Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.
|
|
|
- Monika Holst
- 9 år siden
- Visninger:
Transkript
1 Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.
2 Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser) i klasser givet ved krydstabullering af et antal variable. Tovejs tabel (Powers and Xie side 89): holdning/uddannelse Imod sex før ægteskab Sex før ægteskab ok Highschool or less college or above Er der en sammenhæng mellem udd. og holdning?
3 Log-lineær model Antag vi har n personer og to kategoriske variable U og H. Sandsynligheden for at en tilfældig person har holding h og uddannelse u er P U =u, H =h = uh Den forventede frekvens for U=u og H=h er da F uh =n uh
4 Log-lineær model Generelt antager vi at de log forventede frekvenser er givet ved log F uh = U u H UH h uh Som sædvanligt, så er hver kategorisk variabel udstyret med en reference kategori. Parametre der referere til en eller flere reference kategorier er sat lig nul.
5 Uafhængighed Definitionen på at U og H er uafhængige er at P U =u, H =h =P U =u P H =h uh = u h For den log-lineære model betyder det at log F uh = u U h H
6 Pearson χ 2 -test Optil H 0 hypotese, fx uafhængighed. Lad F uh være de forventede frekvenser under H 0 og f uh være de observerede frekvenser. Da er Pearsons χ 2 -test givet ved 2 = uh f uh F uh 2 F uh Jo større χ 2, jo mindre tror vi på H 0. Som sædvanlig afgør P-værdien/signifikanssandsynligheden, hvornår χ 2 er for stor.
7 Modelformel En modelformel er et praktisk alternativ til en matematisk modelformel. Den matematiske formulering log F rc = R r C RC c rc har en ækvivalent modelformel: R + C + R*C Da vi overholder det hierarkiske princip kan vi nøjes med at skrive R*C
8 Modelopbygning Først vælger vi variable af interesse. Dernæst specificerer vi en startmodel, der overholder det hierarkiske princip. Hvis startmodellen indeholder et interaktionsled, hvor alle variable indgår er startmodellen en såkaldt mættet model. Herefter tester vi modelled væk under hensynstagen til det hierarkiske princip. Vi fjerner det led med størst P-værdi over Resultatet kalder vi slutmodellen.
9 Eksempel Analyse af samvariationen af fire kategoriske variable: B: Boligstandard: 0=dårlig, 1=acceptabel, 2=god H: Helbred: 0=godt, 1=dårligt I: Isoleret: 0=ja, 1=nej A: Angst: 0=nej, 1=ja
10 Krydstabel Helbred * Boligstandard * Isoleret * Angst Crosstabulation Count Boligstandard Angst Nej Ja Isoleret Ja Nej Ja Nej Helbred Total Helbred Total Helbred Total Helbred Total Godt Dårligt Godt Dårligt Godt Dårligt Godt Dårligt Under min. standard Min.standard Modrne Total SPSS: analyze descriptive statistics crosstabs. H i row, B i column, I i layer 1 og A i layer 2.
11 Som startmodel bruger vi den mættede model. Matematisk formulering: log F abhi = a A b B h H i I AB ab AH ah AI ai BH bh BI bi HI hi ABI abi ABH abh AHI ahi BHI bhi ABHI abhi Modelformel: ABHI
12 Fortolkning af slutmodel Uafhængighed: Hvis A indgår i modelformlen, men A ikke ingår i andre led (fx A*B, A*H*I, osv), så er A uafhængig. Forklaret sammenhæng: Hvis B og H ikke indgår i samme led, så er sammenhængen mellem B og H forklaret af andre variable. Dvs. slutmodellen må ikke indeholde B*H, B*H*A, B*H*I og A*B*H*I.
13 Fortolkning fortsat... Homogen sammenhæng: Hvis A*H indgår i modellen, men A*H ikke indgår i mere komplicerede led, så er sammenhængen mellem A og H homogen. Dvs. modellen må ikke indeholde A*H*I, A*B*H, A*B*H*I Heterogen sammenhæng: Hvis A*H indgår i modellen som en del af et mere kompliceret led, så er sammenhængen mellem A og H heterogen. Dvs. modellen skal indeholde A*B*I, A*B*H eller A*B*H*I.
14 Grafisk fortolkning 1) Tegn en cirkel for hver variabel 2) Forbind variable der indgår i samme led En isoleret variabel er uafhængig To nabo-variable med fælles nabo har en heterogen sammenhæng. To nabo-variable uden fælles nabo har en homogen sammenhæng. To forbundne ikke-nabo variable har en sammenhæng forklaret af de variable der ligger på stier der forbinder dem.
15 Eksempel Antag at slutmodellen har modelformelen: A*B + B*H*I Fortolkning: Homogen samh. ml. A og B Heterogen samh. ml. B og H, B og I, og H og I Samh. ml A og I forklaret af B Samh. ml. A og H forklaret af B
16 Modelopbygning i SPSS SPSS: Analyze Loglinear Model selection... Placer relevante (kategoriske) variable under 'Factor' og definer 'Range' for hver (trælst...). Under 'Model...' vælg 'Custom' Angiv kun de meste komplicerede interaktioner i jeres startmodel (max 5-vejs interaktion). Resten følger af det hierarkiske princip. Klik 'OK'
17 Step G enerating Class c Deleted Effect G enerating Class c Deleted Effect G enerating Class c Deleted Effect G enerating Class c Deleted Effect G enerating Class c Deleted Effect G enerating Class c Effects Chi-Square df Sig. Iterations B*H*I*A, B*H*I*A 3,546 2,170 1 B*H*I, B*H*A, B*I*A, H*I*A 3,546 2,170 B*H*I,670 2,715 1 B*H*A 4,071 2,131 1 B*I*A 2,323 2,313 1 H*I*A 1,362 1,243 1 B*H*A, B*I*A, H*I*A 4,216 4,378 B*H*A 2,942 2,230 2 B*I*A 2,240 2,326 1 H*I*A 1,782 1,182 1 B*H*A, H*I*A, B*I 6,455 6,374 B*H*A 6,189 2,045 1 H*I*A 2,239 1,135 1 B*I 24,432 2,000 1 B*H*A, B*I, H*I, I*A 8,695 7,275 B*H*A 2,090 2,352 2 B*I 23,327 2,000 1 H*I 44,269 1,000 1 I*A 15,113 1,000 1 B*I, H*I, I*A, B*H, B*A, H*A 10,785 9,291
18 Deleted Effect Generating Class c Deleted Effect Generating Class c Deleted Effect Generating Class c Deleted Effect Generating Class c B*I*A, H*I*A 4,216 4,378 B*H*A 2,942 2,230 2 B*I*A 2,240 2,326 1 H*I*A 1,782 1,182 1 B*H*A, H*I*A, B*I 6,455 6,374 B*H*A 6,189 2,045 1 H*I*A 2,239 1,135 1 B*I 24,432 2,000 1 B*H*A, B*I, H*I, I*A 8,695 7,275 B*H*A 2,090 2,352 2 B*I 23,327 2,000 1 H*I 44,269 1,000 1 I*A 15,113 1,000 1 B*I, H*I, I*A, B*H, B*A, H*A 10,785 9,291 B*I 25,843 2,000 1 H*I 45,283 1,000 2 I*A 15,675 1,000 2 B*H 27,422 2,000 2 B*A 27,132 2,000 2 H*A 31,167 1,000 2 B*I, H*I, I*A, B*H, B*A, H*A 10,785 9,291 a. For 'Deleted Effect', this is the change in the Chi-Square after the effect is deleted from the model. b. At each step, the effect with the largest significance level for the Likelihood Ratio Change is deleted
19 Slutmodel: B*I + H*I + I*A + B*H + B*A + H*A Alle to-vejs interaktioner er med, men ingen trevejs interaktioner. Dvs. mellem alle par af variable er der en homogen sammenhæng. Slutmodellen matematisk formuleret: log F abhi = a A b B h H i I AB ab AH ah AI ai BH bh BI HI bi hi
20 Parameter estimater + model kontrol SPSS: Analyze Loglinear General Under 'Model' vælg 'Custom' og specificer slutmodellen i fandt med 'Model selection' Under 'Options' vælge 'Estimates' Alle parametre der refererer til en eller flere reference kategorier er sat til nul. Som standard er sidste kategori reference. Dvs da B=2 er reference. ABH 020 =0 Under 'Options' vælge de to plot for 'Adjusted residuals'
21 Parameter Estimates c,d Parameter Constant [A =,00] [A = 1,00] [B =,00] [B = 1,00] [B = 2,00] [H =,00] [H = 1,00] [I =,00] [I = 1,00] [B =,00] * [A =,00] [B =,00] * [A = 1,00] [B = 1,00] * [A =,00] [B = 1,00] * [A = 1,00] [B = 2,00] * [A =,00] [B = 2,00] * [A = 1,00] [H =,00] * [A =,00] [H =,00] * [A = 1,00] [H = 1,00] * [A =,00] [H = 1,00] * [A = 1,00] [I =,00] * [A =,00] [I =,00] * [A = 1,00] [I = 1,00] * [A =,00] [I = 1,00] * [A = 1,00] [B =,00] * [H =,00] [B =,00] * [H = 1,00] [B = 1,00] * [H =,00] [B = 1,00] * [H = 1,00] [B = 2,00] * [H =,00] [B = 2,00] * [H = 1,00] [B =,00] * [I =,00] [B =,00] * [I = 1,00] [B = 1,00] * [I =,00] [B = 1,00] * [I = 1,00] [B = 2,00] * [I =,00] [B = 2,00] * [I = 1,00] 95% Confidence Interval Estimate Std. Error Z Sig. Lower Bound Upper Bound 5,802 a 1,403,057 24,541,000 1,291 1,515-1,853,124-14,992,000-2,096-1,611-1,338,100-13,343,000-1,535-1,142 -,326,074-4,417,000 -,471 -,181-2,819,149-18,941,000-3,111-2,527 -,387,133-2,913,004 -,647 -,126 -,513,108-4,726,000 -,725 -,300,473,079 6,001,000,318,627 -,773,161-4,792,000-1,090 -,457 -,411,114-3,619,000 -,633 -,188 -,462,095-4,858,000 -,648 -,276,811,226 3,586,000,368 1,255,960,183 5,247,000,602 1,319 Hvad er den forventede frekvens for kombinationen A=0, B=1, H=0, I=1?
22 Forventede vs observede frekvenser Ideelt: Expected Counts Observed Counts
23 Residualer: Q-Q plot 'Adjusted Residuals' bør være normalfordelte. I såfald vil prikkerne ligge usystematisk omkring en ret linie.
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Generelle lineære modeller
Generelle lineære modeller Regressionsmodeller med én uafhængig intervalskala variabel: Y en eller flere uafhængige variable: X 1,..,X k Den betingede fordeling af Y givet X 1,..,X k antages at være normal
Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser
Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp
Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.
Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller
Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende
Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller
Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Statistik II 1. Lektion. Analyse af kontingenstabeller
Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination
Eksamen Bacheloruddannelsen i Medicin med industriel specialisering
Eksamen 2016 Titel på kursus: Uddannelse: Semester: Forsøgsdesign og metoder Bacheloruddannelsen i Medicin med industriel specialisering 6. semester Eksamensdato: 17-02-2015 Tid: kl. 09.00-11.00 Bedømmelsesform
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
Statistiske Modeller 1: Kontingenstabeller i SAS
Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.
Ikke-parametriske tests
Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Postoperative komplikationer
Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.
Program dag 2 (11. april 2011)
Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet
Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,
Logistisk regression
Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller
Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol
Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Opgavebesvarelse, Basalkursus, uge 3
Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt
To-sidet variansanalyse
Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til
Regressionsanalyser. Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer.
Regressionsanalyser Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer. Hvilke faglige problemer kan man løse vha. regressionsanalyser? 1 Regressionsanalyser Det primære problem
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Faculty of Health Sciences. Basal Statistik. Logistisk regression mm. Lene Theil Skovgaard. 5. marts 2018
Faculty of Health Sciences Basal Statistik Logistisk regression mm. Lene Theil Skovgaard 5. marts 2018 1 / 22 APPENDIX vedr. SPSS svarende til diverse slides: To-gange-to tabeller, s. 3 Plot af binære
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.
1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.
Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i
Statistik Lektion 16 Multipel Lineær Regression
Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk
Logistisk regression. Statistik Kandidatuddannelsen i Folkesundhedsvidenskab
Logistis regression Statisti Kandidatuddannelsen i Folesundhedsvidensab Multipel logistis regression Antagelser: Binære observationer (Y i, i=,.,n) f.es Ja/Nej Høj/Lav Død/Levende Kodet: / 0 Y i uafhængige
Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet.
Introduktion til samfundsvidenskabelig metode Samfundsvidenskabelig metode IT-Universitetet September 2007 Mikkel Leihardt Hvad er metode? Metode er regler og retningslinjer for, hvordan vi undersøger
Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab
D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab Eksamensnummer: 16, 23
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22
Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som
Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.
Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller
Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller
Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede
Statistik Lektion 4. Variansanalyse Modelkontrol
Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion
Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Statistik og skalavalidering. Opgave 1
Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk
Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008
Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Opgavebesvarelse, logistisk regression
Opgavebesvarelse, logistisk regression Data ligger i rop.xls på kursushjemmesiden: http://staff.pubhealth.ku.dk/ jufo/courses/logistic/ Når du har gemt data på din computer, kan det indlæses i SAS med
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Epidemiologi og Biostatistik
Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Basal Statistik Kategoriske Data
Basal Statistik Kategoriske Data 8 oktober 2013 E 2013 Basal Statistik - Kategoriske data Michael Gamborg Institut for sygdomsforebyggelse Københavns Universitetshospital [email protected]
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:
1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale
Besvarelse af vitcap -opgaven
Besvarelse af -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Beskriv fordelingen af vital capacity og i de 3 grupper ved hjælp af summary statistics.
Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary
1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Økonometri Lektion 1 Simpel Lineær Regression 1/31
Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen
Maple-oversigt til matematik B-niveau: Rungsted Gymnasium Definer en funktion og funktionsværdier. Tegn grafen for en funktion.
Maple-oversigt til matematik B-niveau: Rungsted Gymnasium 2011 Definer en funktion og funktionsværdier (1.1) 32 (1.2) (1.3) Tegn grafen for en funktion (2.1) 250 200 150 100 50 0 5 10 8 6 4 2 0 1 2 0 y
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Opgavebesvarelse, Basalkursus, uge 3
Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mantel-Haenszel analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Mantel-Haenszel analyser Mantel-Haenszel analyser Sidst lærte vi om stratificerede analyser. I dag kigger vi på et specialtilfælde: både exposure
OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model
Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske
Introduktion til SPSS
Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning
1 Multipel regressions model Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning PSE (I17) ASTA - 11. lektion
OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere
Epidemiologi og biostatistik. Uge 5, torsdag 5. september 003 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver
Eksamen i statistik 2009-studieordning
Kandidatuddannelsen i Folkesundhedsvidenskab Det sundhedsvidenskabelige fakultet Københavns Universitet 21.12.2010 Eksamen i statistik 2009-studieordning Underviser Svend Kreiner Udarbejdet af eksamens
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j
Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
