Bio-affald i den grønne omstilling

Relaterede dokumenter
TOPWASTE. Affald og 100% vedvarende energi. Seniorforsker Marie Münster Energi system analyse, DTU MAN ENG, Risø 6/6 2013

Genanvendelse ja tak - men i et livscyklusperspektiv

IDA National energiplan Elsystemer

Håndtering af det organiske affald Hvad giver mening miljømæssigt?

Innovation af affaldssektoren under fremtidens rammebetingelser. Henrik Wenzel Syddansk Universitet

85/15 Moving energy. forward. Charles Nielsen, Director R&D. Kystdirektoratet 28. november Fremtidens anvendelse af søterritortiet

Biogas i den cirkulære økonomi

Release of resultsfrom Cross Border Biowaste with focus on the Danish area. and joint conclusions. Ph.D. Stud. Morten Bang Jensen

Anvendelse af biomasse i scenarier for 100% vedvarende energi

Biogas- og bioraffinaderi platforme i Danmark - Et indspil til

Afgrænsning af miljøvurdering: hvordan får vi den rigtig? Chair: Lone Kørnøv MILJØVURDERINGSDAG 2012 Aalborg

Præsentation af erkendelserne fra SYFRE

Brug af biomasse til energiformål

Transition to Renewable Energy until in the EU, Denmark, and

TMC - Klima

/Danish waste management model

100% vedvarende energi

Fremtidens indsamling og sortering af bioplast og fossilplast hvad vej skal vi gå?

Statistical information form the Danish EPC database - use for the building stock model in Denmark

Small Autonomous Devices in civil Engineering. Uses and requirements. By Peter H. Møller Rambøll

Local Heating Concepts for Power Balancing

Experiences of Region Zealand

Brint og grønne brændstoffers rolle i fremtidens smarte energi systemer

Biogas og andre VE-gassers rolle i fremtidens energisystemer - carbon footprint konsekvenser. Henrik Wenzel, Syddansk Universitet

Procuring sustainable refurbishment

PlanEnergi. Independent consultant Established in 1983 Specialised in:

Central Statistical Agency.

Transforming DONG Energy to a Low Carbon Future

CASE - Energy renovation of buildings and 4.th Generation of District Heating

Hvordan kan brint reducere behovet for biomasse i fremtidens energisystem?

Skovgaard International In Denmark and Abroad

The soil-plant systems and the carbon circle

Possibilities for Reuse of Calcium Carbonate Pellets from Drinking Water Softening

Developments and outlooks for biogas in Denmark. Danish-German Bioenergy: Technologies, Opportunities and Outlook March 15, 2016

KALK- OG TEGLVÆRKSFORENINGEN. CPR Sustainable Construction

Supermarkeder og Smart Grid muligheder for fleksibelt elforbrug

Bioenergy and Renewable Energy Resources Husum RES messe and seminars Organized by Furgy, IHK URS et al. Friday the 21.

The Danish Energy System - Developments and Plans

Future Gas projektet. Gas som en integreret del af det fremtidige Energisystem

Climate adaptation in Denmarkand a groundwater dilemma

State of Mechanical Biological Waste Treatment in Germany Dipl.-Ing. Dr. Bernd Märtner

Temadag i Brancheforeningen for Biogas 2. marts 2015

How much energy does this operation use?

100% VE i EU med eksempler Towards 100% Renewable Energy Supply within the EU, examples. Gunnar Boye Olesen

Livscyklusvurdering af økologiske og konventionelle planteavlssædskifter

Materialestrømsanalyse, carbon footprint og økonomisk vurdering af alternative veje til indsamling og behandling af fynsk husholdningsaffald

Energy System Analysis of Waste-to-Energy technologies

Energy-saving potential A case study of the Danish building stock. Kim B. Wittchen Danish Building Research Institute, SBi AALBORG UNIVERSITY

Interim report. 24 October 2008

Waste and District Heating Aarhus

Handelsbanken. Lennart Francke, Head of Accounting and Control. UBS Annual Nordic Financial Service Conference August 25, 2005

Baltic Development Forum

100% vedvarende energi i Danmark og EU - behov og planer for en omstilling

DANMARKS NATIONALBANK

BALANCERING AF FJERNVARME FOR ØGET OPTAG AF LAVTEMPERATUR OVERSKUDSVARME

The effects of occupant behaviour on energy consumption in buildings

Global carbon cycle studies with LPJ-GUESS

Carbondebt(kulstofgæld) hvad er det og hvordan reduceres det?

Fire årtier med et stabilt energiforbrug

BioConcens: Biogas Socio-economy


House of Energy Energilagring. Sammentænkning af energisystemerne - Hvad kan gassen byde på? Thea Larsen, adm. direktør

TEKSTILER. i det nye affaldsdirektiv. - Kravene til, og mulighederne for, de danske aktører

Balancering af energisystemer, gassystemet i fremtiden: grønt, fleksibelt, effektivt

De overordnede konklusioner fra den nationale biomasseanalyse. Henrik Wenzel, Syddansk Universitet

Baggrund og introduktion til fagområder

Fra strategi til europæisk regulering af energisektoren. Energifondens Summer School, Sorø, August 2019

KOD skal da i biogasanlæggene

Vedvarende energi - rollefordelinger

The Green Power Plant Seahorn Energy

Ressourcer, affald og genanvendelse i Europa

EU på Samsø energi og miljø

netværk: : Integrerede lavenergiløsninger til nye bygninger

PEMS RDE Workshop. AVL M.O.V.E Integrative Mobile Vehicle Evaluation

University Medical Center of Princeton David Bodnar Construction Management Senior Thesis

Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet

Klimastrategi Københavns Lufthavne A/S

»Industrial water efficiency. Danish Water Forum, 30. april 2013 Karsten Nielsen, Forretningschef - vand, miljø og energi

Miljø- og energiforhold ved genbrug og genanvendelse af tekstiler

Thomas Fruergaard Astrup Genanvendelse af plast. Hvorfor, hvordan og hvor er udfordringerne?

TI 4.- og 6. april 2017 Energieffektivitet i Industrien POEM

Fjerde Generation Fjernvarme

Lars Yde, Hydrogen Innovation & Research Centre v/ HIH Århus Universitet

Energi i fremtiden i et dansk perspektiv

Mere biomasse. Hvorfra, hvordan og hvor meget? Niclas Scott Bentsen. Institut for Geovidenskab og Naturforvaltning

FOKUSGRUPPE TYSKLAND. LOGSTOR Claus Brun

Midt Energistrategi To-dages seminar for hele partnerskabet Scandic Silkeborg, marts 2015 Input til strategiplanerne

Overview challenges the methodology -short version

Fremtidsbilleder i energisektoren

SiteCover Supplying fair weather for the construct ionindust ry

Muligheder og udfordringer ved overskydende elproduktion. Seniorkonsulent Steen Vestervang, Energinet.dk

Supplier development så langt kan man nå i samarbejdet mellem kunde og leverandør. Søren Jepsen 13. Juni 2013

Biomasse ved konventionel landbrugsdrift

Skalerbare elektrolyse anlæg til produktion af brint i forbindelse med lagring af vedvarende energi

Totally Integrated Automation. Totally Integrated Automation sætter standarden for produktivitet.

Solceller i 100 % vedvarende energisystemer Støttemuligheder, finansiering og virkemidler

Fossil Fri Thy: Affald FC: 29. nov. 2012

GREEN KEY GREEN DREAMS

Effektiv udnyttelse af træ i energisystemet

Heat Roadmap Europe: Markedspotentiale I EU

Transkript:

Bio-affald i den grønne omstilling Ciprian Cimpan Marianne Rothmann Birgitte Lilholt Sørensen Henrik Wenzel SDU Life Cycle Engineering, www.sdu.dk/lifecycle Affaldsdage 2016, Vejlefjord Hotel, Vejle, 10-11 november 2016 Dansk Affaldsforening

Karakteristik af affald på Fyn - 489,000 inhabitants (40% in Odense) - 10 municipalities - Average density 100 persons/km 2-27% multi-family and 73% singlefamily residences - 277,000 tonnes/y total MSW generation 570 kg/inh./y 2

Karakteristik af affald på Fyn 3

Genvindingsprocenter på Fyn - 2013 Recycling rates in each municipality according to appendix 5 calculations (Miljøstyrelsen, 2014) supported by pie charts. The size of the pie chart indicates the magnitude of material collected. 4

Materialegenvinding på Fyn - 2013 Paper Cardboard Glass Metal Plastics Assens 71 % 55 % 51 % 52 % 32 % Faaborg-Midtfyn 64 % 38 % 69 % 62 % 25 % Kerteminde 47 % 64 % 86 % 50 % 44 % Langeland 69 % 53 % 83 % 53 % 23 % Middelfart 95 % 43 % 62 % 98 % 22 % Nordfyn 54 % 30 % 79 % 53 % 14 % Nyborg 72 % 44 % 74 % 36 % 31 % Odense 75 % 30 % 79 % 28 % 21 % Svendborg 52 % 29 % 66 % 43 % 11 % Ærø 41 % 73 % 72 % 34 % 21 % Funen, Total 69 % 38 % 73 % 44 % 23 % 5

Affaldsforbrænding på Fyn - 2013 Waste incineration plant (WtE) Quantity of residual waste [tonnes] Share of the residual waste Odense 82,687 72.6 % Krafvarmeværk A/S Svendborg 22,081 21.1 % Kraftvarmeværk A/S Energnist 7,022 6.3 % Total 111,790 100 % 6

Bio-affaldspotentiale på Fyn - 2015

Bio-affaldspotentiale på Fyn - 2015 Total Potential Total low collection Total high collection Singlefamily Multifamily Singlefamily Multifamily Singlefamily Multifamily [tonnes] [tonnes] [tonnes] [tonnes] [tonnes] [tonnes] [tonnes] [tonnes] [tonnes] Assens 3970 3660 310 2320 2200 130 2750 2560 190 Faaborg- Midtfyn 5420 4980 440 3160 2990 180 3750 3490 260 Kerteminde 2530 2240 300 1460 1340 120 1740 1570 180 Langeland 1840 1720 130 1080 1030 60 1280 1200 80 Middelfart 4460 3920 550 2570 2350 220 3070 2740 330 Nordfyn 3530 3330 200 2080 2000 80 2460 2340 120 Nyborg 3380 2690 690 1890 1620 280 2300 1890 420 Odense 22490 13750 8740 11750 8250 3500 14870 9630 5250 Svendborg 6780 5340 1440 3780 3210 580 4600 3740 870 Ærø 910 840 70 530 510 30 630 590 50 TOTAL 55310 42470 12870 30620 25500 5180 37450 29750 7750

Analyser & metoder Conceptual design of new waste management systems - Separate collection of recyclables and organic waste/ biowaste - Mechanical processing and sorting of residual waste before WtE Mass and energy flow modelling - Detailed mapping of the current waste management system - Mass flow model development for simulation of different management strategies Carbon footprint - system modeling based on consequential life cycle assessment methodology (i.e. system expansion to include processes that react to changes in waste management and use of marginal data) Socio- and business economics assessment - Under work at the moment 9

Omfang: 24 forgrundsscenarier SF = Single Family households, MF = Multi Family households Systems archetypes Separate collection Treatment of remaining residual waste WtE: Incineration CHP CS-ADwet: Central sorting with wet digestion CS-ADdry: Central sorting with dry digestion CS-Biodry: Central sorting with biodrying System 0 Existing schemes 0-WtE 0-CS-ADwet 0-CS-ADdry 0-CS-Biodry System 1 Existing schemes + Biowaste SF System 2 Existing schemes + Biowaste SF and MF 1-WtE 1-CS-ADwet 1-CS-ADdry 1-CS-Biodry 2-WtE 2-CS-ADwet 2-CS-ADdry 2-CS-Biodry System 3 Dual-stream 3-WtE 3-CS-ADwet 3-CS-ADdry 3-CS-Biodry System 4 Dual-stream + Biowaste SF System 5 Dual-stream + Biowaste SF and MF 4-WtE 4-CS-ADwet 4-CS-ADdry 4-CS-Biodry 5-WtE 5-CS-ADwet 5-CS-ADdry 5-CS-Biodry 10

Nye elementer Long-term future perspective on the energy system 2 tracks towards the future energy system in DK 2050 4 time periods (2014-2020, 2020-2035, 2035-2050 and beyond 2050) Quality aspect of waste-derived energy Effects of flexibility in production of waste-derived electricity and heat which leads to different technologies being affected on the market Indirect effects of MSW management strategies Effects/Synergy with manure-biogas in DK co-digestion of biowaste with manure Effects of recycling on already existing WtE capacity liberated capacity by increased recycling can be offered on the market 11

Resultater: Materialegenvinding Material efficiency results - separate collection and treatment % functional unit / year System System 0-CS System System 2-CS System System 3-CS System System 5-CS 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0-WtE ADwet ADdry Biodry 2-WtE ADwet ADdry Biodry 3-WtE ADwet ADdry Biodry 5-WtE ADwet ADdry Biodry 14% 14% 14% 14% 31% 31% 31% 31% 37% 33% 44% 50% 20% 20% 30% 30% 59% 55% 65% 71% 4% 4% 4% 34% 34% 6% 6% 6% 24% 24% 23% 23% 23% 23% 4% 4% 4% 23% 23% 23% 23% 6% 6% 6% 2% 2% 2% 2% 2% 2% 2% 2% 40% 40% 40% 40% 40% 40% 40% 40% 27% 27% 27% 27% 27% 27% 27% 27% 0% Collected for recycling Collected biowaste Incineration Central sorting materials Central sorting RDF Central sorting organics Separate collection level 12

13

Resultater: Materialegenvinding 14

Resultater: Carbon Footprint Carbon footprint (net) - reference system without biowaste vs. alternatives with biowaste (mono- and co-digestion with animal slurries) 15

tonne CO 2 eq. /tonne imported waste Resultater: effekten af affaldsimport Low eff. = landfill without gas utilization High eff. = landfill with gas utilization Present (2012-2020) Mid-term (2020-2035) (Long-term (2035-2050)) Low eff. Landfill High eff. Landfill Low eff. Landfill High eff. Landfill Low eff. Landfill High eff. Landfill 1 0,5 0-0,5-1 -1,5 Preparation UK Incineration emissions DK Avoided landfilling UK Transport (ship+land) Avoided energy DK Net 16

Nogle konklusioner Materialegenvinding hvordan når vi målene? - Kildesortering og indsamling af bio-affald er den nemmeste og mest omkostningseffektive måde at nå målet om 50% genvinding på - En genvindingsprocent over 65% er opnåelig - Materialegenvinding vil udgøre den væsentligste miljøgevinst ved affaldshåndtering i en vedvarende energi fremtid Carbon footprint - GHG gevinsten ved W-t-E falder i fremtiden, når energisystemet udvikles mod vedvarende energi - Fremtidige GHG besparelser ved W-t-E afhænger systemintegrationen fx RDF lagring til brug for varme i vintersæsonen - Bio-affald bør indsamles separat og prioriteres som co-substrat til gylle-biogas - Import af affald til danske affalds CHP anlæg er klimavenligt på kort til mellemlangt sigt. Import støtter på denne måde en transition mod større grad af materialegenvinding. På langt sigt er der større klimagevinst ved at deponere affald på moderne deponier end ved W-t-E 17

Forbehandling af kildesorteret bio-affald

Forbehandling af kildesorteret bio-affald

Lokalisering af og transport til og fra forbehandlingsanlæg

Lokalisering af og transport til og fra forbehandlingsanlæg

Omkostninger ved forbehandling Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Capacity tonnes/year 10,000 15,000 20,000 30,000 60,000 Operation hours hours/year 1,940 1,940 3,880 3,880 3,880 Investment buildings 1000 kr. 5,185 5,185 5,185 5,185 5,185 Investment equipment 1000 kr. 12,500 20,020 12,500 20,020 23,870 Investment aeration and biofilter 1000 kr. 851 851 851 851 851 Other (10%) 1000 kr. 1,336 2,088 1,336 2,088 2,473 Total investment 1000 kr. 19,872 28,144 19,872 28,144 32,379 Capital expenditure 1000 kr./year 1,380 1,989 1,380 1,989 2,301 Maintenance 1000 kr./year 452 678 452 678 793 Insurance 1000 kr./year 130 182 130 182 209 Operators 1000 kr./year 500 500 1,000 1,000 1,000 Electricity and water 1000 kr./year 396 563 775 1,110 2,115 Operational costs 1000 kr./year 2,858 3,913 3,737 4,959 6,418

Omkostninger ved forbehandling

Transport Transport Methane yield Price Reject biopulp incineration kr. per ton kr. per ton Nm 3 /ton VS kr. per Nm 3 CH 4 kr. per ton biopulp biopulp Pessimistic values 10 5 350 2 450 Optimistic values 5 0 400 2.5 350 Omkostninger ved forbehandling biopulp reject

Transport Transport Methane yield Price Reject biopulp incineration kr. per ton kr. per ton Nm 3 /ton VS kr. per Nm 3 CH 4 kr. per ton biopulp biopulp Pessimistic values 10 5 350 2 450 Optimistic values 5 0 400 2.5 350 Omkostninger ved forbehandling biopulp reject Odense Kommune Fyn samlet

Restaffald Bioaffald Restaffald Bioaffald Papir/pap Plast/metal Restaffald Bioaffald Papir/pap Plast Glas/flasker Metal Scenarie 1 Forbehandling Pulpning Bioforgasning Mulige scenarier fremover? Scenarie 2 Forbehandling Pulpning Bioforgasning Central sortering Kilde opdelt Glas/flasker Scenarie 3 Forbehandling Pulpning Bioforgasning Central sortering Restaffald Glas/flasker Scenarie 4 Forbehandling Pulpning Bioforgasning Central sortering Restaffald/bioaffald Glas/flasker

Full report at: http://www.sdu.dk/en/om_sdu/institutter_cent re/lifecycleengineering/researchpublications Thank you! 27

Extra slides for Q&A

Different qualities for electricity and heat Continuous electricity or baseload power production is associated with power plants with continuous operation and supply of electricity throughout the year, with breaks only for planned maintenance or service. Flexible electricity represents a balancing power production, and is associated with power plants which can operate based on market demand. Continuous heat, (same as continuous electricity) accounts for the heat generated from waste incineration (together with electricity) and generated in the utilization of biomethane (heat as a by-product of electricity production). Flexible heat here accounts for heat generation from combustion of RDF in waste incineration plants. RDF is assumed prioritized (stored) for heat generation in the cold part of the year. 29

Waste management considering the future evolution of Danish energy Continuous and flexible electricity and heat will replace different marginal production depending on time perspective Electricity Heat 2012-2020 Present Continuous 100 % coal power 100 % natural gas Flexible 100 % coal power 100 % natural gas 2020-2035 Mid-term Continuous 10 % coal, 5 % natural gas, 18 % biomass 1, 66 % wind power 50 % heat pumps and 50 % natural gas Flexible 100 % coal power 100 % natural gas 2035-2050 Long-term Continuous 5 % coal, 5 % natural gas, 15 % biomas 2 and 75 % wind and solar power 50 % heat pumps, 25 % biomass and 25 % natural gas Flexible 25 % coal, 25 % natural gas, 50 % biomass 2 50 % biomass and 50 % natural gas Beyond 2050 Continuous 100 % wind and solar power 80 % heat pumps and 20 % biomass Flexible 100 % biomass 2 100 % biomass [1] The biomass marginal is used in direct combustion CHP [2] The biomass marginal is used in wood gasification with syngas reforming to SNG stored and used for power 30

Marginal biomass for future energy production A progressive biomass marginal, which reflects an increasing demand for biomass over time. A dirty biomass marginal, which reflects the use of biomass with a high carbon footprint in all four time perspectives, namely harvest from existing boreal forests. Progressive biomass marginal 100 years 20 years amortisation amortisation (kg CO₂ per MJ) (kg CO₂ per MJ) Dirty biomass marginal 100 years 20 years amortisation amortisation (kg CO₂ per MJ) (kg CO₂ per MJ) Present (2012-2020) 0 0 0.074 0.153 Mid-term (2020-2035) 0 0 0.074 0.153 Long-term (2035-0.009 0.043 0.074 0.153 2050) Beyond 2050 0.041 0.123 0.074 0.153 31

Cascading effects Combustible waste imports Current waste incineration capacity will still be utilized fully in the future Recycling liberates capacity which can be offered on the market Importing of combustible waste from countries which still landfill brings GHG benefits, and is foreseeable to happen until 2035 32

Biowaste co-digestion with animal manure - avoiding reference manure handling There is strong demand for cheap biomass co-substrates biowaste can contribute to more manure biogas production 33

Biowaste co-digestion with animal manure - avoiding maize production Alternatively to promoting more manure-biogas, biowaste can substitute other co-substrates, such as energy crops in the biogas plants 34

Distribution of population in % within the region of Funen (left) and population density in persons/km 2 in each of the 10 municipalities (right) 35

Share of Population (2014) Share of housings (2014) Demography of the catchment area 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Urban areas (byområder) Rural areas (Landdistrikter) Primary housing Secondary housing 36

Distribution of single family households (left) and multifamily households (right) 37

Recyclables 40% in Odense 38

Recyclables collected amounts and modes of collection 39