Pontryagin Approximations for Optimal Design of Elastic Structures

Relaterede dokumenter
Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

Computing the constant in Friedrichs inequality

Basic statistics for experimental medical researchers

Linear Programming ١ C H A P T E R 2

Circulating Beams Søren Pape Møller ISA / DANFYSIK A/S Chapter 4 i Wilson - 1 hour

Non-Linear Image Registration on OcTrees

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt

A SMOOTHING METHOD FOR SHAPE OPTIMIZATION: TRACTION METHOD USING THE ROBIN CONDITION

Adaptive Algorithms for Blind Separation of Dependent Sources. George V. Moustakides INRIA, Sigma 2

Underground Excavation Design Shape

Exercise 6.14 Linearly independent vectors are also affinely independent.

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

P Œ.. ʲ,.. ŠÊ²,.. ŠÊ² ±μ,.. Œ ² Ìμ, Š.. ŒÊÌ. Š Œ ˆ ˆ ˆŠ Š ˆ ƒ ƒ Œ ˆ Ÿ Š ˆ -2Œ

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan

Multivariate Extremes and Dependence in Elliptical Distributions

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

Sampling real algebraic varieties for topological data analysis

264.. Cox, Daio Jang (23) Grandell (1976). 1.1 (Ω, F, {F, [, ]}, P). N λ, λ F, 1 2 u R, λ d < a... E{e iu(n 2 N 1 ) F λ 2 } = e {(eiu 1) 2 1 λ d}, F λ

Semi-smooth Newton method for Solving Unilateral Problems in Fictitious Domain Formulations

Layered geometry (anisotropic)

Rotational Properties of Bose - Einstein Condensates

FACULTY OF SCIENCE :59 COURSE. BB838: Basic bioacoustics using Matlab

Avancerede bjælkeelementer med tværsnitsdeformation

Hydrogen Burning in Stars-II

Advanced Statistical Computing Week 5: EM Algorithm

ECE 551: Digital System * Design & Synthesis Lecture Set 5

Frequency Dispersion: Dielectrics, Conductors, and Plasmas

Selection of a Laser Source for Magnetic Field Imaging Using Magneto-optical Films

Symplectic and contact properties of the Mañé critical value of the universal cover

MONOTONE POSITIVE SOLUTIONS FOR p-laplacian EQUATIONS WITH SIGN CHANGING COEFFICIENTS AND MULTI-POINT BOUNDARY CONDITIONS

Eksamen i Mat F, april 2006

UNISONIC TECHNOLOGIES CO.,

DoodleBUGS (Hands-on)

Distribution of the Number of Times M/M/2/N Queuing System Reaches its Capacity in Time t under Catastrophic Effects

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium

Critical exponent for semilinear wave equation with critical potential

ME6212. High Speed LDO Regulators, High PSRR, Low noise, ME6212 Series. General Description. Typical Application. Package

X M Y. What is mediation? Mediation analysis an introduction. Definition

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A +

Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher

Differential Evolution (DE) "Biologically-inspired computing", T. Krink, EVALife Group, Univ. of Aarhus, Denmark

DGF møde, i Odense DS 1537 Jordankre Prøvning. Disposition

Nonlinear Nonhomogeneous Dirichlet Equations Involving a Superlinear Nonlinearity

Noter til kursusgang 9, IMAT og IMATØ

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen

University of Copenhagen Faculty of Science Written Exam April Algebra 3

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

Numerische Mathematik

Data Assimilation Models

Lax Hopf formula and Max-Plus properties of solutions to Hamilton Jacobi equations

Det er muligt at chekce følgende opg. i CodeJudge: og

Unitel EDI MT940 June Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004)

Industrial Problem Solving Workshop on Medical Imaging. Problem # 2 Rapid Modeling of Internal Structures of Deformable Organs (i.e.

Metal Oxide Varistor:TVM-B Series

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

Spørgsmål 1 (5%) Forklar med relevant argumentation, at den stationære temperaturfordeling i områdets indre er bestemt ved følgende randværdiproblem

Global attractor for the Navier Stokes equations with fractional deconvolution

Peering in Infrastructure Ad hoc Networks

Numerisk simulering af ikke-lineære fænomener inden for geoteknik

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

Nodal set of strongly competition systems with fractional Laplacian

Den nye Eurocode EC Geotenikerdagen Morten S. Rasmussen

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker

Constrained and SNR-Based Solutions for TV-Hilbert Space Image Denoising

Besvarelser til Lineær Algebra Reeksamen Februar 2017

Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff

Second order mean field games with degenerate diffusion and local coupling

Aristoteles Camillo. To cite this version: HAL Id: hal

July 30, SLAC Summer Institute: Scott Dodelson

On the Fučik spectrum of non-local elliptic operators

Forelæsning 11: Kapitel 11: Regressionsanalyse

Statistisk modellering og regressionsanalyse

Eksamen 2014/2015 Mål- og integralteori

ITERATIVE METHODS FOR TOTAL VARIATION DENOISING. C. R. VOGEL AND M. E. OMAN y

Pattern formation Turing instability

PC PSI PT JEAN-MARIE MONIER GUILLAUME HABERER CÉCILE LARDON MÉTHODES ET EXERCICES. Mathématiques. méthodes et exercices. 3 e.

On the Relations Between Fuzzy Topologies and α Cut Topologies

Model Control Design by Jens Juul Eilersen

Statistik og Sandsynlighedsregning 2

Model Control Glove Design by Jens Juul Eilersen

(L + Bolza) control problems as dynamic differential games

Integration m.h.t. mål med tæthed

Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent

A level set based method for the optimization of cast part

Da beskrivelserne i danzig Profile Specification ikke er fuldt færdige, foreslås:

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Orbital order in the spinel ZnV 2 O 4

Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models

Integration m.h.t. mål med tæthed

Time-Domain Inverse Electromagnetic Scattering using FDTD and Gradient-based Minimization

Database. lv/

Physics-Based Signal and Image Processing

Noter til kursusgang 8, IMAT og IMATØ

Parallel Finite Element Methods with Weighted Linear B-Splines

3D NASAL VISTA TEMPORAL

Informationsteknologi Datamatgrafik Metafil til lagring og overførsel af billedbeskrivelsesinformation Del 1: Funktionel beskrivelse

Egentyngd (+Struc. dead load) Glas Nyttiglast balkong Egentyngd (+Struc. dead load) Glas Nyttiglast balkong

p-laplacian problems with nonlinearities interacting with the spectrum

On Magnus integrators for time-dependent Schrödinger equations

Transkript:

Pontryagin Approximations for Optimal Design of Elastic Structures Jesper Carlsson NADA, KTH jesperc@nada.kth.se Collaborators: Anders Szepessy, Mattias Sandberg October 5, 2005

A typical optimal design problem Optimal Design inf l(u), a ρ(u,v) = l(v), v V, ρ: {0,1} ρdx = C, with compliance and bilinear energy functional An alternative formulation inf ρ: {0,1} l(u) a ρ (u,v) f b udx + Γ N f s uds, ρε i j (u)e i jkl ε kl (v)dx. ( ) l(u) + η ρdx, a ρ (u,v) = l(v), v V. Problem Optimal design problems are typically ill-posed i.e. no existence of solution. Cure To relax the admissible set of controls A, ρ A.

A harder inverse problem Optimal design, continued inf ρ Γ (u u given ) 2 ds a ρ (u,v) = l(v), v V. Ill posed due to non-continuous dependence of error in measured data.

Hamilton-Jacobi-Bellman and the Pontryagin Principle Value function T inf {g(x T) + α A 0 u(x,t) = solution to the HJB-equation h(x t,α t )dt}, X t = f (X t,α t ), X(0) = X 0 T inf α A,X(t)=x t h(x s,α s )ds + g(x T ) u t + H(u x,x) {}}{ min α A {u x f (x,α) + h(x,α)} = 0, u(x,t ) = g(x) Differentiation along optimal paths α t, X t, λ t u x (X t,t) gives Pontryagin s Principle Also λ t = λ t f X (X t,α t ) + h X (X t,α t ), λ(t ) = g (X T ) α t = argmin a A {λ t f (X t,a) + h(x t,a)}

Assume H, f,h,g differentiable, λ C 1. Lagrange principle X t = H λ (λ t,x t ) λ t = H X (λ t,x t ) with control determined by Pontryagin principle α t = argmin a A {λ t f (X t,a) + h(x t,a)} Two reasons for non-smooth control: 1. Only Lipschitz continuous Hamiltonian 2. Backward characteristic paths X(t) may collide Remedy for 1: construct a C 2 concave approximation H δ of the Hamiltonian H. Error estimate [Sandberg, Szepessy 2005]: ū u L (R d R + ) = O(δ)

Concave Maximization in Electric Conduction Minimize power-loss in conductive medium [Pironneau 1984] Lagrangian Hamiltonian min ( qϕds + η σdx) div σ ( σ ϕ ) = 0, x σ ϕ = q n H = min σ σvdx + σ (η ϕ λ) dx + }{{} v q(ϕ + λ)ds = q(ϕ + λ)ds min σv dx + σ }{{} s(v) q(ϕ + λ)ds s v

Concave regularization H δ = s δ (η ϕ λ)dx + q(ϕ + λ)ds, By symmetry λ = ϕ the Hamiltonian system reduces to s δ (η ϕ 2 ) ϕ wdx = qwds or div ( s δ (η ϕ 2 ) ϕ(x) ) = 0, s ϕ δ = q, n x Concave maximization problem: ϕ V is the unique maximizer of H δ (ϕ) = s δ (η ϕ(x) 2 )dx + 2 qϕds.

Numerical Examples of Electric Conduction

Optimal Design of an Elastic Structure Lagrangian for compliance minimization l(u) + l(λ) + ρ ( ) η ε i j (u)e i jkl ε kl (λ) dx, }{{} v Hamiltonian H = l(u) + l(λ) + minρvdx. ρ }{{} s(v) Regularization gives Hamiltonian system which by symmetry u = λ reduces to s δ( η εi j (u)e i jkl ε kl (u) ) ε i j (u)e i jkl ε kl (v)dx = l(v) Concave maximization problem: u is the unique maximizer of H δ = 2l(u) + s δ ( η εi j (u)e i jkl ε kl (u) ) dx.

Figure 1: Plot of s δ 0.45. as approximation of ρ [0.001,1]. Compliance =

Figure 2: Plot of the density ρ {0.001,1} after 1, 5 and 200 iterations.

Figure 3: 10 iterations when only removing material. Compliance = 0.51.

References [1] Allaire G., Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, 146. Springer-Verlag, New York, 2002. [2] Bendsø M. P. and Sigmund O., Topology optimization. Theory, methods and applications. Springer-Verlag, Berlin, 2003. [3] Pironneau O., Optimal Shape Design for Elliptic Systems. Springer Series in Computational Physics. Springer-Verlag, New-York, 1984. [4] Sandberg M. and Szepessy A., Convergence rates of Symplectic Pontryagin Approximations in Optimal Control Theory, to appear in M2AN Mathematical Modelling and Numerical Analysis. Preprint available at http://www.nada.kth.se/ szepessy.