Epidemiologi og Biostatistik. Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Epidemiologi og Biostatistik. Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002"

Transkript

1 Epidemiologi og Biostatistik Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar

2 Statestik Det hedder det ikke! Statistik 2

3 Streptomycin til behandling af lunge-tuberkulose? (Table 2.6, s. 10. Medical Research Council 1948) Lave et forsøg, men hvordan? Success-kriterium = effekt-mål = respons? Samme virkning på alle? Bivirkninger? Kontrolgruppe? Placebo - dobbelt blindet forsøg? 3

4 1. Alle nye pt behandles med streptomycin? 2. Dem lægen finder egnede behandles? 3. Hver anden? 4. Lodtrækning (randomisering) Randomiseret klinisk forsøg RCT = Randomised clinical trial 4

5 Respons = overlevelse efter 6 måneder Gruppe Antal ialt Døde Streptomycin 55 4 Kontrol Hvis forsøget blev gentaget på nye pt, får vi så præcis det samme resultat? Hvorfor ikke? Pt er forskellige = interindividuel variation! 5

6 Hvad vil vi gerne konkludere? om Streptomycin har en (gavnlig) effekt på lungetuberkulose? om den enkelte pt s chance (Hr Jensen, Fru Olsen,...) for at overleve sygdommen ændres ved streptomycin behandling? Helbredt gøres syg Men den enkelte patient, der indgår i forsøget, kan ikke behandles med både placebo (kontrol) og streptomycin Respons: død/ilive 6

7 Generalisere fra stikprøven til hele populationen (= alle nye patienter med lungetuberkulose ) Stikprøven kan f.eks. bestå af alle nye patienter med sygdommen inden for det næste år. Ved lodtrækning afgøres det om den enkelte patient skal behandles med placebo eller streptomycin Er de næste 112 patienter på ÅKH typiske for hele Århus amt, eller Jylland, eller Danmark, eller????? 7

8 I stikprøven er dødshyppigheden blandt de streptomycin-behandlede mindre end blandt kontrollerne: 4 = 0.073< 14 = Vil det også gælde for hele populationen (fremtidige patienter med lungetuberkulose)? En ny stikprøve vil give lidt andre hyppigheder! Hvor meget kan disse hyppigheder variere? 8

9 I hele populationen: hyppighed = sandsynlighed (ukendt parameter) I stikprøven: hyppighed beregnes ud fra data (estimat) og er et gæt på sandsynligheden Sandsynlighed for positiv respons, hvis man behandles med streptomycin frekventiel fortolkning (hvis vi behandler mange pt ) Sandsynlighed for positiv respons, hvis man behandles med placebo Hvis streptomycin ikke har en effekt (nulhypotese) vil vi forvente at de 2 sandsynligheder er lige store 9

10 Ud fra stikprøven kan vi gætte på (estimere) disse 2 sandsynligheder Hvor usikre er vores estimater? Kan vi sammenligne de 2 sandsynligheder (nulhypotese) ved hjælp af vores estimater? Hvor forskellige kan de 2 sandsynligheder være? Ved hjælp af data (stikprøven) kan vi besvare disse spørgsmål (kvantificere vores viden om problemet) = Statistisk analyse 10

11 Kan virke meget abstrakt med disse mentale konstruktioner som: population sandsynlighed nulhypotese Mønt-kast: Antag, at vi får udleveret 2 mønter, der begge er blevet vredet skæve af hver sin person Har de 2 mønter samme sandsynlighed for krone? Vi kan ikke måle os til disse sandsynligheder! (men vi kan godt forestille os dem som ukendte størrelser!) 11

12 I streptomycin-eksemplet: Responsvariablen har kun 2 mulige udfald (ilive/død). Responsvariablen kan have mere end 2 udfald: NYHA index : I, II, III og IV Systolisk blodtryk : alle positive tal (i praksis et range fra 50 til 300?) Lufttemperatur : både negative og positive tal (et range fra -100 til 100 C?) Responsvariabel: kategorisk eller kontinuert Ikke-ordnet: ilive/død, kvinde /mand Ordnet: NYHA, smerte-score 12

13 Lungefunktion (Table 4.4) Sammenlign lungefunktionen hos: rygere med ikke-rygere astmatikere med raske etc. Respons = FEV1 Forsøg: Udvælg et antal personer tilfældigt i hver af de 2 grupper og sammenlign deres FEV1? 13

14 Sandsynlighed for at FEV1=3.0 liter??? Sandsynlighed for at FEV1= π liter??? Men sandsynligheden for at FEV1 > 3.0 liter giver mening Beregne denne sandsynlighed for alle mulige tal Beskrive fordelingen af FEV1 i hver gruppe Sammenligne 2 fordelinger 14

15 Table 4.4, s. 49. FEV1 (liter) 57 mandlige med.stud. Oprindelig rækkefølge Ordnet efter FEV1 Obs nr FEV1 Obs nr FEV FEV1< 2. 5 Antal observationer = 0 minimum 2.5 FEV1< obs. maximum 15

16 20 Histogram FEV1 (liter) 16

17 Histogrammet beskriver stikprøvens fordeling En ny stikprøve (af samme størrelse) vil give et anderledes histogram, men overordnet vil de 2 histogrammer ligne hinanden: range (minimum - maximum: cirka liter) en tydelig top omkring den centrale tendens (cirka 4 liter) symmetrisk omkring midten midten = den centrale tendens 17

18 80 60 asymmetrisk højreskævt Triglycerid 18

19 Svært at beskrive/sammenligne histogrammer I stedet: beskriv hver stikprøve ved nogle karakteristiske tal Median: Det midterste tal, når observationerne er skrevet op i rækkefølge, det vil sige 50% af observationerne median-værdien 50% af observationerne median-værdien Det 29. tal (n = 57): FEV1 50% =

20 1. kvartil: 25% 75% af observationerne af observationerne FEV1 25% = kvartil 1. kvartil 2. kvartil: = median! 3. kvartil: etc... Percentil: f.eks. FEV1 20% 20% af observationerne 80% af observationerne FEV120% = 3.46 FEV1 FEV1 20% 20% 20

21 Gennemsnit: FEV1= n 1 n i= FEV1 ( ) = = = 4.06 i Tolkning: Den centrale tendens Tyngdepunkt Prediktion: Hvad er det bedste gæt på FEV1 for en ny observation (studerende)? 21

22 variation kan måles ved spredning (s), - også kaldet standard deviation (sd) 1 n n 1 i 1 ( ) 2 i FEV1 s = sd = FEV1 = Spredningen er et fornuftigt mål for variationen, hvis fordelingen er symmetrisk 22

23 Karakterisere FEV1 s fordeling ved hjælp af de 2 størrelser: gennemsnit spredning Sammenligning af 2 grupper kan baseres på en sammenligning af disse 2 størrelser 23

24 Een måling pr individ: (biologisk ) variation mellem personer (inter-individuel variation) Flere målinger pr individ (f.eks. over tid): (biologisk) variation mellem personer (biologisk) variation over tid pr individ (dag-til-dag variation i FEV1) (intra-individuel variation) Måleusikkerhed 24

25 Time Pt 1 (mal) Pt 2 (mal) Pt 10 (nor) Blod koncentration af zidovudine (AZT) efter dosering hos patienter med unormal/normal fedt absorption Udsnit af data fra Table 10.5, s

26 20 15 AZT 10 5 Pt 1(mal) Pt 2 (mal) 0 Pt 10 (nor) Time (min) 26

27 (Table 10.6, s. 170) Normal Malabs abs Som summary measure anvendes her: Areal under kurven (AUC) Alternative forslag kunne være: peak koncentraion time to peak koncentration 27

28 AZT Data Model Time (min) Farmako-kinetisk model afhænger f.eks. af: dosis+fordelingsvolumen absorption elimination (clearance) 28

29 Koncentraion stor k A Farmako-kinetisk model k k k ( k t k t ) A yt () = d exp( ) exp( ) d k k A E A E : dosis (pr kg legemsvægt) : absorptionsrate : eliminationsrate samme d og k E E A 4 2 lille k A Time (min) 29

30 Randomiseret klinisk forsøg (RCT) Biomedicinsk problem Responsvariabel Designe et forsøg Indsamling af data Statistisk problem, nulhypotese Statistisk analyse Konklusion Rigtige rækkefølge!!! 30

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærere: Esben Budtz-Jørgensen Jørgen Holm Petersen Øvelseslærere: Berivan+Kathrine, Amalie+Annabell Databehandling: SPSS

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Måleproblemer. Fejlkilder og tolkningsproblemer. Usikkerhed og bias. Stikprøveusikkerhed. Epidemiologi og Biostatistik (version

Måleproblemer. Fejlkilder og tolkningsproblemer. Usikkerhed og bias. Stikprøveusikkerhed. Epidemiologi og Biostatistik (version Måleproblemer A B Fejlkilder og tolkningsproblemer Svend Juul, 19. september 2007 C D 1 2 Usikkerhed og bias De vigtigste kilder til usikkerhed og bias Præcision, sikkerhed, reproducerbarhed, ryster ikke

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning Statistik Introduktion Deskriptiv statistik Sandsynslighedregning Introduktion Kasper K. Berthelsen, Institut f. Mat. Fag 8 Kursusgange Individuel mundtlig eksamen (7-skala) Udgangspunkt i opgaver Software:

Læs mere

Module 1: Data og Statistik

Module 1: Data og Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 1: Data og Statistik 1.1 Hvad er statistik?................................... 1 1.2 Datatyper.......................................

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1 Mikro-kursus i statistik 2. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er hypotesetestning? I sundhedsvidenskab:! Hypotesetestning = Test af nulhypotesen Hypotese-testning anvendes til at vurdere,

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærer: Jørgen Holm Petersen Øvelseslærere: Signe, Helene, Marie, Amalie Databehandling: SPSS Eksamen: Ugeopgave efterfulgt

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Indledende om Signifikanstest Boldøvelser 1 Påstand: Et nyt præparat M virker mod migræne. Inden præparatet kan markedsføres, skal denne påstand

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1 Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Eksperimenter. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011

Eksperimenter. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Eksperimenter Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Epidemiologiske studier Observerende studier beskrivende (populationer) regional variation migrations

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM FORMÅL - BEKENDTGØRELSEN STX MATEMATIK A Kompetencer anvende simple statistiske eller sandsynlighedsteoretiske modeller

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

En intro til radiologisk statistik. Erik Morre Pedersen

En intro til radiologisk statistik. Erik Morre Pedersen En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning Intro til statistik Rasmus F. Brøndum, Institut 17 (Matematik) Hjemmeside: people.math.aau.dk/~froberg 22 forelæsninger (hvor af jeg afholder de første 13) + det samme antal øvelsesgange. Hjælpelærer:

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann 6. februar 2006 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser.

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Vurdering af det Randomiserede kliniske forsøg RCT

Vurdering af det Randomiserede kliniske forsøg RCT Vurdering af det Randomiserede kliniske forsøg RCT Evidensbaseret Praksis DF Region Nord Marts 2011 Jane Andreasen, udviklingsterapeut og forskningsansvarlig, MLP. Ergoterapi- og fysioterapiafdelingen,

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test. Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt

Læs mere

Sammenligning af to sæt observationer p-værdier og sikkerhedsgrænser

Sammenligning af to sæt observationer p-værdier og sikkerhedsgrænser 9 STATISTIK Sammenligning af to sæt observationer p-værdier og sikkerhedsgrænser Klaus Johansen Hvad er p-værdier og sikkerhedsgrænser, og hvad kan disse udfaldsmål bruges til? Artiklen rummer nyttig repetition

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Velkommen til StatBK. Program. Introduktion, summary measures, SAS. Praktisk info. Praktisk info

Velkommen til StatBK. Program. Introduktion, summary measures, SAS. Praktisk info. Praktisk info Program Introduktion, summary measures, SAS Helle Sørensen E-mail: helle@math.ku.dk I dag: Praktiske informationer Faglig intro: et par dataeksempler Datatyper Beskrivende statistik, bla. gennemsnit og

Læs mere

Besvarelse af opgavesættet ved Reeksamen forår 2008

Besvarelse af opgavesættet ved Reeksamen forår 2008 Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

En intro til radiologisk statistik

En intro til radiologisk statistik En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Det sundhedsrelaterede/patientnære ph.d.-stipendium

Det sundhedsrelaterede/patientnære ph.d.-stipendium Det sundhedsrelaterede/patientnære ph.d.-stipendium Pernille Heyckendorff Lilholt Institut for Medicin & Sundhedsteknologi, AAU 18.11.2015, Afslutningskonference Navn Pernille Heyckendorff Lilholt Uddannelser

Læs mere

Lidt historisk om chancelære i grundskolen

Lidt historisk om chancelære i grundskolen Lidt historisk om chancelære i grundskolen 1976 1.-2.klassetrin Vejledende forslag til læseplan:.det tilstræbes endvidere at eleverne i et passende talmaterialer kan bestemme for eksempel det største tal,

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling

Læs mere

Løsninger til kapitel 1

Løsninger til kapitel 1 Opgave. a) observation hyppighed frekvens kum. frekvens 2,25,25 3,875,325 2 3,875,5 3 3,875,6875 4,625,75 5,625,825 6,,825 7 2,25,9375 8,,9375 9,625, Frekvenser illustreres i et pindediagram,2,8,6,4,2,,8,6,4,2

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Hvor megen gavn får patienten af den medicinske behandling?

Hvor megen gavn får patienten af den medicinske behandling? Klaus Johansen RATIONEL FARMAKOTERAPI 1105 Hvor megen gavn får patienten af den medicinske behandling? Man kan fremover ikke nøjes med at meddele patienten, at kolesteroltallet er for højt, udskrive en

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Forelæsning 1: Intro og beskrivende statistik

Forelæsning 1: Intro og beskrivende statistik Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter Ekstraopgaver uge 2-02402 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Kapitel 1 Statistiske grundbegreber

Kapitel 1 Statistiske grundbegreber Kapitel 1 Statistiske grundbegreber Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Population versus stikprøve 3 Variabeltyper og måleskalaer 4 Parametrisk versus ikke-parametrisk

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

8.2 Statistiske analyse af hver enkelt indikator

8.2 Statistiske analyse af hver enkelt indikator 8.2 Statistiske analyse af hver enkelt indikator Basale ideer De avancerede statistiske metoder, som anvendes i denne rapport, fokuserer primært på vurdering af eventuel geografisk heterogenitet på regions-,

Læs mere

Teoretisk Statistik, 13 april, 2005

Teoretisk Statistik, 13 april, 2005 Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ

Læs mere

ID nummer 30.3 Medicineringsforløb ved sektorovergange.

ID nummer 30.3 Medicineringsforløb ved sektorovergange. ID nummer 30.3 Medicineringsforløb ved sektorovergange. Titel og reference Kategori Formål Resultatmål Metode The Value of Inpatient Pharmaceutical Counselling to Elderly Patients prior to Discharge Al-Rashed

Læs mere

Ved et folketingsvalg eller en folkeafstemning spørger man alle stemmeberettigede, og kun en del af dem stemmer.

Ved et folketingsvalg eller en folkeafstemning spørger man alle stemmeberettigede, og kun en del af dem stemmer. Matematik C (må anvendes på Ørestad Gymnasium) Statistik Statistik er bearbejdning af talmaterialer, der ofte indeholderstore mængder af tal. De indsamles og registreres i mange forskellige sammenhænge

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen 1 Velkommen til kurset Teoretisk Statistik Lærer: Niels-Erik Jensen Plan for i dag: 1. Eks: Er euro'en skæv? 4. Praktiske informationer 2. Eks: Regressionsmodel (kap. 1) 5. Lidt om kursets indhold 3. Hvad

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere