Den lineære normale model
|
|
|
- Ella Søndergaard
- 9 år siden
- Visninger:
Transkript
1 Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af indre produkter på V : x, y σ 2 = x, y σ 2. p.1/21
2 Den lineære normale model Antagelse X er regulært normalfordelt på V med - centrum ξ L - præcision, σ 2 Parametrisering (ξ, σ 2 ) L (0, ). p.2/21
3 Maksimaliseringsestimation Maksimaliseringsestimator: ˆξ = p(x) ˆσ2 = hvor p er ortogonalprojektionen ned i L. X p(x) 2 N x PSfrag replacements L p(x) 0. p.3/21
4 Estimation i praksis Sædvanlig estimator ˆξ = p(x) σ2 = X p(x) 2 N k hvor p er ortogonalprojektionen ned i L. x PSfrag replacements L p(x) 0. p.4/21
5 Fordelingsresultat ˆξ og ˆσ 2 er uafhængige. ˆξ er regulært normalfordelt på L med - centrum ξ L - præcision: restriktionen af, σ 2 til L. ˆσ 2 er χ 2 -fordelt med formparameter N k skalaparameter σ 2 /N. p.5/21
6 Matrixformulering V = R N. Sædvanligt indre produkt: x, y = x T y. Underrum givet ved designmatrix L = {Aβ β R k } hvor de k søjler i A er lineært uafhængige N-vektorer. ˆξ = A(A T A) 1 A T X eller ˆβ = (A T A) 1 A T X ˆβ N ( β, σ 2 (A T A) 1). p.6/21
7 Lineær hypotese En lineær hypotese er af formen H : ξ L hvor L er et lineært underrum af L af dimension m. PSfrag replacements L x p(x) L 0 p (x). p.7/21
8 Intuitivt test-ide Intuitivt: vi tror på den lineære hypotese hvis X p (X) 2 X p(x) 2 Udmøntning: Udregn F = p(x) p (X) 2 /(k m) X p(x) 2 /(N k) Fortolkning: Små F -værdier får os til at tro på hypotesen Store F -værdier får os til at forkaste hypotesen. p.8/21
9 Uafhængighed Lemma De tre variable X p(x) p(x) p (X) p (X) er uafhængige, uanset om hypotesen er sand eller ej X p(x) har centrum 0 hvis modellen er sand p(x) p (X) har centrum 0 hvis hypotesen er sand Bevis: Trivielt ud fra spaltningssætningen.. p.9/21
10 F testet Hvis hypotesen er sand er F -fordelt med df = (k m, N k) F = p(x) p (X) 2 /(k m) X p(x) 2 /(N k) Vi kan bruge 95% fraktilen som grænse mellem stort og småt. F -størrelsen udregnes ofte som ( p(x) 2 p (X) 2) /(k m) F = ( X 2 p(x) 2 ) /(N k). p.10/21
11 B testet Udregn Fortolkning: B = X p(x) 2 X p (X) 2 Små B-værdier får os til at forkaste hypotesen Store B-værdier får os til at tro på hypotesen Hvis hypotesen er sand er B B-fordelt, df = (N k, k m) Vi kan bruge 5% fraktilen i denne fordeling som grænse mellem stort og småt.. p.11/21
12 Ækvivalente test Bemærk: B = N k N K + (k m)f så F -test og B-test er ækvivalente.. p.12/21
13 Kvotienttest L X (ξ, σ 2 ) = ( ) N/2 1 σ 2 e X ξ 2 /2σ 2 Maksimering under modellen: L X (ˆξ, ˆσ 2 ) = ( N X p(x) 2 ) N/2 e N/2 Maksimering under hypotesen: L X (ˆξ, ˆσ2 ) = ( N X p (X) 2 ) N/2 e N/2. p.13/21
14 Kvotienttest Kvotientteststørrelse: Q = L X(ˆξ, ˆσ2 ) L X (ˆξ, ˆσ 2 ) = ( X p(x) 2 X p (X) 2 ) N/2 = B N/2 Konklusion: Kvotienttest er ækvivalent med B-test.. p.14/21
15 Konfidensområde Problem: Find konfidensområdet for parameterfunktionen (ξ, σ 2 ) ξ (Variansparameteren σ 2 er en støjparameter) Strategi: Find profillikelihoodfunktionen for ξ, L X (ξ). Find kvotientteststørrelsen Q X (ξ) ud fra L X (ξ). Find en afskæring af formen C(X) = {ξ Q X (ξ) > z} Bed til at Q X er pivot.... p.15/21
16 Profillikelihood Husk at L X (ξ, σ 2 ) = ( ) N/2 1 e X ξ 2 /2σ 2 σ 2 For fast ξ maksimeres dette udtryk af ˆσ 2 (ξ) = X ξ 2 N så profillikelihoodfunktionen er L X (ξ) = ( ) N/2 N X ξ 2 e N/2. p.16/21
17 Profillikelihoodkvotient Kvotientteststørrelse på denne baggrund: Q X (ξ) = L X (ξ) L X (ˆξ) = ( X p(x) 2 X ξ 2 ) N/2. p.17/21
18 Afskæringsområde Kvotientteststørrelsen er i (aftagende) bijektiv korrespondence med p(x) ξ 2 /k X p(x) 2 /(N k) Vi kan derfor vælge et afskæringsområde af formen C(X) = { ξ p(x) ξ 2 } /k X p(x) 2 /(N k) < z. p.18/21
19 Afskæringsområde Hvis (ξ, σ 2 ) er de sande parametre, så er p(x) ξ 2 /k X p(x) 2 /(N k) F -fordelt, df = (k, N k) altså pivot! Vi kan derfor vælge et afskæringsområde af formen C(X) = { ξ p(x) ξ 2 } /k X p(x) 2 /(N k) < z hvor z er 95% fraktilen i F (k, N k)-fordelingen. Bemærk: C(X) er en kugle i L med centrum i p(x).. p.19/21
20 Matrixformulering V = R N. Sædvanligt indre produkt: x, y = x T y. Underrum givet ved designmatrix L = {Aβ β R k } hvor de k søjler i A er lineært uafhængige N-vektorer. Konfidensområde for β: C(X) = {β R k (β ˆβ) T A T A(β ˆβ) < kz σ } 2 hvor z er 95% fraktilen for en F (k, N k)-fordelingen.. p.20/21
21 Marginale konfidensintervaller Hvis vi betrager en lineær reel parameterfunktion, β α T β kan vi i princippet finde profillikelihoodfunktion etc. Resultatet bliver et konfidensområde af formen α T ˆβ ± α T (A T A) 1 α z σ 2 hvor z er 95% fraktilen for en F -fordeling med (1, N k) frihedsgrader.. p.21/21
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive
Den generelle lineære model
Kapitel 10 Den generelle lineære model Den generelle lineære normale model, eller blot den lineære normale model, er en matematisk abstraktion af en række af de mest anvendte statistiske modeller: etsidet
Asymptotisk testteori
Kapitel 8 Asymptotisk testteori Vi vil nu beskæftige os med den asymptotiske teori for estimation under pæne hypoteser og for test af disse hypoteser. Vi skal især undersøge det forhold at hvis den fulde
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,
Trykfejlsliste - alle fejl Introduktion til Matematisk Statistik 2. udgave
3. februar 2012 Stat 1TS / EH Trykfejlsliste - alle fejl Introduktion til Matematisk Statistik 2. udgave Denne liste indeholder alle de regulære fejl, slåfejl og stavefejl der er fundet i 2. udgave af
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Del II. Den lineære normale model
Del II Den lineære normale model 301 302 Kapitel 9 Normalfordelinger på vektorrum Vi vil i dette kapitel give en fremstilling af teorien for normalfordelinger (også kaldet Gaussiske fordelinger) på endeligdimensionale
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
Estimation. Kapitel 4
Kapitel 4 Estimation Lad (ν θ ) θ Θ være en parametriseret statistisk model på (X, E). I dette kapitel skal vi diskutere, hvorledes man ud fra en given observation x X kan give et skøn over værdien af
Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge
Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange
Test af statistiske hypoteser
Kapitel 8 Test af statistiske hypoteser De inferensmæssige procedurer, vi hidtil har beskæftiget os med, har haft til formål at lokalisere den sande parameter så godt som muligt, og at beskrive hvor mange
Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål
Statistisk model Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål på (X, E). Modellen er parametriseret hvis der findes en parametermængde Θ og
Module 12: Mere om variansanalyse
Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........
Lineære normale modeller (4) udkast
E6 efterår 1999 Notat 21 Jørgen Larsen 2. december 1999 Lineære normale modeller (4) udkast 4.5 Regressionsanalyse 4.5.1 Præsentation 1 Regressionsanalyse handler om at undersøge hvordan én målt størrelse
Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0
Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt
Statistik 1TS 2003 Obligatorisk opgave 1
Afdeling for Statistik og Operationsanalyse Institut for Matematiske Fag, Københavns Universitet 4. marts 2003 Stat 1TS / EH Statistik 1TS 2003 Obligatorisk opgave 1 Formelle forhold: Opgaven stilles tirsdag
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)
SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige
Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1
Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan
Module 3: Statistiske modeller
Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål
Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Eksamen i Statistik for biokemikere. Blok
Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1
Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære
Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20.
Foldning af sandsnlighedsmål Lad µ og ν være to sandsnlighedsmål på (R, B). Fortolkning Lad φ : R R være φ(, ) = + for (, ) R. Lad X og Y være to reelle stokastiske variable defineret på (Ω, F, P). Definition
Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser
Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Estimation. Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat.
Estimation Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat. En estimator er en gætteregel.. p.1/22 Estimation X acements
Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ
Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Per Bruun Brockhoff, DTU Compute, Claus Thorn Ekstrøm, KU Biostatistik, Ernst Hansen, KU Matematik January 17, 2017 Abstract
8 Regulære flader i R 3
8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)
Perspektiver i Matematik-Økonomi: Linær regression
Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: [email protected] Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Lineær Algebra, TØ, hold MA3
Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
Økonometri Lektion 1 Simpel Lineær Regression 1/31
Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen
Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm
Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation
Sandsynlighedsregning Oversigt over begreber og fordelinger
Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)
Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6
Institut for Matematiske Fag Matematisk Modellering 1 Aarhus Universitet Eva B. Vedel Jensen 25. februar 2008 UGESEDDEL 6 Forelæsningerne torsdag den 21. februar og tirsdag den 26. februar. Jeg har gennemgået
Modul 12: Regression og korrelation
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved
Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,
Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016
Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
Module 1: Lineære modeller og lineær algebra
Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Delprøven uden hjælpemidler
Opgave 1 a) Ved aflæsning på graf fås følgende: Median: 800 kr. Andel dyrere end 1000 kr.: 45%. Opgave 2 Givet funktionen: f (x)= 3x 2 8x +5. a) F(x)= x 3 4x 2 +5x + k. Delprøven uden hjælpemidler Vi finder
