Den lineære normale model

Størrelse: px
Starte visningen fra side:

Download "Den lineære normale model"

Transkript

1 Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af indre produkter på V : x, y σ 2 = x, y σ 2. p.1/21

2 Den lineære normale model Antagelse X er regulært normalfordelt på V med - centrum ξ L - præcision, σ 2 Parametrisering (ξ, σ 2 ) L (0, ). p.2/21

3 Maksimaliseringsestimation Maksimaliseringsestimator: ˆξ = p(x) ˆσ2 = hvor p er ortogonalprojektionen ned i L. X p(x) 2 N x PSfrag replacements L p(x) 0. p.3/21

4 Estimation i praksis Sædvanlig estimator ˆξ = p(x) σ2 = X p(x) 2 N k hvor p er ortogonalprojektionen ned i L. x PSfrag replacements L p(x) 0. p.4/21

5 Fordelingsresultat ˆξ og ˆσ 2 er uafhængige. ˆξ er regulært normalfordelt på L med - centrum ξ L - præcision: restriktionen af, σ 2 til L. ˆσ 2 er χ 2 -fordelt med formparameter N k skalaparameter σ 2 /N. p.5/21

6 Matrixformulering V = R N. Sædvanligt indre produkt: x, y = x T y. Underrum givet ved designmatrix L = {Aβ β R k } hvor de k søjler i A er lineært uafhængige N-vektorer. ˆξ = A(A T A) 1 A T X eller ˆβ = (A T A) 1 A T X ˆβ N ( β, σ 2 (A T A) 1). p.6/21

7 Lineær hypotese En lineær hypotese er af formen H : ξ L hvor L er et lineært underrum af L af dimension m. PSfrag replacements L x p(x) L 0 p (x). p.7/21

8 Intuitivt test-ide Intuitivt: vi tror på den lineære hypotese hvis X p (X) 2 X p(x) 2 Udmøntning: Udregn F = p(x) p (X) 2 /(k m) X p(x) 2 /(N k) Fortolkning: Små F -værdier får os til at tro på hypotesen Store F -værdier får os til at forkaste hypotesen. p.8/21

9 Uafhængighed Lemma De tre variable X p(x) p(x) p (X) p (X) er uafhængige, uanset om hypotesen er sand eller ej X p(x) har centrum 0 hvis modellen er sand p(x) p (X) har centrum 0 hvis hypotesen er sand Bevis: Trivielt ud fra spaltningssætningen.. p.9/21

10 F testet Hvis hypotesen er sand er F -fordelt med df = (k m, N k) F = p(x) p (X) 2 /(k m) X p(x) 2 /(N k) Vi kan bruge 95% fraktilen som grænse mellem stort og småt. F -størrelsen udregnes ofte som ( p(x) 2 p (X) 2) /(k m) F = ( X 2 p(x) 2 ) /(N k). p.10/21

11 B testet Udregn Fortolkning: B = X p(x) 2 X p (X) 2 Små B-værdier får os til at forkaste hypotesen Store B-værdier får os til at tro på hypotesen Hvis hypotesen er sand er B B-fordelt, df = (N k, k m) Vi kan bruge 5% fraktilen i denne fordeling som grænse mellem stort og småt.. p.11/21

12 Ækvivalente test Bemærk: B = N k N K + (k m)f så F -test og B-test er ækvivalente.. p.12/21

13 Kvotienttest L X (ξ, σ 2 ) = ( ) N/2 1 σ 2 e X ξ 2 /2σ 2 Maksimering under modellen: L X (ˆξ, ˆσ 2 ) = ( N X p(x) 2 ) N/2 e N/2 Maksimering under hypotesen: L X (ˆξ, ˆσ2 ) = ( N X p (X) 2 ) N/2 e N/2. p.13/21

14 Kvotienttest Kvotientteststørrelse: Q = L X(ˆξ, ˆσ2 ) L X (ˆξ, ˆσ 2 ) = ( X p(x) 2 X p (X) 2 ) N/2 = B N/2 Konklusion: Kvotienttest er ækvivalent med B-test.. p.14/21

15 Konfidensområde Problem: Find konfidensområdet for parameterfunktionen (ξ, σ 2 ) ξ (Variansparameteren σ 2 er en støjparameter) Strategi: Find profillikelihoodfunktionen for ξ, L X (ξ). Find kvotientteststørrelsen Q X (ξ) ud fra L X (ξ). Find en afskæring af formen C(X) = {ξ Q X (ξ) > z} Bed til at Q X er pivot.... p.15/21

16 Profillikelihood Husk at L X (ξ, σ 2 ) = ( ) N/2 1 e X ξ 2 /2σ 2 σ 2 For fast ξ maksimeres dette udtryk af ˆσ 2 (ξ) = X ξ 2 N så profillikelihoodfunktionen er L X (ξ) = ( ) N/2 N X ξ 2 e N/2. p.16/21

17 Profillikelihoodkvotient Kvotientteststørrelse på denne baggrund: Q X (ξ) = L X (ξ) L X (ˆξ) = ( X p(x) 2 X ξ 2 ) N/2. p.17/21

18 Afskæringsområde Kvotientteststørrelsen er i (aftagende) bijektiv korrespondence med p(x) ξ 2 /k X p(x) 2 /(N k) Vi kan derfor vælge et afskæringsområde af formen C(X) = { ξ p(x) ξ 2 } /k X p(x) 2 /(N k) < z. p.18/21

19 Afskæringsområde Hvis (ξ, σ 2 ) er de sande parametre, så er p(x) ξ 2 /k X p(x) 2 /(N k) F -fordelt, df = (k, N k) altså pivot! Vi kan derfor vælge et afskæringsområde af formen C(X) = { ξ p(x) ξ 2 } /k X p(x) 2 /(N k) < z hvor z er 95% fraktilen i F (k, N k)-fordelingen. Bemærk: C(X) er en kugle i L med centrum i p(x).. p.19/21

20 Matrixformulering V = R N. Sædvanligt indre produkt: x, y = x T y. Underrum givet ved designmatrix L = {Aβ β R k } hvor de k søjler i A er lineært uafhængige N-vektorer. Konfidensområde for β: C(X) = {β R k (β ˆβ) T A T A(β ˆβ) < kz σ } 2 hvor z er 95% fraktilen for en F (k, N k)-fordelingen.. p.20/21

21 Marginale konfidensintervaller Hvis vi betrager en lineær reel parameterfunktion, β α T β kan vi i princippet finde profillikelihoodfunktion etc. Resultatet bliver et konfidensområde af formen α T ˆβ ± α T (A T A) 1 α z σ 2 hvor z er 95% fraktilen for en F -fordeling med (1, N k) frihedsgrader.. p.21/21

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Den generelle lineære model

Den generelle lineære model Kapitel 10 Den generelle lineære model Den generelle lineære normale model, eller blot den lineære normale model, er en matematisk abstraktion af en række af de mest anvendte statistiske modeller: etsidet

Læs mere

Asymptotisk testteori

Asymptotisk testteori Kapitel 8 Asymptotisk testteori Vi vil nu beskæftige os med den asymptotiske teori for estimation under pæne hypoteser og for test af disse hypoteser. Vi skal især undersøge det forhold at hvis den fulde

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Trykfejlsliste - alle fejl Introduktion til Matematisk Statistik 2. udgave

Trykfejlsliste - alle fejl Introduktion til Matematisk Statistik 2. udgave 3. februar 2012 Stat 1TS / EH Trykfejlsliste - alle fejl Introduktion til Matematisk Statistik 2. udgave Denne liste indeholder alle de regulære fejl, slåfejl og stavefejl der er fundet i 2. udgave af

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Del II. Den lineære normale model

Del II. Den lineære normale model Del II Den lineære normale model 301 302 Kapitel 9 Normalfordelinger på vektorrum Vi vil i dette kapitel give en fremstilling af teorien for normalfordelinger (også kaldet Gaussiske fordelinger) på endeligdimensionale

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Estimation. Kapitel 4

Estimation. Kapitel 4 Kapitel 4 Estimation Lad (ν θ ) θ Θ være en parametriseret statistisk model på (X, E). I dette kapitel skal vi diskutere, hvorledes man ud fra en given observation x X kan give et skøn over værdien af

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Test af statistiske hypoteser

Test af statistiske hypoteser Kapitel 8 Test af statistiske hypoteser De inferensmæssige procedurer, vi hidtil har beskæftiget os med, har haft til formål at lokalisere den sande parameter så godt som muligt, og at beskrive hvor mange

Læs mere

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål Statistisk model Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål på (X, E). Modellen er parametriseret hvis der findes en parametermængde Θ og

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Lineære normale modeller (4) udkast

Lineære normale modeller (4) udkast E6 efterår 1999 Notat 21 Jørgen Larsen 2. december 1999 Lineære normale modeller (4) udkast 4.5 Regressionsanalyse 4.5.1 Præsentation 1 Regressionsanalyse handler om at undersøge hvordan én målt størrelse

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Statistik 1TS 2003 Obligatorisk opgave 1

Statistik 1TS 2003 Obligatorisk opgave 1 Afdeling for Statistik og Operationsanalyse Institut for Matematiske Fag, Københavns Universitet 4. marts 2003 Stat 1TS / EH Statistik 1TS 2003 Obligatorisk opgave 1 Formelle forhold: Opgaven stilles tirsdag

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Løsning til eksaminen d. 29. maj 2009

Løsning til eksaminen d. 29. maj 2009 DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20.

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20. Foldning af sandsnlighedsmål Lad µ og ν være to sandsnlighedsmål på (R, B). Fortolkning Lad φ : R R være φ(, ) = + for (, ) R. Lad X og Y være to reelle stokastiske variable defineret på (Ω, F, P). Definition

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Estimation. Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat.

Estimation. Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat. Estimation Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat. En estimator er en gætteregel.. p.1/22 Estimation X acements

Læs mere

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Per Bruun Brockhoff, DTU Compute, Claus Thorn Ekstrøm, KU Biostatistik, Ernst Hansen, KU Matematik January 17, 2017 Abstract

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: [email protected] Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge

Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6 Institut for Matematiske Fag Matematisk Modellering 1 Aarhus Universitet Eva B. Vedel Jensen 25. februar 2008 UGESEDDEL 6 Forelæsningerne torsdag den 21. februar og tirsdag den 26. februar. Jeg har gennemgået

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Delprøven uden hjælpemidler

Delprøven uden hjælpemidler Opgave 1 a) Ved aflæsning på graf fås følgende: Median: 800 kr. Andel dyrere end 1000 kr.: 45%. Opgave 2 Givet funktionen: f (x)= 3x 2 8x +5. a) F(x)= x 3 4x 2 +5x + k. Delprøven uden hjælpemidler Vi finder

Læs mere