Eksamensspørgsmålene til mundtlig eksamen ses sidst i dette dokument.

Størrelse: px
Starte visningen fra side:

Download "Eksamensspørgsmålene til mundtlig eksamen ses sidst i dette dokument."

Transkript

1 Kære selvstuderende i hf matematik C Herunder ser du et forslag til materiale, der kan udgøre dit eksaminationsgrundlag. Eksamensspørgsmålene til mundtlig eksamen ses sidst i dette dokument. Link til fagets læreplan: Det er undervisningsministeriets hjemmeside og her skal du gå ind under Uddannelser og dagtilbud og vælge Love og regler under Gymnasiale uddannelser (http://uvm.dk/uddannelser/dagtilbudsomraadet/love-og-regler-fordagtilbud). Vælg så Studieretninger og fag, hfe, Læreplaner ( uddannelser/fag- oglaereplaner) og til sidst Matematik C under de nye læreplaner. (Klik evt. her: Vær opmærksom på at den mundtlige eksamen "skal inddrage gennemførte projektforløb og temaopgaver". I den forbindelse er vedhæftet tre oplæg til rapporter, der kan inddrages i den mundtlige eksamination i visse spørgsmål. Til den mundtlige eksamen bedømmes din udarbejdede rapport ikke. Bemærk at vi har en hold-side på Fronter. Kig endelig på den (vores rum hedder s3mac005v15/16)! Her kan du f.eks. finde lektionsnoter, løsninger til opgaver, mm. Husk du kan få en times vejledning med mig. Men lav en aftale i god tid. Jeg kan kontaktes på mailadressen: Med venlig hilsen Siavash Sharifi 1

2 Eksaminationsgrundlag for selvstuderende Hvis du ønsker ændringer, skal det godkendes af din vejleder inden 1. april (sommereksamen) / 1. november (vintereksamen). Tag kontakt til din vejleder. Stamoplysninger til brug ved prøver til gymnasiale uddannelser: Termin Kursusår vinter 2015: December 2015 Januar 2016 Institution 414 Københavns VUC Uddannelse Fag og niveau HF-e Matematik C Selvstuderende s3mac005 V15/16 Eksaminator Siavash Sharifi Oversigt over gennemførte undervisningsforløb Titel 1 Titel 2 Titel 3 Titel 4 Titel 5 Titel 6 Titel 7 Introduktionsforløb - Ligninger og tal Geometri Procent og rente variabelsammenhænge: Funktioner - lineære funktioner Eksponentielle funktioner Potensfunktioner Statistik Titel 1 Indhold Introduktionsforløb - Ligninger og tal Kernestof: Regningsarter, hierarki, parenteser, simple ligninger, talmængder. Brug af symboler til matematisk omformning af simple problemstillinger Undervisningsmateriale: Matema10k (T.Jensen & M.O.Nielsen, 2. udgave, Frydenlund 2013): Del 1: Ligninger og tal (side 19-47) samt Lektionsnoter om talmængder (6 sider) Supplerende note: Ligninger og tal (2 sider om at opstille ligninger og brug af formler hentet fra lærernes online materiale) 2

3 Bemærk: Dette forløb indgår ikke i eksamensgrundlaget da det vil være dækket af de andre forløb. Forløbet dækker fundamentale regnetekniske færdigheder. Særlige fokuspunkter Kompetencer og Faglige mål: Talforståelse Kunne håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Brug af lommeregner Titel 2 Indhold Geometri Kernestof: Trekanter, herunder ensvinklede trekanter Retvinklede trekanter, herunder cosinus, sinus og tangens Vilkårlige trekanter, herunder sinus- og cosinusrelationerne Undervisningsmateriale: Matema10k (T.Jensen & M.O.Nielsen, 2. udgave, Frydenlund 2013): Del 3: Geometri (side ) samt Lektionsnoter om geometri (9 sider), bevis for ensliggende vinkler (5 sider), bevis for Pythagoras' sætning (5 sider) samt et resumé over trigonometriske metoder (2 sider). Tillæg om vilkårlige trekanter (Side ) fra bogen Vejen til Matematik C hentet som fri pdf-fil fra forlaget HAX hjemmeside (www.hax.dk). Særlige fokuspunkter Kompetencer og Faglige mål: Kunne anvende simple geometriske modeller og løse simple geometriske opgaver Større forståelse for matematiske ræsonnementer/beviser Titel 3 Indhold Procent og rente Kernestof: Regning med procenter Den absolutte og relative tilvækst, fremskrivningsfaktor og renteformel Omregning af procent over én periode til procent over flere perioder og omvendt samt gennemsnitlig procent/rente Indekstal Undervisningsmateriale: Matema10k (T.Jensen & M.O.Nielsen, 2. udgave, Frydenlund 2013): Del 2: Procent og rente (side 51-81) samt Lektionsnoter om procent og rente (5 sider) og indekstal (4 sider). 3

4 Emneforløb:. At bruge de lærte begreber og færdigheder fra kapitlet om procent og rente i situationer fra dagligdagen At træne i at formulere problemer med matematisk indhold i et almindeligt sprog og omvendt i at afdække det matematiske indhold fra daglige udsagn fra trykte og elektroniske medier At tilegne sig færdigheder i at løse opgaver af mere kompleks karakter Særlige fokuspunkter Kompetencer og Faglige mål: At have en forståelse for ovennævnte emner og kunne anvende de tilegnede koncepter og færdigheder i matematiske opgaver Titel 4 Indhold variabelsammenhænge: Funktioner - lineære funktioner Kernestof: Variabelbegrebet Ligefrem og omvendt proportionalitet Funktionsbegrebet, regneforskrift, tabel og graf Lineære funktioner og lineære modeller Undervisningsmateriale: Matema10k (T.Jensen & M.O.Nielsen, 2. udgave, Frydenlund 2013): Del 4: Funktioner (side ) og lineære funktioner (side ) samt Lektionsnoter om funktioner sammenhænge mellem variable (20 sider). Supplerende stof: Bevis for hældningskoefficient Det generelle funktionsbegreb f(x) Definitionsmængden og værdimængden for en funktion Geometrisk og analytisk fortolkning af hældningskoefficienten Analytisk fortolkning af parallelle linjer v.h.a hælningskoefficienter. Emneforløb:. At bruge de lærte begreber og færdigheder fra kapitlet om lineære funktioner til at modellere data (lineær vækstmodel) At træne i at formulere problemer med matematisk indhold i et almindeligt sprog og omvendt At tilegne sig færdigheder i at løse opgaver af mere kompleks karakter og i at kunne opstille en simpel prognose ud fra en foreliggende model Særlige fokuspunkter Kompetencer og Faglige mål: At forstå formeludtryk til beskrivelse af ligefrem og omvendt proportionalitet og lineære sammenhænge. xy plot af datamateriale og karakteristiske egenskaber ved lineære 4

5 sam-menhænge Yderligere indblik i matematisk ræsonnement og bevisførelse. Titel 5 Indhold Eksponentielle funktioner Kernestof: Eksponentielle funktioner og modeller Enkeltlogaritmisk papir Undervisningsmateriale: Matema10k (T.Jensen & M.O.Nielsen, 2. udgave, Frydenlund 2013): Del 4: Eksponentielle funktioner (side ) samt Lektionsnoter om eksponentielle funktioner (16 sider) Lektionsnoter om logaritme og regneregler (9 sider). Supplerende stof: Eksponentielle ligninger Bevis for formlen for a, T2 og T½. Emneforløb:. At bruge de lærte begreber og færdigheder fra kapitlet om eksponentielle funktioner til at modellere data (eksponentiel vækstmodel) At træne genkendelse af og regning med de eksponentielle vækstmodeller At tilegne sig færdigheder i at løse opgaver af mere kompleks karakter og i at kunne opstille en simpel prognose ud fra en foreliggende model Særlige fokuspunkter Kompetencer og Faglige mål: Forstå sammenhængen mellem kapitalfremskrivning og eksponentiel vækst xy plot af datamateriale og karakteristiske egenskaber ved eksponentielle sammenhænge. Yderligere indblik i matematisk ræsonnement og bevisførelse. Titel 6 Indhold Potensfunktioner Kernestof: Potensfunktioner og modeller Dobbeltlogaritmisk papir Undervisningsmateriale: Matema10k (T.Jensen & M.O.Nielsen, 2. udgave, Frydenlund 2013): Del 4: Potensfunktioner (side ) 5

6 samt Lektionsnoter om potensfunktionerfunktioner (13 sider) Supplerende stof: Bevis for formlen for a og Fy = Fx a Emneforløb:. At bruge de lærte begreber og færdigheder fra kapitlet om potensfunktioner At træne genkendelse af og regning med vækstmodeller af typen potensvækst At tilegne sig færdigheder i at løse opgaver af mere kompleks karakter Særlige fokuspunkter Kompetencer og Faglige mål: Forstå sammenhængen mellem to variable, der hver især har sin egen procentvækst eller procentfald xy plot af datamateriale og karakteristiske egenskaber ved potensfunktioner Yderligere indblik i matematisk ræsonnement og bevisførelse. Progression: Større forståelse for matematiske ræsonnementer/beviser Matematisk brug af IT til forståelse af lineære sammenhænge (online materiale og appletter fra bogens hjemmeside) Titel 7 Indhold Statistik Kernestof: Ugrupperede og grupperede observationer Prikdiagram, stolpediagram, histogram og sumkurve Statistiske deskriptorer Kvartilsæt og boksplot Kvartilsæt og sumkurve Undervisningsmateriale: Matema10k (T.Jensen & M.O.Nielsen, Frydenlund 2005): Del 5: Statistik og stikprøver (side ) samt Lektionsnoter om statistik (29 sider) Særlige fokuspunkter Kompetencer og Faglige mål: Hvad statistik er og den kan bruges til Formidle statistiske resultater i almindeligt sprog 6

7 Bemærk: Det er ikke obligatorisk for de selvstuderende at udarbejde rapporter, da I kun har ret til en times vejledning. Men det anbefales, at I orienterer jer om rapporternes idhold, opbygning og emneopgaverne. Rapport om et emne inden for geometri og trigonometri Opgaveformulering Gør rede for, hvordan geometri og trigonometri kan anvendes til at bestemme vinkler, højder og afstande. A. Retvinklede trekanter Gør rede for, hvorledes man benytter Pythagoras sætning samt sinus-, cosinus-, og tangensdefinitionerne til beregning af afstande og højder i retvinklede trekanter. Som eksempel herpå og som inspiration kig på eksempel 1 og 2 (ss ) i lærebogen, og Opg i eksamenshæftet s.20. Til at belyse dine teorier løs nedenstående opgave (med en fornuftig og kort forklaring) i din rapport. Opgave A.1 Trekanterne ABC og DBC er retvinklede. Nogle af målene fremgår af figuren. a) Beregn sidelængderne i trekanten DBC. b) Beregn arealet af trekanten DBC. c) Beregn sidelængderne AB og AC. d) Beregn arealet af trekanten ABC. Bevis nu i din rapport Pythagoras læresætning. B. Definition af sinus, cosinus og tangens Forklar, hvordan man ud fra enhedscirklen definerer sinus, cosinus og tangens. Tegn en enhedscirkel med de tilhørende akser (sinus-, cosinus- og tangensaksen). Giv også to konkrete eksempler med spidse og stumpe vinkler. Eksempelvis med v = 60º og v = 150º. Afmærk retningspunkterne for de to vinkler i enhedscirklen. Tegn (på en separat figur) også de to standardtrekanter og de to udvidede standardtrekanter, der svarer til disse vinkler. Og skriv sidelængderne på. C. Vilkårlige trekanter Gør nu rede for, hvorledes man benytter arealsætningen, sinusrelationerne, og cosinusrelationerne til beregning af afstande, højder og vinkler i vilkårlige trekanter. 7

8 Som eksempel herpå og som inspiration kig på eksemplerne i dokumentet Vilkårlige_trekanter.pdf (afleveret til klassen som fotokopi), og de løste opgaver i klassen, eller en af hjemmeopgaverne, f.eks. Opg side 17 i eksamneshæftet. Gør i detaljer og med figurer rede for, hvordan man beviser sætningerne: (1) Arealsætningen (Sætning 3.1, s. 296 i den omtalte fotokopi) (2) Sinusrelationerne (Sætning 3.3, s. 297 i den omtalte fotokopi) (3) Cosinusrelationerne (Sætning 3.5, s. 299 i den omtalte fotokopi) D. Opgaver om vilkårlige trekanter I denne del af rapporten skal der indgås besvarelsen af nedenstående tre opgaver (med en fornuftig og kort forklaring). Opgave D.1 B 6,7 5,0 C A 8,4 Figuren viser en vilkårlig trekant ABC. Nogle af trekantens mål fremgår af figuren. a) Beregn vinkel A. b) Bestem arealet af trekanten ABC. Højden fra B skærer siden AC i punktet D. c) Bestem længden af CD. d) Bestem længden af BD. Opgave D.2 En klasse på KVUC løber orienteringsløb i en skov. Alle mødes ved post A, og pigerne løber ruten ABCA, mens drengene løber ruten ADEA. På figuren er angivet nogle vinkler og afstande (målt i km) for de to løberuter. a) Beregn sidelængden AD. b) Hvor langt løber drengene? c) Beregn sidelængden AB. d) Beregn sidelængden AC. e) Hvor meget længere løber pigerne end drengene? 8

9 Opgave D.3 (hf matematik C august 2012) På figuren ses en firkant ABCD, hvor diagonalen BD er tegnet. Vinkel C er 90, og nogle af de øvrige mål fremgår af figuren. C 90º 160 D 200 B 47,9º 87,7º A a) Bestem længden af siden BC. b) Bestem længden af siden AD. c) Bestem arealet af firkant ABCD. Vejledning og fremgangsmåde Start med at vælge og løse en opgave ad gangen. Fortsæt på denne måde, indtil de nødvendige opgaver er besvaret. Benyt undervejs de relevante eksempler i lærebogen og fotokopien. Læs derefer opgaveformuleringen grundigt. Undersøg, hvilke dele af rapporten, der kan besvares med udgangspunkt i de løste opgaver. Søg yderligere hjælp i lærebogen og fotokopien. Vælg den sætning eller de sætninger, som skal bevises i rapporten. Udarbejd omhyggeligt et bevis for den valgte sætning eller de valgte sætninger. Undgå direkte afskrift. Forsøg udelukkkende at overføre din egen opfattelse til læseren. Man lærer bedst ved selv at undervise i det, der skal forstås eller formidles. Din målgruppe er dine egne klassekammerater og ikke manden eller kvinden på gaden. Rapport om emner inden for procent og rente 9

10 Opgaveformulering Du skal gøre rede for følgende begreber og koncepter, som du har tilegnet dig i kapitlet om procent og rente. Der ud over skal du bevise to formler. * Procentdel ud af (en størrelse) * Procent af (en størrelse) * Fremskrivningsfaktor * Bevis formlen F = 1 + r * Addition og subtraktion af procenter (det at lægge procenter til og at trække procenter fra ved hjælp af fremskrivningsfaktoren) * Procentændring fra kort til lang periode og omvendt * Indekstal * Renters rente * Kapitalfremskrivning * Bevis kapitalfremskrivningsformlen A. Redegørelse Med udgangspunkt i opgaveformuleringen ovenfor udarbejd et teoretisk afsnit med de nævnte matematiske begreber, som du vil behandle i din rapport. Teorien, der ligger til grund for rapporten, er indholdet af kapitlet om procent og rente i lærebogen samt de hertil knyttede lektionsnoter i Fronter. Til at belyse dine teorier løs nedenstående opgaver (med en fornuftig og kort forklaring) i din rapport. Du kan eksempelvis redegøre for et af begreberne ad gangen og efterfølgende vælge og løse en opgave, der passer til afsnittet. På den måde kan du løbe listen af begreberne igennem. Alternativt kan du vælge - til at begynde med- at gøre rede for begreberne rent teoretisk og supplere dem med små selvvalgte eksempler. Til allersidst kan du løse alle opgaverne samlet med korte forklaringer med henvisninger til de teoretiske afsnit. 10

11 B. Opgaver Opgave 1 En møbelforretning sælger en stol på udsalg for 398 kr. Normalprisen er 585 kr. Hvor mange procent er rabatten på? Opgave 2 En tom sodavandsdåse vejer 25 g. Den fyldes med 330 g sodavand. Hvor mange procent af den samlede vægt udgør dåsen? Opgave 3 I forbindelse med varekøb og tjenesteydelser betaler man moms. Momsen er 25%. En håndværkerregning lyder på 6250 kr. uden moms. Spm. 1 Hvor meget kommer regningen til at lyde på i alt? En anden håndværkerregning lyder på 9456,90 kr. med moms. Spm. 2 Hvad lyder regningen på eksklusiv moms? Opgave 4 (a) Et bilfirma reklamerer med, at man ved afbetalingskøb hos firmaet kan slippe med en rente på 2,5% pr. måned. Omregn denne rentefod til årlig rente. (b) En bank reklamerer med en opsparingskonto, hvor renten er 3,6% pr. år. Hvor meget svarer det til i månedlig rente? Opgave 5 Prisen på en vare stiger i to på hinanden følgende år med henholdsvis 3,45 % og 8,82 %. Beregn den gennemsnitlige årlige procentvise prisstigning. Opgave 6 De første tre år voksede værdien af en aktie med henholdsvis 13%, 23% og 34%. Det næste år faldt aktiens værdi med 17%. Hvor mange procent er aktien vokset med i gennemsnit pr. år? Opgave 7 Den gennemsnitlige forbrugerpris på benzin 98 oktan pr det pågældende år ses i skemaet: År Pris kr. 7,77 8,18 8,01 8,47 8,37 8,65 10,13 Spm. 1 Udregn indekstal for forbrugerprisen på benzin 98 oktan fra 2000 til 2006 med 2000 som basisår. Spm. 2 Bestem den procentvise ændring fra 2001 til 2004 samt fra 2005 til 2006 for benzinprisen. Opgave 8 Et beløb er i en bank vokset fra 4913 kr. til 5218 kr. Hvad er den absolutte tilvækst? Hvad er den relative tilvækst? 11

12 Opgave 9 Kommuneskatten er i en kommune steget fra 19,7% til 21,6%. Hvor mange procentpoint er den steget? Hvor stor er den procentvise stigning? Opgave 10 For tre år siden udtalte direktøren i et firma, at firmaet som målsætning havde at øge sin værdi med i gennemsnit 10% pr. år i en femårig periode. De første 3 år har firmaet kun øget sin værdi med 4,5% pr. år. Hvor meget skal firmaet i gennemsnit øge sin værdi med de sidste to år, for at nå sit mål? Opgave 11 På en bankkonto indsættes 6680 kr. Banken giver 3,75 % i rente om året. Spm. 1 Hvor meget står der på kontoen efter 8 år? Spm. 2 Hvor mange år vil der gå, inden beløbet på kontoen overstiger kr.? Spm. 3 Hvis de 6680 kr. var vokset til kr. på 8 år, hvor mange procent havde den årlige rente så været? Rapport om vækstmodeller A. Redegørelse 1. Lineær vækst 1.a Teori Skriv en kort teoretisk redegørelse, der giver svar på nedenstående spørgsmål: Hvad er en lineær funktion? Hvad fortæller tallene a og b om funktionen y = ax + b? For hvilke a er funktionen henholdsvis voksende/aftagende/konstant? Hvordan bestemmes a og b ud fra to punkter på grafen? 1.b Modelopstilling ud fra talmateriale: Indiens befolkning * 12

13 Følgende punkter skal indgå i behandlingen: Graftegning Begrundelse for at udviklingen kan karakteriseres som (tilnærmelsesvis) lineær Bestemmelse af a og b En prognose (forudsigelse) ved hjælp af modellen I 2003 var Indiens befolkningstal 1049,7 mio. Sammenlign med modellen: er den lineære vækst fortsat? * Indiens befolkning År Befolkningstal 495,7 555,0 620,5 687,0 (mio.) x = antal år efter 1965 y = befolkningstal (mio. mennesker) 2. Eksponentiel vækst 2.a Teori Skriv en kort teoretisk redegørelse, der giver svar på nedenstående spørgsmål: Hvad er en eksponentiel udvikling? Hvad fortæller tallene a og b om funktionen f(x) = b.a x? For hvilke a er funktionen henholdsvis voksende/aftagende/konstant? Hvordan bestemmes a og b ud fra to punkter på grafen? Hvad er det smarte ved et enkeltlogaritmisk koordinatsystem? Hvad er fordoblingskonstanten / halveringskonstanten, og hvordan bestemmes den? 13

14 2.b Modelopstilling ud fra talmateriale: Kinas BNP pr. indbygger * Følgende punkter skal indgå i behandlingen: Graftegning i et almindeligt koordinatsystem Begrundelse for at udviklingen kan karakteriseres som (tilnærmelsesvis) eksponentiel Bestemmelse af et funktionsudtryk for modellen Bestemmelse af den årlige vækstrate Bestemmelse af fordoblingstiden En prognose vha. modellen (fx: Hvor stort er BNP pr. indbygger i Kina i 2020, hvis denne udvikling fortsætter?) * Kinas bruttonationalprodukt (BNP) pr. indbygger År BNP pr. indbygger (US $) x = antal år efter 1975 y = BNP pr. indbygger (US $) 3. Potensvækst Fortæl kort, hvad potensvækst er, og hvad en potensfunktion er. Bevis formlerne for, hvordan man ud fra 2 kendte punkter kan finde forskriften for en potensfunktion. Bevis formlen for sammenhængen mellem en procentvis stigning i x-værdien og den tilsvarende procentvise ændring i y-værdien. 14

15 Opgave 1 B. Opgaver Opgave 2 Opg / side 8 i eksamenshæftet Opgave 3 En månedlig elregning er sammensat således: Fast afgift på 60 kr. og 1,50 kr. pr. kwh (kilowatt-time). 1) Opstil en regneforskrift (en model), hvor x angiver elforbruget målt i kwh, og y angiver prisen i kr. Begrund dit valg af modellen. 2) Beregn prisen ved et elforbrug på 350 kwh. 3) Beregn elforbruget ved en pris på 550 kr. Opgave 4 Om en bestemt slags bakterier vides, at de formerer sig med en hastighed på 5,5% i timen. En vandprøve indeholder på et tidspunkt 600 bakterier af den nævnte slags. 15

16 Spm. 1 Hvor mange bakterier indeholder vandprøven 1 time senere? og 2 timer senere? Spm. 2 Hvor mange procent vokser bakterierne pr. døgn? Opgave 5 FN har skønnet, at jordens befolkning pr. 1. jan var 6,43 mia., og at jordens befolkning vokser med 1,4% om året. I det følgende antages, at jordens befolkning fortsat vil vokse med 1,4% om året i det 21. århundrede. Spm. 1 Opstil en eksponentiel model y = b.a x, hvor y angiver jordens befolkningstal i mia., og x angiver antal år efter 1. jan Begrund dit valg af model. Spm. 2 Bestem fordoblingstiden for jordens befolkning. Spm. 3 Hvornår vil jordens befolkningstal overstige 8 mia.? Spm. 4 Med hvor mange procent vokser jordens befolkningstal på 7 år? Spm. 5 Hvor lang tid tager det for jordens befolkningstal at forøges med 25%? Opgave 6 Spm. 1 Lad y = 34,1. 1,023 x. Hvor meget fremskrives y med, hvis x forøges med 4? Spm. 2 Lad y = 0,640. 0,92 x. Hvor meget fremskrives y med, hvis x forøges med 0,7? Spm. 3 Bestem forskriften for den eksponentielle funktion y = b. a x, hvis graf går igennem punktet (5; 0,065) og funktionsværdien forøges med 50% hver gang x forøges med 2. Opgave 7 Om en potensfunktion y = b.x a vides det, at hvis x forøges med 15%, da forøges y med 20%. Bestem a. Opgave 8 Et trafikselskab har erfaret, at hvis x betegner billetprisen i kr., da kan det daglige passagertal bestemmes ved funktionen y = x 0,85. Spm. 1 Hvis billetprisen er 10 kr., hvor stort er det daglige passagertal da? Hvor stor er den daglige omsætning? 16

17 Spm. 2 Bestem den billetpris, der ifølge funktionen giver 4001 passagerer. Spm. 3 Hvor mange procent falder passagertallet med, hvis billetprisen vokser med 10%? Spm. 4 Opstil udtryk for den daglige billetindtægt før og efter prisstigningen. Spm. 5 Med hvor mange procent øges den daglige billetindtægt ved prisstigningen. Opgave 9 Opg / s. 9 i eksamenshæftet Eksamensspørgsmål December Januar 2016 Matematik C (for selvstuderende) Bemærk: Eksamensspørgsmålene skal til enhver tid godkendes af en kommende censor. Dette betyder, at der rent principielt kan forekomme små ændringer i ordlyden af spørgsmålene. I givet fald vil disse ændringer være minimale og vil ikke gå ud over jeres forberedelsesarbejde. Spm. 1 (Geometri og trigonometri) Du skal redegøre for, hvordan vinkler og sider bestemmes i en retvinklet trekant. Spm. 2 (Geometri og trigonometri) Du skal redegøre for, hvordan vinkler og sider bestemmes i vilkårlige trekanter. Spm. 3 (Geometri og trigonometri) Du skal redegøre for Pythagoras sætning herunder bevise sætningen. Spm. 4 (Geometri og trigonometri) Gør rede for vinkelsummen i en trekant. Gør rede for ensvinklede trekanter, herunder skalafaktoren. Spm. 5 (Procent og rente) Gør rede for begrebet fremskrivningsfaktor. Forklar hvordan man lægger procenter til og trækker procenter fra ved hjælp af fremskrivningsfaktor. Gør tillige rede for renteformlen. Spm. 6 (Procent og rente) Gør rede for begrebet fremskrivningsfaktor. 17

18 Gør rede for renteformlen og for gennemsnitlig årlig rente ud fra månedlig og kvartalsvis rente, gerne med udgangspunkt i et konkret eksempel. Spm. 7 (Procent og rente) Fremlæg hvad indekstal er, og hvordan man regner med indekstal. Gør rede for begrebet fremskrivningsfaktor og dets nytte ved beregninger med indekstal. Spm. 8 (Funktioner) Gør rede for hvad en funktion er, og giv eksempler på funktioner. Herunder skal du fremlægge, hvad ligefrem og omvendt proportionalitet er. Spm. 9 (Lineære funktioner) Du skal redegøre for den lineære funktion og betydningen af konstanterne a og b. Du skal vise, hvordan a og b bestemmes, når to støttepunkter A(x 1, y 1) og B(x 2, y 2) er givet. Spm. 10 (Eksponentielle funktioner) Du skal gøre rede for eksponentielle funktioners egenskaber, herunder halverings- og fordoblingskonstanter. Spm. 11 (Eksponentielle funktioner) Du skal gøre rede for eksponentielle funktioners egenskaber og betydningen af konstanterne a og b. Du skal vise, hvordan a og b bestemmes, når to støttepunkter A(x 1, y 1) og B(x 2, y 2) er givet. Spm. 12 (Potensfunktioner) Du skal gøre rede for potensfunktioner og potensvækst og om den procentvise ændring af y-værdien, når x-værdien ændres med en bestemt procent. Spm. 13 (Potensfunktioner) Du skal gøre rede for potensfunktioners egenskaber og betydningen af konstanterne a og b. Du skal vise, hvordan a og b bestemmes, når to støttepunkter A(x 1, y 1) og B(x 2, y 2) er givet. Spm. 14 (Statistik) Du skal redegøre for, hvordan ugrupperede data behandles statistisk. Du skal definere de forskellige statistiske deskriptorer. Du kan tage udgangspunkt i et eksempel. Spm. 15 (Statistik) Du skal redegøre for, hvordan grupperede data behandles statistisk. Du skal definere de forskellige statistiske deskriptorer. Du kan tage udgangspunkt i et eksempel. 18

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Side 1/5 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Mat C Trine Eliasen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard Lindeløv mac2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Lise A.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer 2hf Matematik C Søren Fritzbøger Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby Hf Matematik C Ashuak Jakob France

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer Hold hf Matematik C Dorte Christoffersen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hf2 Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Vestegnens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Jack

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Michael

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2014, skoleåret 13/14 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kristian Møller

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Alexander

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold 2hf Matematik C Malene Overgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Vest - Esbjerg Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Peter

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Niels Just Mikkelsen mac3 Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2015, skoleåret 14/15 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin sommer 15 Institution VUC-vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kofi Mensah 1maC05

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hf Mat C Viktor Kristensen

Læs mere

Undervisningsbeskrivelse & Oversigt over projektrapporter

Undervisningsbeskrivelse & Oversigt over projektrapporter Undervisningsbeskrivelse & Oversigt over projektrapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Suna Vinther

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015. Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Benny Jørgen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik C Angela

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Forår 2015 414 Københavns VUC Hf Matematik C Pia Hald ph@kvuc.dk

Læs mere

Matematik for hf C-niveau

Matematik for hf C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for hf C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for hf C-niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2014 Institution Vestegnen HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe MatC Gert Friis Nielsen

Læs mere

SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014

SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014 SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014 1. Procent og rente Forklar hvordan man udregner procentvis ændringer i forskellige tidsrum og giv et konkret eksempel herpå. Forklar gerne med et eksempel,

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg HF

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby hf2 matematik C Steffen Jørgensen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015, skoleåret 14/15 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC hf enkeltfag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Matematik C Nst 16A Oversigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Nørre Nissum Seminarium & HF Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2015 VUC

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution Vestegnen HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Kirsten

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer Hold Hf MATEMATIK C Lene Kærgaard Jensen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 10/11 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik C Trille Hertz Quist 1.c mac Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) VUC Skive-Viborg Hf Mat C Lars Kehlet Hansen (LKH)

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger Eksamensspørgsmål 11q sommer 01. Gør rede for omformningsreglerne for ligninger. Spørgsmål 1: Ligninger Giv eksempler på hvordan forskellige ligninger løses. Du bør her komme ind på flere forskellige ligningstyper,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer Hold VUC Skive-Viborg Hfe Matematik C Claus Ryberg

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. FORELØBIGE eksamensspørgsmål mac7100 og mac710 dec 01 og maj/juni 013. Spørgsmål 1: Ligninger Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Giv eksempler

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Storstrøm / Næstved Uddannelse HFE Fag og niveau Matematik B Lærer(e) Hold Nils

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Oversigt over gennemførte undervisningsforløb

Oversigt over gennemførte undervisningsforløb Undervisningsbeskrivelse Termin Maj/juni 2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer(e) Hold stx Matematik B Janne Skjøth Winde 2.s mab Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Årstid/årstal Institution Uddannelse Hf/hfe/hhx/htx/st x/gsk/gif/fagpakke/hf+ Fag og niveau Fagbetegnelsen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B Ashuak Jakob France

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Trine Eliasen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2012-2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold Stx Matematik A MT 3.a Matematik Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Jeg ønsker at aflægge prøve på nedenstående eksaminationsgrundlag. Jeg har foretaget ændringer i vejlederens fortrykte forslag: nej ja Dato: Underskrift HUSK at

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 14/15 IBC-Fredericia

Læs mere

Odense Tekniske Skole

Odense Tekniske Skole Odense Tekniske Skole Lokal undervisningsplan for matematik i grundforløbet Læringsaktiviteten matematik på grundforløbet på håndværk og teknik Niveauer: I matematik undervises på niveau F, men tilbydes

Læs mere

Undervisningsbeskrivelse for matematik C

Undervisningsbeskrivelse for matematik C Termin Termin hvor undervisnings afsluttes: maj-juni skoleåret 12/13 Institution Thisted Gymnasium og HF-kursus Uddannelse STX Fag og niveau Matematik C Lære Mads Lundbak Severinsen Hold 1.d Oversigt over

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Afsluttende: Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Favrskov Gymnasium Stx Matematik

Læs mere

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 12/13 Institution International Business College Fredericia-Middelfart Uddannelse Fag og niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 09/10 Institution Frederikshavn Handelsskole Uddannelse HHX Fag og niveau Matematik A (2 årigt forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Bemærkninger til den mundtlige årsprøve i matematik

Bemærkninger til den mundtlige årsprøve i matematik Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Matematik B stx, maj 2010

Matematik B stx, maj 2010 Bilag 36 Matematik B stx, maj 2010 1. Identitet og formål 1.1. Identitet Matematik bygger på abstraktion og logisk tænkning og omfatter en lang række metoder til modellering og problembehandling. Matematik

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jarl Mølgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2013 Institution IBC Fredericia Middelfart afd. Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011/2012 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Vejle Hf Matematik C Lene Holmgård

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010 Institution Handelsskolen Sjælland Syd, Campus Vordingborg Uddannelse Fag og niveau Lærer(e)

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere