Kapitel 4 Sandsynlighed og statistiske modeller

Størrelse: px
Starte visningen fra side:

Download "Kapitel 4 Sandsynlighed og statistiske modeller"

Transkript

1 Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011

2 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol med normalfordelingen 5 Normalfordeling med Excel 6 Opsamling

3 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol med normalfordelingen 5 Normalfordeling med Excel 6 Opsamling

4 Generalisering fra stikprøve til population Idé: Opstil en model for populationen og estimér modellens parametre på baggrund af stikprøven Kontrollér at stikprøven ikke er i modstrid med modellen Eksempel: 95% konfidensinterval for middelværdien i en normalfordeling

5 Generalisering fra stikprøve til population Idé: Opstil en model for populationen og estimér modellens parametre på baggrund af stikprøven Kontrollér at stikprøven ikke er i modstrid med modellen Eksempel: 95% konfidensinterval for middelværdien i en normalfordeling

6 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol med normalfordelingen 5 Normalfordeling med Excel 6 Opsamling

7 Binomialfordelingen - uformelt Lyttetest: En person har i tre ud af tre sætninger korrekt hørt forskel på bas og pas - kan det være tilfældigt? Vi gentager et eksperiment tre gange, hvor der hver gang er 50% sandsynlighed for at få succes ved en tilfældighed (fx. få krone) Hvad er sandsynligheden for at få krone tre gange i træk? Og hvorfor er det interessant?

8 Uformelt... fortsat Der er otte mulige udfald ved tre kast: KKK, KKP, KPK, PKK, KPP, PKP, PPK, PPP Alle otte udfald er lige sandsynlige og netop ét udfald svarer til tre gange krone Laplaces lov: Sandsynlighed er antal gunstige divideret med antal mulige Sandsynligheden for netop tre gange krone er således 1/8 = 0,125 = 12,5%

9 Uformelt... fortsat Tilbage til lyttetest: Der er altså en sandsynlighed (risiko) på 12,5% for, at personen ikke kan høre forskel på bas og pas selvom der blev svaret rigtigt i 3 ud af 3 tilfælde. Er dette acceptabelt og hvis ikke: Hvordan kan man så lave eksperimentet bedre?

10 Binomialfordelingen formelt n Bernoulli-forsøg med sandsynligheden p for sandt (og følgeligt sandsynligheden 1 p for falsk) Punktsandsynligheder er givet ved ( ) n f (x) = p n (1 p) n 1, x = 0, 1,..., n x hvor K(n,x) er binomialkoefficienten ( ) n n (n 1)... (n x + 1) = x x (x 1)... 1 = n! x!(n x)!

11 Binomialfordelingen formelt og grafisk X ~ Bin(3,0.5) f(x) = P(X=x) x

12 Opgave 3

13 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol med normalfordelingen 5 Normalfordeling med Excel 6 Opsamling

14 Normalfordelingen Normalfordelingen er en kontinuert fordeling mens binomialfordelingen er en diskret fordeling Tæthedsfunktion ϕ(x) x Histogrammet for en binomialfordeling med p = 0, 5 og meget højt n ligner tæthedsfunktionen for en normalfordeling

15 Normalfordelingen Normalfordelingen er en kontinuert fordeling mens binomialfordelingen er en diskret fordeling Tæthedsfunktion ϕ(x) x Histogrammet for en binomialfordeling med p = 0, 5 og meget højt n ligner tæthedsfunktionen for en normalfordeling

16 Normalfordelingen som grænsefordeling for binomialfordelingen med p = 0, 5 n=5 n=10 P(x) P(x) x x n=20 n=50 P(x) P(x) x x

17 Normalfordelingen Der findes uendeligt mange normalfordelinger, der hver især er karakteriseret ved deres middelværdi µ og deres spredning σ Middelværdi µ og spredning σ er parametre i normalfordelingen, og vi skriver N(µ, σ 2 ) Tæthedsfunktionen er en klokkeformet kurve: f (x; µ, σ) = 1 ) ( σ 2π exp (x µ)2 2σ 2 (vi bruger heldigvis næsten altid tabeller) Kurven har toppunkt for x = µ Større spredning giver fladere tæthedsfunktion

18 Tæthedsfunktion for 3 forskellige normalfordelinger f(x) N(10, 2 2 ) N(10, 4 2 ) N(20, 2 2 ) x

19 Fordelingsfunktion og standardnormalfordeling Ved bestemt integration af tæthedsfunktionen kommer vi frem til fordelingsfunktionen, der er en slags kummuleret frekvensfordeling Fraktiler i en normalfordeling er nyttige ifm udsagn af typen: 50% af eleverne kan forventes at score mellem 22 og 87 i den forelagte prøve 5% af eleverne forventes at score mindre end 12 Fordelingsfunktionen går gennem (µ, 0.5) Lavere spredning giver stejlere fordelingsfunktion

20 Fordelingsfunktion for 3 forskellige normalfordelinger F(x) N(10, 2 2 ) N(10, 4 2 ) N(20, 2 2 ) x

21 Standardnormalfordelingen Der findes uendeligt mange normalfordelinger, men vi kan i praksis klare os med én, nemlig standardnormalfordelingen N(0, 1) Fordelingsfunktionen Φ(x) fremkommer ved integration af tæthedsfunktionen ϕ(x) Tæthedsfunktion Fordelingsfunktion ϕ(x) Φ(x) x x

22 Eksempel på brug af Φ Antag at vi har lavet en undersøgelse, hvor gennemsnittet af scorene er 17 og standardafvigelsen er 3. Vi antager desuden, at scorene følger en normalfordeling. Vi vil nu gerne kende sandsynligheden for, at en tilfældig score er mindre end 14. Vi normaliserer ved at beregne den såkaldte z-værdi: z = x X s = = 1 Ved opslag i Tabel A kan vi nu se at p = P(x 14) = Φ( 1) = 0, 159 Sandsynligheden for at en tilfældig score er mindre en 14 er altså cirka 16%

23 Eksempel på brug af Φ Antag at vi har lavet en undersøgelse, hvor gennemsnittet af scorene er 17 og standardafvigelsen er 3. Vi antager desuden, at scorene følger en normalfordeling. Vi vil nu gerne kende sandsynligheden for, at en tilfældig score er mindre end 14. Vi normaliserer ved at beregne den såkaldte z-værdi: z = x X s = = 1 Ved opslag i Tabel A kan vi nu se at p = P(x 14) = Φ( 1) = 0, 159 Sandsynligheden for at en tilfældig score er mindre en 14 er altså cirka 16%

24 Eksempel på brug af Φ Antag at vi har lavet en undersøgelse, hvor gennemsnittet af scorene er 17 og standardafvigelsen er 3. Vi antager desuden, at scorene følger en normalfordeling. Vi vil nu gerne kende sandsynligheden for, at en tilfældig score er mindre end 14. Vi normaliserer ved at beregne den såkaldte z-værdi: z = x X s = = 1 Ved opslag i Tabel A kan vi nu se at p = P(x 14) = Φ( 1) = 0, 159 Sandsynligheden for at en tilfældig score er mindre en 14 er altså cirka 16%

25 Eksempel på brug af Φ Antag at vi har lavet en undersøgelse, hvor gennemsnittet af scorene er 17 og standardafvigelsen er 3. Vi antager desuden, at scorene følger en normalfordeling. Vi vil nu gerne kende sandsynligheden for, at en tilfældig score er mindre end 14. Vi normaliserer ved at beregne den såkaldte z-værdi: z = x X s = = 1 Ved opslag i Tabel A kan vi nu se at p = P(x 14) = Φ( 1) = 0, 159 Sandsynligheden for at en tilfældig score er mindre en 14 er altså cirka 16%

26 Eksempel på brug af Φ Antag at vi har lavet en undersøgelse, hvor gennemsnittet af scorene er 17 og standardafvigelsen er 3. Vi antager desuden, at scorene følger en normalfordeling. Vi vil nu gerne kende sandsynligheden for, at en tilfældig score er mindre end 14. Vi normaliserer ved at beregne den såkaldte z-værdi: z = x X s = = 1 Ved opslag i Tabel A kan vi nu se at p = P(x 14) = Φ( 1) = 0, 159 Sandsynligheden for at en tilfældig score er mindre en 14 er altså cirka 16%

27 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol med normalfordelingen 5 Normalfordeling med Excel 6 Opsamling

28 Modelkontrol Vi er ofte interesserede i at se, hvor godt vores stikprøve egentlig stemmer overens med normalfordelingsantagelsen For Tabel 2.5 (vokalvarighed i ms) beregner vi det forventede antal observationer i et bestemt interval under antagelsen om normalitet og sammenligner med det observerede Vi beregner x = 208, 9 og s = 9, 79 For klassen afgrænset ved (204, 5; 209, 5] beregnes to z-værdier til -0,45 og 0,06 Via Tabel A findes tilhørende sandsynligheder p som 0,326 og 0,524 Sandsynligheden for at være i intervallet er derfor 0,524-0,326 = 0,198 Da stikprøven omfatter 40 enheder forventer vi at finde 40 0, 198 = 7, 92 enheder i intervallet Der var faktisk 9...

29 Modelkontrol Vi er ofte interesserede i at se, hvor godt vores stikprøve egentlig stemmer overens med normalfordelingsantagelsen For Tabel 2.5 (vokalvarighed i ms) beregner vi det forventede antal observationer i et bestemt interval under antagelsen om normalitet og sammenligner med det observerede Vi beregner x = 208, 9 og s = 9, 79 For klassen afgrænset ved (204, 5; 209, 5] beregnes to z-værdier til -0,45 og 0,06 Via Tabel A findes tilhørende sandsynligheder p som 0,326 og 0,524 Sandsynligheden for at være i intervallet er derfor 0,524-0,326 = 0,198 Da stikprøven omfatter 40 enheder forventer vi at finde 40 0, 198 = 7, 92 enheder i intervallet Der var faktisk 9...

30 Modelkontrol Vi er ofte interesserede i at se, hvor godt vores stikprøve egentlig stemmer overens med normalfordelingsantagelsen For Tabel 2.5 (vokalvarighed i ms) beregner vi det forventede antal observationer i et bestemt interval under antagelsen om normalitet og sammenligner med det observerede Vi beregner x = 208, 9 og s = 9, 79 For klassen afgrænset ved (204, 5; 209, 5] beregnes to z-værdier til -0,45 og 0,06 Via Tabel A findes tilhørende sandsynligheder p som 0,326 og 0,524 Sandsynligheden for at være i intervallet er derfor 0,524-0,326 = 0,198 Da stikprøven omfatter 40 enheder forventer vi at finde 40 0, 198 = 7, 92 enheder i intervallet Der var faktisk 9...

31 Modelkontrol Vi er ofte interesserede i at se, hvor godt vores stikprøve egentlig stemmer overens med normalfordelingsantagelsen For Tabel 2.5 (vokalvarighed i ms) beregner vi det forventede antal observationer i et bestemt interval under antagelsen om normalitet og sammenligner med det observerede Vi beregner x = 208, 9 og s = 9, 79 For klassen afgrænset ved (204, 5; 209, 5] beregnes to z-værdier til -0,45 og 0,06 Via Tabel A findes tilhørende sandsynligheder p som 0,326 og 0,524 Sandsynligheden for at være i intervallet er derfor 0,524-0,326 = 0,198 Da stikprøven omfatter 40 enheder forventer vi at finde 40 0, 198 = 7, 92 enheder i intervallet Der var faktisk 9...

32 Modelkontrol Vi er ofte interesserede i at se, hvor godt vores stikprøve egentlig stemmer overens med normalfordelingsantagelsen For Tabel 2.5 (vokalvarighed i ms) beregner vi det forventede antal observationer i et bestemt interval under antagelsen om normalitet og sammenligner med det observerede Vi beregner x = 208, 9 og s = 9, 79 For klassen afgrænset ved (204, 5; 209, 5] beregnes to z-værdier til -0,45 og 0,06 Via Tabel A findes tilhørende sandsynligheder p som 0,326 og 0,524 Sandsynligheden for at være i intervallet er derfor 0,524-0,326 = 0,198 Da stikprøven omfatter 40 enheder forventer vi at finde 40 0, 198 = 7, 92 enheder i intervallet Der var faktisk 9...

33 Modelkontrol Vi er ofte interesserede i at se, hvor godt vores stikprøve egentlig stemmer overens med normalfordelingsantagelsen For Tabel 2.5 (vokalvarighed i ms) beregner vi det forventede antal observationer i et bestemt interval under antagelsen om normalitet og sammenligner med det observerede Vi beregner x = 208, 9 og s = 9, 79 For klassen afgrænset ved (204, 5; 209, 5] beregnes to z-værdier til -0,45 og 0,06 Via Tabel A findes tilhørende sandsynligheder p som 0,326 og 0,524 Sandsynligheden for at være i intervallet er derfor 0,524-0,326 = 0,198 Da stikprøven omfatter 40 enheder forventer vi at finde 40 0, 198 = 7, 92 enheder i intervallet Der var faktisk 9...

34 Modelkontrol Vi er ofte interesserede i at se, hvor godt vores stikprøve egentlig stemmer overens med normalfordelingsantagelsen For Tabel 2.5 (vokalvarighed i ms) beregner vi det forventede antal observationer i et bestemt interval under antagelsen om normalitet og sammenligner med det observerede Vi beregner x = 208, 9 og s = 9, 79 For klassen afgrænset ved (204, 5; 209, 5] beregnes to z-værdier til -0,45 og 0,06 Via Tabel A findes tilhørende sandsynligheder p som 0,326 og 0,524 Sandsynligheden for at være i intervallet er derfor 0,524-0,326 = 0,198 Da stikprøven omfatter 40 enheder forventer vi at finde 40 0, 198 = 7, 92 enheder i intervallet Der var faktisk 9...

35 Modelkontrol Vi er ofte interesserede i at se, hvor godt vores stikprøve egentlig stemmer overens med normalfordelingsantagelsen For Tabel 2.5 (vokalvarighed i ms) beregner vi det forventede antal observationer i et bestemt interval under antagelsen om normalitet og sammenligner med det observerede Vi beregner x = 208, 9 og s = 9, 79 For klassen afgrænset ved (204, 5; 209, 5] beregnes to z-værdier til -0,45 og 0,06 Via Tabel A findes tilhørende sandsynligheder p som 0,326 og 0,524 Sandsynligheden for at være i intervallet er derfor 0,524-0,326 = 0,198 Da stikprøven omfatter 40 enheder forventer vi at finde 40 0, 198 = 7, 92 enheder i intervallet Der var faktisk 9...

36 Grafisk modelkontrol Vokalvarighed [ms] Antal (184.5; 189.5] (189.5; 194.5] (194.5; 199.5] (199.5; 204.5] (204.5; 209.5] (209.5; 214.5] (214.5; 219.5] (219.5; 224.5] (224.5; 229.5] Observeret Forventet (229.5; 234.5] Vokalvarighed [ms]

37 Grafisk modelkontrol Vokalvarighed [ms] Antal (184.5; 189.5] (189.5; 194.5] (194.5; 199.5] (199.5; 204.5] (204.5; 209.5] (209.5; 214.5] (214.5; 219.5] (219.5; 224.5] (224.5; 229.5] (229.5; 234.5] Observeret Forventet

38 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol med normalfordelingen 5 Normalfordeling med Excel 6 Opsamling

39 Normalfordeling i Excel Der kan beregnes værdier for både f (x) og F (x) for vilkårlige normalfordelinger med funktionen normfordeling(...), der tager fire argumenter: værdi af x middelværdi µ spredning σ kumulativ: 0 betyder nej (der regnes med f ) og 1 betyder ja (der regnes med F ) Der kan findes fraktiler for vilkårlige normalfordelinger med funktionen norminv(...), der tager tre argumenter: sandsynlighed p middelværdi µ spredning σ Dette svarer til at finde x p i ligningen F (x p ) = p x p = F 1 (p)

40 Normalfordeling i Excel Der kan beregnes værdier for både f (x) og F (x) for vilkårlige normalfordelinger med funktionen normfordeling(...), der tager fire argumenter: værdi af x middelværdi µ spredning σ kumulativ: 0 betyder nej (der regnes med f ) og 1 betyder ja (der regnes med F ) Der kan findes fraktiler for vilkårlige normalfordelinger med funktionen norminv(...), der tager tre argumenter: sandsynlighed p middelværdi µ spredning σ Dette svarer til at finde x p i ligningen F (x p ) = p x p = F 1 (p)

41 Normalfordeling i Excel Ønsker man at finde værdier i standardnormalfordelingen kan man benytte funtionerne standardnormfordeling(...) og standardnorminv(...), der tager ét argument hver... men det er nok lige så nemt at angive µ = 0 og σ = 1 i de generelle funktioner I praksis bruger vi stort set kun tæthedsfunktionen når vi skal tegne pæne klokkeformede kurver det er næsten altid fordelingsfunktionen, der er den interessante

42 Normalfordeling i Excel Ønsker man at finde værdier i standardnormalfordelingen kan man benytte funtionerne standardnormfordeling(...) og standardnorminv(...), der tager ét argument hver... men det er nok lige så nemt at angive µ = 0 og σ = 1 i de generelle funktioner I praksis bruger vi stort set kun tæthedsfunktionen når vi skal tegne pæne klokkeformede kurver det er næsten altid fordelingsfunktionen, der er den interessante

43 Normalfordeling i Excel Ønsker man at finde værdier i standardnormalfordelingen kan man benytte funtionerne standardnormfordeling(...) og standardnorminv(...), der tager ét argument hver... men det er nok lige så nemt at angive µ = 0 og σ = 1 i de generelle funktioner I praksis bruger vi stort set kun tæthedsfunktionen når vi skal tegne pæne klokkeformede kurver det er næsten altid fordelingsfunktionen, der er den interessante

44 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol med normalfordelingen 5 Normalfordeling med Excel 6 Opsamling

45 Opsamling Normalfordelingen er en ofte benyttet model for delvist observerede populationer, idet fordelingens parametre kan estimeres fra en stikprøve Normalfordelingen har to parametre, middelværdi µ og spredning σ, og vi skriver N(µ, σ 2 ) Standardnormalfordelingen N(0, 1) kan benyttes til beregninger i andre normalfordelinger via en z-værdi z = x µ σ Således beregnes sandsynligheden P(X < x), hvor X N(µ 0, σ0 2) ved ( ) x µ0 p = Φ hvor Φ er fordelingsfunktionen for standardnormalfordelingen. σ 0

46 Opsamling Normalfordelingen er en ofte benyttet model for delvist observerede populationer, idet fordelingens parametre kan estimeres fra en stikprøve Normalfordelingen har to parametre, middelværdi µ og spredning σ, og vi skriver N(µ, σ 2 ) Standardnormalfordelingen N(0, 1) kan benyttes til beregninger i andre normalfordelinger via en z-værdi z = x µ σ Således beregnes sandsynligheden P(X < x), hvor X N(µ 0, σ0 2) ved ( ) x µ0 p = Φ hvor Φ er fordelingsfunktionen for standardnormalfordelingen. σ 0

47 Opsamling Normalfordelingen er en ofte benyttet model for delvist observerede populationer, idet fordelingens parametre kan estimeres fra en stikprøve Normalfordelingen har to parametre, middelværdi µ og spredning σ, og vi skriver N(µ, σ 2 ) Standardnormalfordelingen N(0, 1) kan benyttes til beregninger i andre normalfordelinger via en z-værdi z = x µ σ Således beregnes sandsynligheden P(X < x), hvor X N(µ 0, σ0 2) ved ( ) x µ0 p = Φ hvor Φ er fordelingsfunktionen for standardnormalfordelingen. σ 0

48 Opsamling Normalfordelingen er en ofte benyttet model for delvist observerede populationer, idet fordelingens parametre kan estimeres fra en stikprøve Normalfordelingen har to parametre, middelværdi µ og spredning σ, og vi skriver N(µ, σ 2 ) Standardnormalfordelingen N(0, 1) kan benyttes til beregninger i andre normalfordelinger via en z-værdi z = x µ σ Således beregnes sandsynligheden P(X < x), hvor X N(µ 0, σ0 2) ved ( ) x µ0 p = Φ hvor Φ er fordelingsfunktionen for standardnormalfordelingen. σ 0

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen

Læs mere

Kapitel 2 Frekvensfordelinger

Kapitel 2 Frekvensfordelinger Kapitel 2 Frekvensfordelinger Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Grafik af frekvensfordelinger 3 Frekvensfordeling med Excel 4 Opsamling 1 Indledning 2 Grafik

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling

Læs mere

m = 0,15 22,5 + 0, , , , ,05 90 = 61,9år år år år år 26,67% 40% 26,67% 6,67%

m = 0,15 22,5 + 0, , , , ,05 90 = 61,9år år år år år 26,67% 40% 26,67% 6,67% Kapitel 9 Øvelse 9.1 4 1 = = 11%. 36 9 a. Den gennemsnitlige levealder er hvor gamle folk i gennemsnit er når de dør. For grupperede observationer bruger vi en antagelse om, at gennemsnitsalderen for et

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Forelæsning 2: Kapitel 4, Diskrete fordelinger

Forelæsning 2: Kapitel 4, Diskrete fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Opgaver til kapitel 3

Opgaver til kapitel 3 Opgaver til kapitel 3 3.1 En løber er interesseret i at undersøge om hendes løbeur er kalibreret korrekt. Hun udmåler derfor en strækning på præcis 1000 m og løber den 16 gange. For hver løbetur noterer

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed...

1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed... Indhold 1 Sandsynlighed 1 1.1 Sandsynlighedsbegrebet................................. 1 1.2 Definitioner........................................ 2 1.3 Diskret fordeling.....................................

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik ekstrom@sund.ku.dk Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd I dag Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik SaSt) Helle Sørensen Først lidt om de sidste uger af SaSt. Derefter statistisk analyse af en enkelt

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau... Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder

Læs mere

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Kapitel 1 Statistiske grundbegreber

Kapitel 1 Statistiske grundbegreber Kapitel 1 Statistiske grundbegreber Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Population versus stikprøve 3 Variabeltyper og måleskalaer 4 Parametrisk versus ikke-parametrisk

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala 3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Matematik A, vejledende opgave 2, ny ordning. Vejledende løsninger, Peter B. Delprøven uden hjælpemidler. Opgave 1. a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2

Matematik A, vejledende opgave 2, ny ordning. Vejledende løsninger, Peter B. Delprøven uden hjælpemidler. Opgave 1. a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2 Delprøven uden hjælpemidler Opgave 1 a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2 0 = 8 0 = 8 0 2 Opgave 2 a) Først differentierer vi løsningen: y = 10x. Dernæst indsættes løsningen y i y og vi får: y = 2 5x2 x =

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Vejledende løsninger til opgaver i kapitel 6

Vejledende løsninger til opgaver i kapitel 6 Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel:

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel: Normal fordeling Tæthedsfunktion for normalfordeling med middelværdi µ og varians σ 2 : Program (8.15-10): f() = 1 µ)2 ep( ( 2πσ 2 2σ 2 ) E µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4 1. vigtige sandsynlighedsfordelinger:

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.

Binomialfordelingen. X ~ bin(n,p): X = antal succeser i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes. Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):

Læs mere

Højde af kvinder 2 / 18

Højde af kvinder 2 / 18 Hvorfor er normalfordelingen så normal? og er den nu også det? Søren Højsgaard (updated: 2019-03-17) 1 / 18 Højde af kvinder 2 / 18 Inddeler man i mindre grupper kan man forestille sig at histogrammet

Læs mere

Løsning til eksaminen d. 29. maj 2009

Løsning til eksaminen d. 29. maj 2009 DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t.

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t. t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program (8.15-10): 1. repetition: fordeling af observatorer X, S 2 og t. 2. konfidens-intervaller, hypotese test, type I og type II fejl, styrke,

Læs mere

Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:

Læs mere

Grundlæggende statistik Lektion 2 Indhold Diskrete fordelinger Binomial fordelingen Poisson fordelingen Hypergeometrisk fordeling Data typer el. typer af tilfældige variable Diskrete variable > Kategoriseres

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere