4) = dx hvor X altså er uniform fordelt på intervallet [0, 1], cf. side 135 (7.ed.:165). Vejledende løsning Ropg5.3.2 Formlen for det første af to resultater er tæthedsfunktionen for eksponentialfordelingen med β = 2: f(2) = 1 2 exp( 2/2) Det andet resultat er fordelingsfunktionen for samme fordeling i punktet 2: P (X 2) = exp( x/2)dx = 1 exp( 1) 2 Vejledende løsning Ropg5.3.3 (Opdateret 28/2 2006) Formlen for resultatet er 50%-fraktilen for standard log-normalfordelingen: P (Z 1) = 0.5 = P (log(z) log(1)) = P (log(z) 0) hvor log(z) altså er standard normalfordelt, og dermed er Z altså log-normalfordelt med α = 0 og β = 1. 6
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5
02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen
Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
INSTITUT FOR MATEMATISKE FAG c
INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: [email protected] Dataanalyse Sandsynlighed og stokastiske
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
02402 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel 4
0202 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel Hjemmeopgaver Vejledende løsning.2 Eksperimentet kan beskrives ved binomialfordelingen, X b(x; n, p), hvor n = og p = 1 2. Dermed kan man
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)
CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Teoretisk Statistik, 16. februar Generel teori,repetition
1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner
Løsning til prøveeksamen 1
IMM - DTU 020 Probability 2006-2-8 BFN/bfn Løsning til prøveeksamen Spørgsmål ) For en indikatorvariabel I A for hændelsen A gælder E(I A ) = P(A) (se for eksemepl side 68). Således er E(X) = P(N ) = =
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer
Sandsynlighedsregning Oversigt over begreber og fordelinger
Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Løsning til eksamen 16/
1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen
CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)
CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Løsninger til kapitel 6
Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
3 Stokastiske variable 3.1 Diskrete variable
3 Stokastiske variable 3.1 Diskrete variable Punktsandsnligheden benævnes P(x) = P(X = x). {x, P(x)} er en sandsnlighedsfordeling for den stokastiske variabel, X, hvis 1) P(x) $ 0 for alle værdier af x.
Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver
Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2 Københavns Universitet Susanne Ditlevsen og Helle Sørensen R opgaver Det er en god ide at vænne sig til at skrive kommandoerne i en editor
Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)
; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians
hvor a og b er konstanter. Ved middelværdidannelse fås videre
Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den
Løsning til eksamen d.27 Maj 2010
DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1
Opgaver til kapitel 3
Opgaver til kapitel 3 3.1 En løber er interesseret i at undersøge om hendes løbeur er kalibreret korrekt. Hun udmåler derfor en strækning på præcis 1000 m og løber den 16 gange. For hver løbetur noterer
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Karakteristiske funktioner og Den Centrale Grænseværdisætning
E6 efterår 1999 Notat 10 Jørgen Larsen 20. oktober 1999 Karakteristiske funktioner og Den Centrale Grænseværdisætning Karakteristiske funktioner som er nære slægtninge til Fourier-transformationen) er
Sandsynlighed og Statistik
36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
