Måleproblemer. Fejlkilder og tolkningsproblemer. Usikkerhed og bias. Stikprøveusikkerhed. Epidemiologi og Biostatistik (version

Størrelse: px
Starte visningen fra side:

Download "Måleproblemer. Fejlkilder og tolkningsproblemer. Usikkerhed og bias. Stikprøveusikkerhed. Epidemiologi og Biostatistik (version"

Transkript

1 Måleproblemer A B Fejlkilder og tolkningsproblemer Svend Juul, 19. september 2007 C D 1 2 Usikkerhed og bias De vigtigste kilder til usikkerhed og bias Præcision, sikkerhed, reproducerbarhed, ryster ikke på hånden. (modsat usikkerhed) Nøjagtighed, korrekthed (modsat bias) A C B D Usikkerhed: Stikprøveusikkerhed Måleusikkerhed Biologisk variation Usikkerhed kan der kompenseres for ved gentagne målinger. Bias er en systematisk skævhed, som der ikke umiddelbart kan korrigeres for. Bias: Selektionsproblemer Informationsproblemer (måleproblemer) Fejltolkning (confounding) 3 4 Stikprøveusikkerhed Hvis vi vil udtale os om danskernes vægtfordeling, er det billigere at undersøge en stikprøve end at undersøge alle danskerne. En tilfældig stikprøve er det ideelle. Det forudsætter en liste over alle danskere (CPRregisteret). Estimatet ud fra stikprøven af danskernes vægtfordeling er behæftet med usikkerhed. Denne usikkerhed er veldefineret og kan kvantificeres (SE, 9% CI). Sundheds- og sygdomsundersøgelsen 2000 Målpopulation: Udvalgte: Studiepopulation: Danske statsborgere 16 år N = Inviterede N = (%) Interview gennemført N = (74%) Tilfældig, stratificeret stikprøve (0,2%) Deltagelse afvist. N =.042 dom mv. N=74 6 MPH Introduktionsmodul uge 3 dag

2 Bortfaldsproblemer Hvis ikke alle udvalgte medvirker, er der et bortfald. Bortfaldet kan medføre bias i vores estimat af danskernes vægtfordeling. Som læser: Er der gjort klart rede for stikprøvetagning, deltagelse og bortfald? Sensitivitetsanalyse: Hvad er den sande prævalens af fedme, hvis ikke-deltagerne: har halvt så stor prævalens som deltagerne? har dobbelt så stor prævalens som deltagerne? Repræsentativitet Studiepopulationen skal være repræsentativ for målpopulationen med hensyn til det, vi vil undersøge. Repræsentativiteten kan trues af: forkert stikprøve skævt bortfald Et selektionsbias kan ikke korrigeres med statistiske metoder. Et selektionsbias konsekvenser kan vurderes ved en sensitivitetsanalyse. 7 8 Selektionsproblemer i sammenlignende undersøgelser Selektionsproblemer kan have mindre omfattende konsekvenser i sammenlignende undersøgelser: Hvis et bortfald er tilfældigt, dvs. uden sammenhæng med eksponering eller udfald, påvirkes associationsestimatet ikke. Problemet er, at det kan vi sjældent vide; bortfaldet fører jo netop til manglende information. Case-kontrol undersøgelse. Bortfald associeret med eksponeringen, men ikke med udfaldet. + 0 Udvalgte Cases 1 1 Deltagere Cases Case-kontrol undersøgelse. Bortfald associeret med både eksponeringen og udfaldet. + 0 Udvalgte Case 1 Kontrol 1 Deltagere Case OR = 1,4 Kontrol Bortfaldsproblemer i sammenlignende undersøgelser Et bortfald uden sammenhæng med eksponering eller udfald medfører ikke bias i associationsmålet. Et bortfald, som kun hænger sammen med eksponeringen, medfører ikke bias i associationsmålet. Et bortfald, som hænger sammen med både eksponering og udfald (dobbelt-skævt), medfører bias MPH Introduktionsmodul uge 3 dag

3 Informationsproblemer Målefejl Apparatur-problem Betjenings-problem Hukommelses-problem Bevidst fejlrapportering Observatør-problem Biologisk variation: Ikke alle egenskaber er stabile; der er intra-individuel variation. F.eks. varierer den enkeltes blodtryk. A C B D Konsekvenser af måleusikkerhed De observerede værdier får større spredning (SD) end de faktiske værdier. Det betyder, at middelværdien bliver bestemt med større usikkerhed (bredere sikkerhedsinterval). Ved sammenligninger overser man derfor lettere en reel forskel (type 2 fejl). Måleusikkerhed svarer til støj eller tåge: Tåge slører kontraster, det skaber dem ikke Målevariation og målebias Målebias medfører ikke nødvendigvis bias i sammenlignende undersøgelser I en beskrivende undersøgelse: Et middelværdiestimat bliver bias ed I sammenlignende undersøgelser: Det kommer an på... Sand fordeling Målt fordeling uden bias Målt fordeling med bias Børn af Ikke-rygere Sandt 300 g Målt 3400 g Rygere 330 g 320 g Differens 10 g 10 g 1 16 Misklassifikation (målefejl af kategoriske egenskaber) Estimation af sensitivitet og specificitet Graden af misklassifikation kan karakteriseres ved: Sensitivitet: Evnen til at identificere de syge Specificitet: Evnen til at identificere de ikke-syge Klassificeret som Sandheden Klassifikation Sandheden Sandt positiv Falsk negativ Falsk positiv Sandt negativ Sensitivitet: 9% (9% CI: 89%; 98%) Specificitet: 90% (9% CI: 82%; 9%) MPH Introduktionsmodul uge 3 dag

4 Konsekvenser af misklassifikation Ikke-differentieret misklassifikation Beskrivende undersøgelser: Fejlagtigt hyppighedsestimat Sammenlignende undersøgelser: Det kommer an på... om misklassifikationen er differentieret Samme grad af misklassifikation af sygdomsstatus blandt eksponerede og ueksponerede Samme grad af misklassifikation af eksponering blandt syge og ikke-syge Case-kontrol-undersøgelse: Ikke-differentieret misklassifikation af eksponeringen Eksponeret Sand eksponeringsfordeling Cases 1 1 Målt eksponeringsfordeling Eksponeret Cases OR = 2,0 Både i case- og kontrolgruppen har 0% af de eksponerede glemt eksponeringen Der er altså samme grad af misklassifikation i de to grupper (ikke-differentieret misklassifikation) Det fører til en undervurdering af den observerede kontrast (risiko for type 2 fejl). 21 Case-kontrol-undersøgelse: Differentieret misklassifikation af eksponeringen Sand eksponeringsfordeling Eksponeret Cases OR = 1, Rapporteret eksponeringsfordeling Eksponeret Cases OR = 2,2 Cases huskede rigtigt, men 0% af kontrollerne havde glemt eksponeringen Det førte til en overvurdering af associationsestimatet Differentieret (dobbelt-skæv) misklassifikation fører til bias. 22 Problemer ved vurdering af konsekvenser af målefejl og misklassifikation Ikke differentieret målefejl eller misklassifikation svækker mulighederne for at se en kontrast. Det fører altså altid til bias i en bestemt retning. Differentieret målefejl eller misklassifikation kan føre til bias i begge retninger. Begynderfejl: Der er måleproblemer, altså er der bias Eksempel: Kostoplysninger Det er givet, at kostoplysninger er usikre. Det betyder, at det er svært at studere effekten af kosten; vi kommer til at undervurdere effekten. - med mindre der er tale om differentieret målefejl: At dem, der blev syge, rapporterer anderledes end dem, der forblev raske. Læseren må forsøge at vurdere, hvad der kan være sket MPH Introduktionsmodul uge 3 dag

5 Fortolkningsproblemer Confounding: Alkohol og larynxkræft Ved en undersøgelse fandt Gyntelberg & al, at de, der brugte sukker i kaffen, var slankere end dem, der ikke brugte sukker i kaffen. Ved en undersøgelse fandt Gyntelberg & al, at overvægtige sjældnere brugte sukker i kaffen end normalvægtige. Ved en tværsnitsundersøgelse bliver det problematisk at udtale sig om årsagsretningen. 2 Alkohol Cases OR = 1,49 (1,1; 1,93) Rygere Alkohol Cases OR = 0,98 (0,72; 1,33) Ikke-rygere Alkohol Cases OR = 1,12 (0,61; 2,0) 26 Confounding Confounding: Lungefunktion og højde Sammenblanding, forveksling Confounding er en fortolkningsfejl Risiko for confounding: Hvis en anden årsag er associeret med den årsag, vi studerer. Hypotese Confounder Udfald FVC, liter Højde, cm FVC, liter Mænd Kvinder Højde, cm Dette er ikke en confounder: Forebyggelse af confounding: restriktion En faktor, som er et led i årsagskæden fra eksponering til udfald: Faktor Udfald Hvis vi kun ser på sammenhængen mellem alkoholindtagelse og larynxcancer blandt ikkerygere, kan der ikke opstå confounding på grund af rygning. Til gengæld ved vi ikke noget om sammenhængen blandt rygere. F.eks.: Kost S-kolesterol Åreforkalkning MPH Introduktionsmodul uge 3 dag

6 Stratificeret analyse Ved restriktion kan man undersøge associationen (alkohol/cancer), dels hos rygere, dels hos ikke-rygere. Er associationen (alkohol/cancer) væsentligt forskellig hos rygere og ikke rygere, er der effektmodifikation. Der må laves to beskrivelser, for rygere og for ikke-rygere. Er associationerne ikke væsentligt forskellige, beregnes et fornuftigt vægtet gennemsnit. Det kan Erik vise. 31 MPH Introduktionsmodul uge 3 dag

Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser

Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Jørn Attermann 23. september 2009 Vurdering af den interne validitet af en epidemiologisk undersøgelse: Informationsproblemer

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann 6. februar 2006 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser.

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt

Læs mere

Epidemiologi og Biostatistik (version 19.09.2008)

Epidemiologi og Biostatistik (version 19.09.2008) En model Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Jørn Attermann. september 008 For meningsfuldt at kunne diskutere fejlkilder og fortolkningsproblemer må vi have en model for det,

Læs mere

Vurdering af epidemiologiske undersøgelser. Epidemiologisk forskning

Vurdering af epidemiologiske undersøgelser. Epidemiologisk forskning Vurdering af epidemiologiske undersøgelser Epidemiologisk forskning Mogens Vestergaard Institut for Epidemiologi og Socialmedicin Aarhus Universitet mv@soci.au.dk At belyse en videnskabelig hypotese ved

Læs mere

Målsætning. Vurdering af epidemiologiske undersøgelser

Målsætning. Vurdering af epidemiologiske undersøgelser Vurdering af epidemiologiske undersøgelser Målsætning Mogens Vestergaard Institut for Epidemiologi og Socialmedicin Aarhus Universitet At belyse en videnskabelig problemstilling ved at indsamle, analysere

Læs mere

Fejlkilder. Ulrik Schiøler Kesmodel. Rikke Guldberg Øjvind Lidegaard

Fejlkilder. Ulrik Schiøler Kesmodel. Rikke Guldberg Øjvind Lidegaard Fejlkilder Ulrik Schiøler Kesmodel Rikke Guldberg Øjvind Lidegaard Fejlkilder 1. Selektionsproblemer 2. Informationsproblemer 3. Confounding Generelle overvejelser I Det estimat for hyppighed, som vi måler

Læs mere

Vurdering af epidemiologiske undersøgelser igen

Vurdering af epidemiologiske undersøgelser igen Vurdering af epidemiologiske undersøgelser igen kob Grove 13. februar, 2006 Program Confounding og effektmodifikation Hvad er confounding Hvad er effektmodifikation Er der confounding eller effektmodifikation

Læs mere

Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Informationsbias Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 19. maj 2015 l Dias nummer 1 Sidste gang Vi snakkede om

Læs mere

Selektionsbias. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Selektionsbias. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Selektionsbias Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. maj 2015 l Dias nummer 1 Sidste gang Vi snakkede om Præcision:

Læs mere

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Afdeling for Social medicin Confounding Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 28. maj 2015 l Dias nummer 1 Sidste

Læs mere

Fejlkilder. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011

Fejlkilder. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Fejlkilder Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Læringsmål Tilfældig variation Selektionsproblemer Informationsproblemer Confounding Effekt modifikation

Læs mere

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Opgave 1. Angiv studiets formål, design og hvilke associationsmål, der bruges. Beskriv hovedresultaterne

Læs mere

Besvarelse af opgavesættet ved Reeksamen forår 2008

Besvarelse af opgavesættet ved Reeksamen forår 2008 Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie

Læs mere

Kursus i Epidemiologi og Biostatistik, forår 2003. Epidemiologiske mål. Studiedesign. Svend Juul, 3.2.2003. manan.dk

Kursus i Epidemiologi og Biostatistik, forår 2003. Epidemiologiske mål. Studiedesign. Svend Juul, 3.2.2003. manan.dk Kursus i Epidemiologi og Biostatistik, forår 2003. Epidemiologiske mål Studiedesign Svend Juul, 3.2.2003 1 Pludselig uventet spædbarnsdød (vuggedød, Sudden Infant Death Syndrome, SIDS) Uventet dødsfald

Læs mere

Vurdering af epidemiologiske undersøgelser igen

Vurdering af epidemiologiske undersøgelser igen Vurdering af epidemiologiske undersøgelser igen kob Grove 12. september, 2005 Program Confounding og effektmodifikation Hvad er confounding Hvad er effektmodifikation Er der confounding eller effektmodifikation

Læs mere

Noter til SfR checkliste 4 - Casekontrolundersøgelser

Noter til SfR checkliste 4 - Casekontrolundersøgelser Noter til SfR checkliste 4 - Casekontrolundersøgelser Denne checkliste anvendes til undersøgelser, som er designet til at besvare spørgsmål af typen hvilke faktorer forårsagede denne hændelse?, og inddrager

Læs mere

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer)

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer) D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI

Læs mere

Epidemiologiske mål Studiedesign

Epidemiologiske mål Studiedesign Epidemiologiske mål Studiedesign Svend Juul Pludselig uventet spædbarnsdød Sudden Infant Death Syndrome, SIDS Uventet dødsfald hos et rask spædbarn. Obduktion o.a. giver ingen forklaring. Hyppigheden -doblet

Læs mere

Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul

Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul Kursus i Epidemiologi og Biostatistik Epidemiologiske mål Studiedesign Svend Juul 1 Pludselig uventet spædbarnsdød (vuggedød, Sudden Infant Death Syndrome, SIDS) Uventet dødsfald hos et rask spædbarn (8

Læs mere

Præcision og effektivitet (efficiency)?

Præcision og effektivitet (efficiency)? Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet

Læs mere

2. Hvilke(t) epidemiologisk(e) design(s) anvender forfatterne til at belyse problemstillingen? (7 point)

2. Hvilke(t) epidemiologisk(e) design(s) anvender forfatterne til at belyse problemstillingen? (7 point) Eksamensopgave i Epidemiologiske metoder, IT & Sundhed forår 2011 Læs artiklen grundigt og svar derefter på alle spørgsmål. Under hver opgave står hvor mange point der maksimalt kan opnås for opgaven.

Læs mere

Population attributable fraction

Population attributable fraction Population attributable fraction Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 2. juni 2015 l Dias nummer 1 Sidste gang

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning

Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning Anden del: systematisk og kritisk læsning DMCG-PAL, 8. april 2010 Annette de Thurah Sygeplejerske, MPH, ph.d. Århus Universitetshospital

Læs mere

Eksperimenter. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011

Eksperimenter. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Eksperimenter Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Epidemiologiske studier Observerende studier beskrivende (populationer) regional variation migrations

Læs mere

Studiedesigns: Alternative designs

Studiedesigns: Alternative designs Studiedesigns: Alternative designs Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 20. maj 2014 l Dias nummer 1 Sidste gang

Læs mere

S4-S5 statistik Facitliste til opgaver

S4-S5 statistik Facitliste til opgaver S4-S5 statistik Facitliste til opgaver Opgave 1 Middelværdien angiver det bedste bud på serummets sande værdi, mens spredningen angiver analyseusikkerheden. 95%-Konfidensinterval = Ja Standardafvigelsen

Læs mere

Tillæg til studieordningen for bacheloruddannelsen i Sundhedsteknologi

Tillæg til studieordningen for bacheloruddannelsen i Sundhedsteknologi Tillæg til studieordningen for bacheloruddannelsen i Sundhedsteknologi Universitet 2012 1 Tillæg til studieordningen for bacheloruddannelsen i Sundhedsteknologi marts 2012. Modulerne beskrevet i tillægget,

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Effektmålsmodifikation

Effektmålsmodifikation Effektmålsmodifikation Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2015 l Dias nummer 1 Sidste gang Vi snakkede

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Kritisk læsning af kohorte studie Oversat efter: Critical Appraisal skills Programme (CASP) Making sense of evidence

Kritisk læsning af kohorte studie Oversat efter: Critical Appraisal skills Programme (CASP) Making sense of evidence Kritisk læsning af kohorte studie Oversat efter: Critical Appraisal skills Programme (CASP) Making sense of evidence Public Health Resource Unit 2002 http://www.phru.nhs.uk/casp/critical_appraisal_tools.htm

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2016 l Dias nummer 1 Sidste gang

Læs mere

Noter til SfR checkliste 3 Kohorteundersøgelser

Noter til SfR checkliste 3 Kohorteundersøgelser Noter til SfR checkliste 3 Kohorteundersøgelser Denne checkliste anvendes til undersøgelser som er designet til at besvare spørgsmål af typen hvad er effekten af denne eksponering?. Den relaterer sig til

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N REEKSAMEN I EPIDEMIOLOGISKE METODER IT

Læs mere

Vurdering af det Randomiserede kliniske forsøg RCT

Vurdering af det Randomiserede kliniske forsøg RCT Vurdering af det Randomiserede kliniske forsøg RCT Evidensbaseret Praksis DF Region Nord Marts 2011 Jane Andreasen, udviklingsterapeut og forskningsansvarlig, MLP. Ergoterapi- og fysioterapiafdelingen,

Læs mere

Studiedesigns: Case-kontrolundersøgelser

Studiedesigns: Case-kontrolundersøgelser Studiedesigns: Case-kontrolundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 12. maj 2016 l Dias nummer 1 Sidste

Læs mere

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Hyppigheds- og associationsmål Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Læringsmål Incidens Incidens rate Incidens proportion Prævalens proportion

Læs mere

Epidemiologi og biostatistik. Diagnostik og screening. Forelæsning, uge 5, Svend Juul. Hvordan stiller man en diagnose? Diagnostiske kriterier

Epidemiologi og biostatistik. Diagnostik og screening. Forelæsning, uge 5, Svend Juul. Hvordan stiller man en diagnose? Diagnostiske kriterier Epidemiologi og biostatistik Diagnostik og screening Forelæsning, uge 5, Svend Juul Hvordan stiller man en diagnose? Symptomer - passive: patientens spontane rapport - aktive: svar på målrettede spørgsmål

Læs mere

Module 1: Data og Statistik

Module 1: Data og Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 1: Data og Statistik 1.1 Hvad er statistik?................................... 1 1.2 Datatyper.......................................

Læs mere

RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT

Læs mere

Korrelation Pearson korrelationen

Korrelation Pearson korrelationen -9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærere: Esben Budtz-Jørgensen Jørgen Holm Petersen Øvelseslærere: Berivan+Kathrine, Amalie+Annabell Databehandling: SPSS

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Fejlkilder i epidemiologiske undersøgelser

Fejlkilder i epidemiologiske undersøgelser Fejlkilder i epidemiologiske undersøgelser April 2004 Søren Friis Nøjagtigheden (eng: accuracy) af et givent punktestimat afhænger af graden af tilfældig og systematisk variation i målingen af effekten

Læs mere

Studiedesigns: Kohorteundersøgelser

Studiedesigns: Kohorteundersøgelser Studiedesigns: Kohorteundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 28. april 2015 l Dias nummer 1 Sidste

Læs mere

EPIDEMIOLOGI MODUL 7. April Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse DAGENS PROGRAM

EPIDEMIOLOGI MODUL 7. April Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse DAGENS PROGRAM EPIDEMIOLOGI MODUL 7 April 2007 Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse DAGENS PROGRAM Selektionsbias et par udvalgte emner Confounding by indication Immortal time bias

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Introduktion til epidemiologi

Introduktion til epidemiologi Introduktion til epidemiologi Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab, Københavns Universitet It og sundhed l 9. april 2015 l Dias

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2200 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Studiedesigns: Kohorteundersøgelser

Studiedesigns: Kohorteundersøgelser Studiedesigns: Kohorteundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 3. maj 2016 l Dias nummer 1 Sidste gang

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

KAPITEL 5. Analytisk. Poul Suadicani. epidemiologi

KAPITEL 5. Analytisk. Poul Suadicani. epidemiologi KAPITEL 5 Analytisk Poul Suadicani epidemiologi 128 Epidemiologi er læren om sygdommes og sygdomsdeterminanters udbredelse i populationen og anvendelse af viden herom til kontrol af disse. Ordet kommer

Læs mere

Årsager. Øjvind Lidegaard, RH Rikke Guldberg, Skejby Ulrik Kesmodel, Herlev

Årsager. Øjvind Lidegaard, RH Rikke Guldberg, Skejby Ulrik Kesmodel, Herlev Årsager Øjvind Lidegaard, RH Rikke Guldberg, Skejby Ulrik Kesmodel, Herlev Årsager Hvad er en årsag? Flere typer af årsager Hvad kendetegner en årsag? Hvorfor er årsager interessante? Identifikation af

Læs mere

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation

Læs mere

Bortfaldets betydning i dag og over tid

Bortfaldets betydning i dag og over tid Bortfaldets betydning i dag og over tid Belyst ved eksempler Peter Linde Interviewservice pli@dst.dk 27. november 2013 Dagsorden Hvad er en repræsentativ undersøgelse? Definition af responsrate Bortfald

Læs mere

Epidemiologisk design I. Eksperimentelle undersøgelser. Epidemiologisk design II. Randomiserede undersøgelser. Randomisering I.

Epidemiologisk design I. Eksperimentelle undersøgelser. Epidemiologisk design II. Randomiserede undersøgelser. Randomisering I. Eksperimentelle undersøgelser Epidemiologisk design I Observerende undersøgelser beskrivende: Undersøgelsesenheden er populationer regional variation migrationsundersøgelser korrelationsundersøgelser tidsrækker

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Hypoteser om sygdomsårsager og behandlingseffekter. Evidens

Hypoteser om sygdomsårsager og behandlingseffekter. Evidens Kursus i Epidemiologi og Biostatistik, efterår 2005 Hypoteser om sygdomsårsager og behandlingseffekter. Evidens Anne Vingård Olesen, 29.09.2005 Institut for Folkesundhed Afdeling for Epidemiologi Genstandsgrænser

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Repræsentative undersøgelser Non-response Vægte. Peter Linde, DST Survey

Repræsentative undersøgelser Non-response Vægte. Peter Linde, DST Survey Repræsentative undersøgelser Non-response Vægte Peter Linde, DST Survey pli@dst.dk >> >> Dagsorden Hvad er en repræsentativ undersøgelse? Bortfaldes betydning for repræsentativitet Vægtning for bortfald

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Tillæg til Studieordning for Folkesundhedsvidenskab

Tillæg til Studieordning for Folkesundhedsvidenskab Tillæg til Studieordning for Folkesundhedsvidenskab Det Sundhedsvidenskabelige Fakultet Aalborg Universitet 2015 Tillæg til studieordningen for kandidatuddannelsen i Folkesundhedsvidenskab - 2013 Modulerne

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

En intro til radiologisk statistik. Erik Morre Pedersen

En intro til radiologisk statistik. Erik Morre Pedersen En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Epidemiologi Mål for association

Epidemiologi Mål for association Epidemiologi Mål for association Carsten Bogh Juhl, fysioterapeut, MPH, Marianne Lindahl, fysioterapeut, MPH, Fysioterapeutuddannelsen CVU Syd, Næstved Juhl CB, Lindahl M, (2005, 25. februar) 2. udg. revideret

Læs mere

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Økologiske studier Tværsnitsstudier Case-kontrolstudier Kohortestudier Randomiserede studier Hvorfor er det vigtigt at

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard

Læs mere

Hvilken rolle spiller fysisk aktivitet for betydningen af alkoholindtag, vægtændring og hofteomfang, når man ser på dødeligheden?

Hvilken rolle spiller fysisk aktivitet for betydningen af alkoholindtag, vægtændring og hofteomfang, når man ser på dødeligheden? Hvilken rolle spiller fysisk aktivitet for betydningen af alkoholindtag, vægtændring og hofteomfang, når man ser på dødeligheden? 28. oktober 2008 Jane Nautrup Østergaard Statens Institut for Folkesundhed

Læs mere

PRÆDIKTORER FOR SYGEMELDING I GRAVIDITETEN

PRÆDIKTORER FOR SYGEMELDING I GRAVIDITETEN PRÆDIKTORER FOR SYGEMELDING I GRAVIDITETEN INTRODUKTION Siden 1981 har det i Danmark været muligt at fraværsmeldes inden den lovmæssige ret til orlov 4-8 uger før fødsel ved en sygeligt forløbende graviditet

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Notat vedr. KRAM-profilen

Notat vedr. KRAM-profilen Notat vedr. KRAM-profilen Udarbejdet af: Jørgen J. Wackes Dato: 15. oktober 2008 Sagsid.: Version nr.: KRAM-profilen for Faaborg-Midtfyn Kommune - kort fortalt Indledning Faaborg-Midtfyn Kommune var KRAM-kommune

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering Sommereksamen 2015 Titel på kursus: Uddannelse: Semester: Statistik og evidensbaseret medicin Bacheloruddannelsen i Medicin/Medicin med industriel specialisering 2. semester Eksamensdato: 16-06-2015 Tid:

Læs mere

Interviewereffekter på spørgsmål om sort arbejde. Rockwool Fondens Forskningsenhed Oktober 2008

Interviewereffekter på spørgsmål om sort arbejde. Rockwool Fondens Forskningsenhed Oktober 2008 Interviewereffekter på spørgsmål om sort arbejde Rockwool Fondens Forskningsenhed Oktober 2008 Tak til Rockwool Fondens Forskningsenhed Danmarks Statistiks Interviewservice, specielt til Isak Isaksen,

Læs mere

Sundhedsprofil Indhold og opmærksomhedspunkter ved sammenligning af resultater med sundhedsprofilen 2010

Sundhedsprofil Indhold og opmærksomhedspunkter ved sammenligning af resultater med sundhedsprofilen 2010 Sundhedsprofil 2013 Indhold og opmærksomhedspunkter ved sammenligning af resultater med sundhedsprofilen 2010 Formål Præsentation af nye spørgsmål i profilen 2013 Hvordan opgøres spørgsmålene? Tolkning

Læs mere

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1 Mikro-kursus i statistik 2. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er hypotesetestning? I sundhedsvidenskab:! Hypotesetestning = Test af nulhypotesen Hypotese-testning anvendes til at vurdere,

Læs mere

Arbejdsmiljø for de sociale klasser

Arbejdsmiljø for de sociale klasser Arbejdsmiljø for de sociale klasser Denne analyse er en del af baggrundsanalyserne til bogen Det danske klassesamfund et socialt Danmarksportræt. I analysen er der fokus på både det fysiske og psykiske

Læs mere

Morten Frydenberg 25. april 2006

Morten Frydenberg 25. april 2006 . gang: Introduktion til Logistisk Regression Morten Frydenberg 26 Afdeling for Biostatistik, Århus Universitet MPH. studieår specialmodul 4 Cand. San. uddannelsen. studieår Hvorfor logistisk regression

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere