SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt

Relaterede dokumenter
Spørgsmål 1 (5%) Forklar med relevant argumentation, at den stationære temperaturfordeling i områdets indre er bestemt ved følgende randværdiproblem

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt

OPGAVE 1. f(t) = f 0 cos(ωt)

yt () p0 cos( t) OPGAVE 1

STRUCTURAL DYNAMICS, VOL. 9. Computational Dynamics

Besvarelser til Lineær Algebra Reeksamen Februar 2017

Chapter 6. Hydrogen Atom. 6.1 Schrödinger Equation. The Hamiltonian for a hydrogen atom is. Recall that. 1 r 2 sin 2 θ + 1. and.

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium

Pattern formation Turing instability

Multivariate Extremes and Dependence in Elliptical Distributions

Exercise 6.14 Linearly independent vectors are also affinely independent.

Basic statistics for experimental medical researchers

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

Computing the constant in Friedrichs inequality

19.3. Second Order ODEs. Introduction. Prerequisites. Learning Outcomes

Sign variation, the Grassmannian, and total positivity

what is this all about? Introduction three-phase diode bridge rectifier input voltages input voltages, waveforms normalization of voltages voltages?

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528)

Eksamen i Signalbehandling og matematik

DoodleBUGS (Hands-on)

Linear Programming ١ C H A P T E R 2

Skriftlig Eksamen Beregnelighed (DM517)

Adaptive Algorithms for Blind Separation of Dependent Sources. George V. Moustakides INRIA, Sigma 2

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

Frequency Dispersion: Dielectrics, Conductors, and Plasmas

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende

Avancerede bjælkeelementer med tværsnitsdeformation

Statistik for MPH: 7

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

MONOTONE POSITIVE SOLUTIONS FOR p-laplacian EQUATIONS WITH SIGN CHANGING COEFFICIENTS AND MULTI-POINT BOUNDARY CONDITIONS

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan

Skriftlig Eksamen Diskret matematik med anvendelser (DM72)

Matematik F2 Opgavesæt 6

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3

Some results for the weighted Drazin inverse of a modified matrix

Probabilistic properties of modular addition. Victoria Vysotskaya

User Manual for LTC IGNOU

Wigner s semi-cirkel lov

Mat 1. 2-timersprøve den 17. maj 2016.

DM549 Diskrete Metoder til Datalogi

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A +

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU

ECE 551: Digital System * Design & Synthesis Lecture Set 5

Pontryagin Approximations for Optimal Design of Elastic Structures

Det er muligt at chekce følgende opg. i CodeJudge: og

Angle Ini/al side Terminal side Vertex Standard posi/on Posi/ve angles Nega/ve angles. Quadrantal angle

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1

Black Jack --- Review. Spring 2012

DOK-facitliste DOK. DOK-facitliste 1

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

On the Relations Between Fuzzy Topologies and α Cut Topologies

Aktivering af Survey funktionalitet

On the complexity of drawing trees nicely: corrigendum

University of Copenhagen Faculty of Science Written Exam April Algebra 3

Slot diffusers. Slot diffusers LD-17, LD-18

Resource types R 1 1, R 2 2,..., R m CPU cycles, memory space, files, I/O devices Each resource type R i has W i instances.

Reexam questions in Statistics and Evidence-based medicine, august sem. Medis/Medicin, Modul 2.4.

Eksamen i Mat F, april 2006

Vina Nguyen HSSP July 13, 2008

To find the English version of the exam, please read from the other end! Eksamen i Calculus

University of Copenhagen Faculty of Science Written Exam - 8. April Algebra 3

Matematisk modellering og numeriske metoder. Overskrifter

MultiProgrammer Manual

Kortfattet svar til eksamen i Matematik F2 d. 21. juni 2017

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

IBM Network Station Manager. esuite 1.5 / NSM Integration. IBM Network Computer Division. tdc - 02/08/99 lotusnsm.prz Page 1

HARMONIC BOUNDARY VALUE PROBLEMS IN HALF DISC AND HALF RING Heinrich Begehr, Tatyana Vaitekhovich. 1. Introduction

Evaluating Germplasm for Resistance to Reniform Nematode. D. B. Weaver and K. S. Lawrence Auburn University

Morphological Image Processing

Givet en cirkulr plade med den stationre temperaturfordeling u(r;), hvor u(r;) tilfredsstiller

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

On Magnus integrators for time-dependent Schrödinger equations

RoE timestamp and presentation time in past

Unitel EDI MT940 June Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004)

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til.

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Additive Property of Drazin Invertibility of Elements in a Ring

X M Y. What is mediation? Mediation analysis an introduction. Definition

Rotational Properties of Bose - Einstein Condensates

F o r t o l k n i n g e r a f m a n d a l a e r i G I M - t e r a p i

UNISONIC TECHNOLOGIES CO.,

OPGAVE 1. Spørgsmål 1 (15%) Opstil bevægelsesligningen med tilhørende begyndelsesbetingelser for massen i punkt D.

Classical Mechanics Free-Body Diagrams and Forces

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

28 April 2003 Retrospective: Semicore Visit

DANISH METEOROLOGICAL INSTITUTE MINISTRY OF TRANSPORT TECHNICAL REPORT 02-07

DANSK INSTALLATIONSVEJLEDNING VLMT500 ADVARSEL!

Matematisk modellering og numeriske metoder. Lektion 10

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.

CISM COURSE COMPUTATIONAL ACOUSTICS

Noter til kursusgang 8, IMAT og IMATØ

Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5

United Nations Secretariat Procurement Division

Skriftlig Eksamen Beregnelighed (DM517)

Circulating Beams Søren Pape Møller ISA / DANFYSIK A/S Chapter 4 i Wilson - 1 hour

Den nye Eurocode EC Geotenikerdagen Morten S. Rasmussen

Note om Laplace-transformationen

applies equally to HRT and tibolone this should be made clear by replacing HRT with HRT or tibolone in the tibolone SmPC.

Stockton dataset. 1 variograms variogram figures variogram envelopes directional variogram... 4

Transkript:

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 3. juni 5, kl. 8.3-.3 Alle hjælpemidler er tilladt OPGAVE u = y B u = u C A x c u = D u = Figuren viser en homogen cirkulær plade med radius c. Langs periferisegmentet AB holdes temperaturen konstant på værdien u. Langs den øvrige del af periferien BCD er temperaturen konstant lig. Spørgsmål (% Bestem den stationære temperaturfordeling i pladen.

OPGAVE f(t t T T T T T Spørgsmål (% Figuren viser grafen for en funktion f(t, der er periodisk med perioden T på intervallet [, [. Bestem den Laplacetransformerede af f(t. Spørgsmål (% Bestem dernæst den Laplacetransformerede af funktionen g(t = f(t + U(t τ t T e t/t hvor f(t er den i spørgsmål definerede funktion, τ er en positiv konstant, og U( er enhedsstepfunktionen defineret ved U(t τ = {, t < τ, τ t <

3 OPGAVE 3 Givet begyndelsesværdiproblemet ÿ(t +.ẏ(t + 4y(t = sin(.t, t ], [ y( =, ẏ( = hvor ẏ(t = d y(t betegner differentiation mht. t. dt Spørgsmål (5% Bestem funktionsværdien y(.6 ved numerisk integration med den generaliserede α-algoritme med λ =.8, og tidsskridtet t =.3. Spørgsmål (5% Følgende spørgsmål ønskes besvaret med relevant argumentation: : Er algoritmen numerisk stabil med det anførte tidsstep? : Er algoritmen forbundet med numerisk dæmpning, og i givet fald vil dette være af betydning?

4 OPGAVE 4 Givet et generelt egenværdiproblem defineret ved følgende masse- og stivhedsmatricer 4 M =, K = 4 Spørgsmål (% Bestem egenværdierne og de tilhørende egenvektorer normeret til modalmasse ved anvendelse af generaliseret Jacobiiteration. Opgaven betragtes som løst, når et sweep er gennemført. Det understreges, at uagtet en analytisk løsning på problemet let kan tilvejebringes, ønskes kun den numeriske løsning bestemt.

5 OPGAVE 5 Det generelle egenværdiproblem defineret i opgave 4 betragtes igen. Spørgsmål (% Undersøg ved hjælp af Gauss faktorisering hvor mange egenværdier, der er mindre end.3. Spørgsmål (% Besvar samme spørgsmål ved hjælp af et Sturmsekvens check.

6 SOLUTIONS PROBLEM Question : The boundary value problem for the stationary temperature in a circular plate of radius c is given as, cf. p. 56 u r + u r r + u =, r ], c[, θ [, π[ r θ { u, θ [, π/] u(c, θ = f(θ =, θ [π/, π[ ( The separation method is used, i.e. we search for product solutions u(r, θ = R(rΘ(θ to the partial differential equation in (. Insertion and separation of the variables provides the following ordinary differential equations R (rθ(θ + r R (rθ(θ + r R(rΘ (θ = R (r + r R (r R(r = Θ (θ Θ(θ = λ r R (r + rr (r λ R(r = ( Θ (θ + λ Θ(θ = (3 ( is a Cauchy-Euler differential equation, cf. p. 94. The auxiliary equation reads, see (4.7- m(m + m λ = m = { λ λ (4

7 Then, the general solution becomes, cf. (4.7- R(r = c r λ + c r λ (5 Since R(r as r, and λ >, the geometrical boundary condition that finite solutions should exist at r = compel us to impose c = in (5, so R(r = c r λ. The general solution of (3 reads Θ(θ = c 3 cos(λ θ + c 4 sin(λ θ (6 The temperature field must be continous at an arbitrary point. This means that the temperature at the positions (r, θ + and (r, θ + π must be the same, i.e. u(r, θ + = u(r, θ + π (7 Hence, the solutions searched for must be periodic in θ with the period π. In (6 this requires that λ = λ n = n, n =,,,... Then, product solutions which satisfy the partial differential equation in (, the geometrical boundary condition at r =, and the periodicity condition with respect to θ (7 has the form u n (r, θ = r (A λn n cos(λ n θ + B n sin(λ n θ λ n = n, n =,,,... (8 where A n = c c 3 and B n = c c 4. Notice that u (r, θ A. From the superposition principle follows that the following linear combination of solutions of type (8 equally fulfills the partial differential equation, the geometrical boundary condition at r = and the periodicity condition u(r, θ = u n (r, θ = A + n= n= r (A n n cos(n θ + B n sin(n θ (9 What remains is to chose the expansion coefficients A n and B n, so the boundary condition u(c, θ = f(θ in ( is fulfilled. This implies that

8 f(θ = A + n= c (A n n cos(n θ + B n sin(n θ ( ( represents a Fourier series of f(θ. Comparison with Definition.5, p.49, Eqs. (.-8 - (.-, provides with p = π A = a = π f(θdθ = π π π A n = a n c n = c n π B n = b n c n = c n π π π π π f(θ cos(n θdθ = c n π f(θ sin(n θdθ = c n π π/ π/ π/ u dθ = u 4 ( u cos(n θdθ = u nπ nπc sin n u sin(n θdθ = u nπc n ( ( nπ cos ( Hence, the final solution becomes u(r, θ = 4 u + u n= ( r n ( nπ sin nπ( c ( ( nπ cos(n θ + cos sin(n θ ( PROBLEM Question : Since the function f(t is periodic with the period T, Theorem 7., p. 345 may be used. Then, F(s = L { f(t } = [ e st] T/ = e st s s ( + e st/ e st T e st f(tdt = e st T/ ( + e st/ ( e st/ s( e st/ = e st dt = (

9 Question : At first the following identity is formulated t T e t/t = t τ + τ T ( t τ e (t τ+τ/t = e τ/t T e (t τ/t + τ T e (t τ/t ( Due to the linearity property of the Laplace transform, and the use of Theorem 7.7, p. 39, it then follows that L {U(t τ t } T e t/t = { } t τ e τ/t L T e (t τ/t U(t τ + τ { } T e τ/t L e (t τ/t U(t τ { } t e τ/t e τs L + τ } T e τ/t e τs L {e t/t T e t/t = (3 The following results may be derived { t L T e t/t } = { } t L T e t/t = T e st t T e t/t dt = T e u ue s u du, s = st ( s + = T ( (4 Ts + where Theorem 7.6, p. 34 has been used with a = and f(u = u. Similarly, using Theorem 7., p. 3 with a = } L {e t/t = T e u e s u du = T s + = T Ts + (5 Then, L {U(t τ t } T e t/t ( = e τ(s+/t T ( + τ Ts + Ts + (6

Finally, from ( and (6 L { g(t } = ( s ( T + e st/ + e τ(s+/t ( + τ Ts + Ts + (7 PROBLEM 3 Question : The "matrices" of the equation of motion read } M =, C =., K = [4], f n = sin(. t n x =, ẋ = ( It follows that the undamped eigenfrequency and the damping ratio of the system becomes ω = 4 =, ζ =. =.5 ( The integration parameters of the generalized α-method follows from Box.5, p.6 α f = λ D λ D + α m = λ D λ D + =.8.8 + =.8.8 + = 4 9 = 3 γ = + α f α m = + 4 9 = 3 8 β = ( γ + = ( 4 4 8 + 5 = 8 (3 Next, the algorithm in Box.4, p. 57 is followed. The initial acceleration is calculated at first

ẍ = M ( f Cẋ Kx = (4 The dynamic mass matrix becomes, cf. (-7 M = ( ( ( α m M + αf γ tc + β t K =.7386 (5 Next, the acceleration at t = t = t =.3 follows from (-6 with f = and f = sin(..3 =.589 ẍ = ẍ + M [α f f + ( α f f Mẍ Cẋ Kx ( αf ( tcẍ + K( tẋ + t ẍ ] =.443 (6 The updated displacement and velocities at the time t =.3 follow from (-3 and (-4 ( ( x = x + ẋ t + β ẍ + β ẍ t =.3 (7 ( ( ẋ = ẋ + γ ẍ + γ ẍ t =.8 (8 Next, the same loop is repeated with t =.6, which means that f = sin(..6 =.95. The following results are obtained x =.636 ẋ =.6 (9 ẍ =.698 The corresponding exact results at t =.6 become x(.6 =.638 ẋ(.6 =.837 ẍ(.6 =.6637 (

Question : The criteria for unconditional stability of the generalized α-algorithm follow from (-3 γ = 8 α m = 3 β = 5 8 ( α f = 4 9 γ = 8 + α m α f = 8 The structural damping enhance the numerical stability of the algorithm. Hence, it can be concluded that the algorithm is numerical stable for an arbitrary time steps. Consequently, it will also be stable at the time step t =.3. The numerical damping ratio is of the order of magnitude ζ num = O ( κ, where κ = ω t. As a consequence ζ num is assumed to be very small for all practical time steps. Actually, with κ =.3 =.6 it is seen from Fig. -6 that this results in a numerical damping ratio, which is indeed ignorable compared to the structural damping ratio of ζ =.5.

3 PROBLEM 4 Question : The algorithm is performed as described in Box 6.4. The initial matrices are 4 M = M =, K = K = 4, Φ = ( In the st sweep the following calculations are performed for (i, j = (,, as specified by (6-, (6-, (6-3, (6-5: 4.5 ( a = =.75 4 4 { α =.6667 β =.5 4.5 ( b = =. 4 4.5.5 P =.6667, Φ = Φ P =.6667 3...3333 4.4444..6667 M = P T M P =...5, K = P T K P =. 6...3333.5..6667.. ( Next, the calculations are performed for (i, j = (, 3 :.3333 (.6667 a = =.75 4.4444 3. { α =.97 4.4444.3333 3. (.6667 β =.44 b = =. 4.4444 3..44..5.44 P =, Φ = Φ P =.6667..743.97.97.. 5.463.5486. 5.389.97. M = P T M P =.5486..5, K = P T K P =.97 6....5.54.. 3.39 (3

4 Finally, to end the st sweep the calculations are performed for (i, j = (, 3 : 3.39.5.54 (. a = =.689 6..54. 3.39 { α =.6544 6..5. (. β =.4749 b = =.9494 6..54. 3.39..38.6489 P =.4749, Φ 3 = Φ P =.6667.795.6.6544.97.6544. 5.463.5486.65 5.389.97.5 M 3 = P T M P =.5486.889., K 3 = P T K P =.97 8.7..65..958.5. 3.743 (4 At the end of the nd and 3rd sweep the following estimates are obtained for the modal matrix and the transformed mass and stiffness matrices.6855.3946.878 Φ 6 =.9965.853..3699.789.88 5.8575.5.3 5.584.34.6 M 6 =.5.874., K 6 =.34 9.496..3..56.6. 4.4.687.393.879 Φ 9 =.997.886..3745.7846.879 5.8577.. 5.583.. M 9 =..873., K 9 =. 9.499....56.. 4.4 (5 Presuming that the process has converged after the 3rd sweep the eigenvalues and normalized eigenmodes are next retrieved by the following calculations, cf. Box. 6.4

5 5.8577...43 m = M 9 =..873., m =.996...56.4339 λ.944.. Λ = λ 3 = M 9 K 9 =..596. λ... Φ = [ Φ ( Φ (3 Φ (].84.433.5774 = Φ 9 m =.493.969..5679.866.5774 (6 As a proof of the normalization of the eigenmodes to unit modal mass it can be verified that Φ T MΦ = I and Φ T KΦ = Λ.

6 PROBLEM 5 Question : Following the procedure in Box 3., eqs. (3-7, (3-9, (3-, the following calculations are performed.6.5. K ( = K.3M =.5.7.5..5.3.6.5. K ( = L K ( =. 9.44.5 L = (.5..5.3 (.6 L ( = L =.5.6 ( L = (.5 9.44 From this follows that.6.5. K (3 = L K ( = S =. 9.44.5...795... L ( = L L = L = 3.5833....86. (....6 L = 3.5833.., D = 9.44 (3..86..795 Since, two components in the main diagonal of D are negative, it is concluded that two eigenvalues are smaller than µ =.3.

7 Question : The Sturm sequence is calculated by the recursive algorithm (7-6.6.5. K.3M =.5.7.5..5.3 P (3 (.3 =, sign ( P (3 (.3 = + P ( (.3 =.6, sign ( P ( (.3 = P ( (.3 =.6.7 (.5 = 5.645, sign ( P ( (.3 = P ( (.3 =.3 ( 5.645 (.5 (.6 = 4.466, sign ( P ( (.3 = + (4 Hence, the sign sequence of the Sturm sequence becomes + +. Since, two sign changes occur in this sequence, it is concluded that two eigenvalues are smaller than µ =.3.