Kapitel 2 Frekvensfordelinger
|
|
|
- Else Kristensen
- 9 år siden
- Visninger:
Transkript
1 Kapitel 2 Frekvensfordelinger Peter Tibert Stoltze [email protected] Elementær statistik F2011
2 1 Indledning 2 Grafik af frekvensfordelinger 3 Frekvensfordeling med Excel 4 Opsamling
3 1 Indledning 2 Grafik af frekvensfordelinger 3 Frekvensfordeling med Excel 4 Opsamling
4 Frekvensfordeling Optælling af antal observationer i en række passende intervaller Ikke for snævre og ikke for brede... Mest almindeligt med samme bredde for alle intervaller (evt fraset de to yderste)
5 Læsescores som tabel Antal Antal Score Piger Drenge Piger Drenge
6 1 Indledning 2 Grafik af frekvensfordelinger 3 Frekvensfordeling med Excel 4 Opsamling
7 Læsescores som histogram Antal Piger Drenge Læsescore
8 Kumulativ fordeling af læsescores (1/3) Kumuleret antal Piger Drenge Læsescore
9 Kumulativ fordeling af læsescores (2/3) Kumuleret antal Piger Drenge Læsescore
10 Kumulativ fordeling af læsescores (3/3) Kumuleret antal Piger Drenge Læsescore
11 1 Indledning 2 Grafik af frekvensfordelinger 3 Frekvensfordeling med Excel 4 Opsamling
12 Frekvensfordeling med Excel Kan beregnes vha DataAnalyse Histogram Skal specificere passende intervalafgrænsning Laves for et materiale ad gangen (drenge og piger hver for sig)
13 Analysis ToolPak Før man kan lave optælling af fordelinger skal tilføjelsesprogrammet Analysis ToolPak (sic!) installeres:
14 Matrixfunktion frekvens i Excel Et alternativ til guiden er at benytte matrixfunktionen frekvens Kræver at du har opskrevet øvre grænse for dine klasser (og ikke er bange for at trykke på tre taster på én gang) Er gennemgået i separat note...
15 1 Indledning 2 Grafik af frekvensfordelinger 3 Frekvensfordeling med Excel 4 Opsamling
16 Opsamling Opsummering af større datamængder i frekvenstabeller ved optælling af antal observationer i en række skarpt definerede klasser, der dækker hele variationsområdet Valg af passende optællingsklasser kan kræve nogle eksperimenter... Den kumulative frekvens er antal observationer lavere end eller lig klassens øvre grænse Den kumulative fordeling kan udtrykkes i procent hvis fordelinger med forskelligt antal observationer skal sammenlignes Et histogram er frekvensfordelingen repræsenteret grafisk som søjler Den kumulative frekvensfordeling repræsenteres oftest som en kurve
17 Opsamling Opsummering af større datamængder i frekvenstabeller ved optælling af antal observationer i en række skarpt definerede klasser, der dækker hele variationsområdet Valg af passende optællingsklasser kan kræve nogle eksperimenter... Den kumulative frekvens er antal observationer lavere end eller lig klassens øvre grænse Den kumulative fordeling kan udtrykkes i procent hvis fordelinger med forskelligt antal observationer skal sammenlignes Et histogram er frekvensfordelingen repræsenteret grafisk som søjler Den kumulative frekvensfordeling repræsenteres oftest som en kurve
18 Opsamling Opsummering af større datamængder i frekvenstabeller ved optælling af antal observationer i en række skarpt definerede klasser, der dækker hele variationsområdet Valg af passende optællingsklasser kan kræve nogle eksperimenter... Den kumulative frekvens er antal observationer lavere end eller lig klassens øvre grænse Den kumulative fordeling kan udtrykkes i procent hvis fordelinger med forskelligt antal observationer skal sammenlignes Et histogram er frekvensfordelingen repræsenteret grafisk som søjler Den kumulative frekvensfordeling repræsenteres oftest som en kurve
19 Opsamling Opsummering af større datamængder i frekvenstabeller ved optælling af antal observationer i en række skarpt definerede klasser, der dækker hele variationsområdet Valg af passende optællingsklasser kan kræve nogle eksperimenter... Den kumulative frekvens er antal observationer lavere end eller lig klassens øvre grænse Den kumulative fordeling kan udtrykkes i procent hvis fordelinger med forskelligt antal observationer skal sammenlignes Et histogram er frekvensfordelingen repræsenteret grafisk som søjler Den kumulative frekvensfordeling repræsenteres oftest som en kurve
20 Opsamling Opsummering af større datamængder i frekvenstabeller ved optælling af antal observationer i en række skarpt definerede klasser, der dækker hele variationsområdet Valg af passende optællingsklasser kan kræve nogle eksperimenter... Den kumulative frekvens er antal observationer lavere end eller lig klassens øvre grænse Den kumulative fordeling kan udtrykkes i procent hvis fordelinger med forskelligt antal observationer skal sammenlignes Et histogram er frekvensfordelingen repræsenteret grafisk som søjler Den kumulative frekvensfordeling repræsenteres oftest som en kurve
21 Opsamling Opsummering af større datamængder i frekvenstabeller ved optælling af antal observationer i en række skarpt definerede klasser, der dækker hele variationsområdet Valg af passende optællingsklasser kan kræve nogle eksperimenter... Den kumulative frekvens er antal observationer lavere end eller lig klassens øvre grænse Den kumulative fordeling kan udtrykkes i procent hvis fordelinger med forskelligt antal observationer skal sammenlignes Et histogram er frekvensfordelingen repræsenteret grafisk som søjler Den kumulative frekvensfordeling repræsenteres oftest som en kurve
22 Opsamling Opsummering af større datamængder i frekvenstabeller ved optælling af antal observationer i en række skarpt definerede klasser, der dækker hele variationsområdet Valg af passende optællingsklasser kan kræve nogle eksperimenter... Den kumulative frekvens er antal observationer lavere end eller lig klassens øvre grænse Den kumulative fordeling kan udtrykkes i procent hvis fordelinger med forskelligt antal observationer skal sammenlignes Et histogram er frekvensfordelingen repræsenteret grafisk som søjler Den kumulative frekvensfordeling repræsenteres oftest som en kurve
Kapitel 3 Centraltendens og spredning
Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol
Kapitel 3 Centraltendens og spredning
Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen
Huskesedler. Anvendelse af regneark til statistik
Huskesedler Anvendelse af regneark til statistik August 2013 2 Indholdsfortegnelse Aktivere Analysis Toolpak... 4 Dataudtræk fra Danmarks Statistik... 4 Kopiering af formler... 4 Målsøgning... 5 Normalfordeling...
Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen
Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk
Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen.
48-50. Side 1 af 7 Statistik og sandsynlighedsregning ( 48-50) Opgaverne med svar starter på side 5, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 6 med
Kapitel 1 Statistiske grundbegreber
Kapitel 1 Statistiske grundbegreber Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Population versus stikprøve 3 Variabeltyper og måleskalaer 4 Parametrisk versus ikke-parametrisk
1hf Spørgsmål til mundtlig matematik eksamen sommer 2014
1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser
Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.
1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,
Middelværdi med mere... 76 Hyppighed og frekvens... 77 Diagrammer... 78 Hvilket diagram er bedst?... 80 Grupperede observationer...
Statistik Middelværdi med mere... 76 Hyppighed og frekvens... 77 Diagrammer... 78 Hvilket diagram er bedst?... 80 Grupperede observationer... 81 Statistik Side 75 Når man skal holde styr på mange oplysninger,
1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det.
Emne: procent og rente: 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet
statistik og sandsynlighed
brikkerne til regning & matematik statistik og sandsynlighed trin 2 preben bernitt brikkerne statistik og sandsynlighed 2 1. udgave som E-bog ISBN: 978-87-92488-20-6 2004 by bernitt-matematik.dk Kopiering
Installa on af Analysis Toolpak og KeHaTools
Installa on af Analysis Toolpak og KeHaTools Installa on af Analysis Toolpak Denne er nødvendig for at kunne lave optællinger, variansanalyse (kap. 12) og regressionsanalyser (kap. 15 pg 16). Analysis
Løsninger til kapitel 1
Opgave. a) observation hyppighed frekvens kum. frekvens 2,25,25 3,875,325 2 3,875,5 3 3,875,6875 4,625,75 5,625,825 6,,825 7 2,25,9375 8,,9375 9,625, Frekvenser illustreres i et pindediagram,2,8,6,4,2,,8,6,4,2
Huskeliste Printark. U4 Tastetider U5 Hvor hurtigt regner du? E4 Begreber og fagord - Statistik. Materialer. Mobiltelefon Stopur
Statistik - Lærervejledning Om kapitlet I dette kapitel om statistik skal eleverne arbejde med statistik og lære at indsamle, beskrive, bearbejde og præsentere store mængder af tal og data. I kapitlet
Under 63 år : 88% Under 55 år : 55% Ved at trække den nederste fra den øverste af de to grupper fås: Melllem 55 og 63 år :
1 501 Sumkurven viser aldersfordelingen for lærerne på et gymnasium. a) Hvor mange procent af lærerne er mellem 55 og 63 år? (Benyt gerne bilaget til at dokumentere svaret.) Løsning: Under 63 år : 88%
Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.
Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært
Kapitel 8 Chi-i-anden (χ 2 ) prøven
Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på
1hf Spørgsmål til mundtlig matematik eksamen sommer 2014
1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser
Under 63 år : 92% Under 55 år : 55% Ved at trække den nederste fra den øverste af de to grupper fås: Melllem 55 og 63 år :
1 501 Sumkurven viser aldersfordelingen for lærerne på et gymnasium. a) Hvor mange procent af lærerne er mellem 55 og 63 år? (Benyt gerne bilaget til at dokumentere svaret.) Løsning: Under 63 år : 92%
Per Vejrup-Hansen Praktisk statistik. Omslag: Torben Klahr.dk Lundsted Grafisk tilrettelæggelse: Samfundslitteratur Grafik Tryk: Narayana Press
Per Vejrup-Hansen Praktisk statistik 6. 5. udgave 2008 2013 Omslag: Torben Klahr.dk Lundsted Grafisk tilrettelæggelse: Samfundslitteratur Grafik Tryk: Narayana Press ISBN Trykt 978-87-593-1381-7 bog ISBN
for gymnasiet og hf 2016 Karsten Juul
for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen
Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium
Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,
Kapitel 7 Forskelle mellem centraltendenser
Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens
Statistik (deskriptiv)
Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken
6. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag)
Institut for Folkesundhed Afdeling for Biostatistik Afdeling for Epidemiologi. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag) Opgave 1 Udgangspunktet for de følgende spørgsmål er artiklen:
Deskriptiv statistik for hf-matc
Deskriptiv statistik for hf-matc 75 50 25 2018 Karsten Juul Deskriptiv statistik for hf-matc Hvad er deskriptiv statistik? 1.1 Hvad er deskriptiv statistik?... 1 1.2 Hvad er grupperede og ugrupperede data?...
Vejledning i brug af Gym-pakken til Maple
Vejledning i brug af Gym-pakken til Maple Gym-pakken vil automatisk være installeret på din pc eller mac, hvis du benytter cd'en Maple 16 - Til danske Gymnasier eller en af de tilsvarende installere. Det
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres)
Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Til Gribskovløbet 006 gennemførte 118 kvinder 1,4 km distancen. Fordelingen af kvindernes løbstider
Deskriptiv statistik for matc i stx og hf
Deskriptiv statistik for matc i stx og hf 75 50 25 2019 Karsten Juul Deskriptiv statistik for matc i stx og hf Hvad er deskriptiv statistik? 1.1 Hvad er deskriptiv statistik?... 1 1.2 Hvad er grupperede
Statistik med GeoGebra
Statistik med GeoGebra Hayati Balo, AAMS, marts 2012 1 Observationssæt Det talmateriale, som man gerne vil undersøge, kaldes et observationssæt. Det talsæt som fremgår i tabel 5.1 kan indsættes i GeoGebra
Ældreundersøgelsen i Greve Kommune
Ældreundersøgelsen i Greve Kommune Interviewperiode: November - december 2012 INDHOLDSFORTEGNELSE 1. INDLEDNING... 2 2. OPSUMMERING... 3 3. UNDERSØGELSESMETODE... 4 4. RESULTATER FOR HJEMMEPLEJEN I GREVE
Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer.
Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke
Statistik. Statistik Side 136
Statistik Tabeller og diagrammer...137 Middelværdi med mere...142 Hyppighed og frekvens...143 Fremstilling af diagrammer...144 Aflæsning på cirkeldiagrammer...147 Grupperede fordelinger...148 Statistik
Kapitel 10 Simpel korrelation
Kapitel 10 Simpel korrelation Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Pearsons r 3 Spearmans ρ 1 Indledning 2 Pearsons r 3 Spearmans ρ Indledning Korrelation
Statistik viden eller tilfældighed
MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4
BH Test for normalfordeling i WordMat Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 Grupperede observationer Vi tager udgangspunkt i
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet
Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1
Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation
Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul
Deskriptiv statistik for C-niveau i hf 75 50 25 2015 Karsten Juul DESKRIPTIV STATISTIK 1.1 Hvad er deskriptiv statistik?...1 1.2 Hvad er grupperede og ugrupperede data?...1 1.21 Eksempel pä ugrupperede
Noter til Statistik. Lisbeth Tavs Gregersen. 1. udgave
Noter til Statistik Lisbeth Tavs Gregersen 1. udgave 1 Indhold 1 Intro 3 1.1 HF Bekendtgørelsen........................ 3 1.2 Deskriptiv statistik......................... 3 2 Ikke-grupperet Talmateriale
1 - Problemformulering
1 - Problemformulering I skal undersøge, hvordan fart påvirker risikoen for at blive involveret i en trafikulykke. I skal arbejde med hvilke veje, der opstår flest ulykker på, og hvor de mest alvorlige
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale
OM KAPITLET ELEVFORUDSÆTNINGER STATISTIK
OM KAPITLET ELEVFORUDSÆTNINGER I dette kapitel om statistik skal eleverne arbejde med statistik og lære at indsamle, beskrive, bearbejde og præsentere store mængder af tal og data. I kapitlet er der desuden
Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:
Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
for gymnasiet og hf 2017 Karsten Juul
for gymnasiet og hf 75 50 5 017 Karsten Juul Statistik for gymnasiet og hf 017 Karsten Juul 5/11-017 Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm Hæftet må benyttes i undervisningen
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 13/14 Institution VUC Albertslund Uddannelse Fag og niveau Lærer(e) Hold HF Enkeltfag Mat C Kofi Danquah Mensah
Module 2: Beskrivende Statistik
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning
for matematik pä B-niveau i hf
for matematik pä B-niveau i hf 75 50 5 016 Karsten Juul GRUPPEREDE DATA 1.1 Hvad er deskriptiv statistik?...1 1. Hvad er grupperede og ugrupperede data?...1 1.1 Eksempel pä ugrupperede data...1 1. Eksempel
Undervisningsbeskrivelse & Oversigt over projektrapporter
Undervisningsbeskrivelse & Oversigt over projektrapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold
IDAP manual Analog modul
IDAP manual Analog modul Dato: 15-06-2005 11:01:06 Indledning Til at arbejde med opsamlede og lagrede analoge data i IDAP portalen, findes en række funktions områder som brugeren kan anvende. Disse områder
Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1
Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke
Fig. 1 Billede af de 60 terninger på mit skrivebord
Simulation af χ 2 - fordeling John Andersen Introduktion En dag kastede jeg 60 terninger Fig. 1 Billede af de 60 terninger på mit skrivebord For at danne mig et billede af hyppighederne flyttede jeg rundt
2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.
2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus
Statistik - supplerende eksempler
- supplerende eksempler Grupperede observationer: Middelværdi og summeret frekv... 82b Indekstal... 82c Median, kvartil, boksplot... 82e Sumkurver... 82h Side 82a Grupperede observationer: Middelværdi
Undervisningsbeskrivelse
Retur Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution VUC SYD, afd. Haderslev Uddannelse Fag og niveau Lærer(e) Hf 2-årig Matematik
Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul
Nogle emner fra Deskriptiv Statistik 75 50 25 2011 Karsten Juul Indhold Hvad er deskriptiv statistik?... 1 UGRUPPEREDE OBSERVATIONER Hyppigheder... 1 Det samlede antal observationer... 1 Middeltallet...
Formelsamling Matematik C
Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden
statistik og sandsynlighed
brikkerne til regning & matematik statistik og sandsynlighed trin 2 preben bernitt brikkerne statistik og sandsynlighed 2 1. udgave som E-bog ISBN: 978-87-92488-20-6 2004 by bernitt-matematik.dk Kopiering
Lektion 9s Statistik - supplerende eksempler
Lektion 9s Statistik - supplerende eksempler Middelværdi for grupperede observationer... Summeret frekvens og sumkurver... Indekstal... Lektion 9s Side 1 Grupperede observationer Hvis man stiller et spørgsmål,
Eksamensspørgsmål 4emacff1
Eksamensspørgsmål 4emacff1 1. Funktioner, Lineære funktioner Gør rede for den lineære funktion y ax b. Forklar herunder betydningen af a og b, og kom ind på det grafiske forløb af en lineær funktion. Kom
Hvad er meningen? Et forløb om opinionsundersøgelser
Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004
Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k
Statistik 5 Statistik er en meget omfattende matematisk disciplin, og den anvendes i meget stor udstrækning i vores moderne samfund. Den handler om at analysere et (ofte meget stort) talmateriale. Det
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Uddannelse Fag og niveau Lærer(e) Hold CampusVejle, Boulevarden 48, 7100 Vejle HHX Matematik
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Ikke-grupperede observationer
Ikke-grupperede observationer Oscaruddelingen eller Academy Awards er den amerikanske lmbranches (og sikert verdens) mest prestigefyldte prisuddeling inden for lm. Uddelingen sker ved en globalt transmitteret
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hf Mat C Viktor Kristensen
Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode
Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Man kan skifte mellem tekst- og matemamatikmode ved at trykke på F5. I øjeblikket er jeg i tekstmode.. 2. lektion.
Kvantitative Metoder 1 - Efterår 2006. Dagens program
Dagens program Afsnit 1.7-1.8 Fødselsdagseksemplet, fra sidst Eksperimenterikkealleerligesandsynlige Diskrete sandsynlighedsfordelinger -Definition af sandsynligheder - Regneregler Hvad er sandsynligheder?
Tjek. lønnen. Et værktøj til at undersøge lokal løndannelse og ligeløn på offentlige arbejdspladser. 2007 udgave Varenr. 7520
Tjek lønnen Et værktøj til at undersøge lokal løndannelse og ligeløn på offentlige arbejdspladser 2007 udgave Varenr. 7520 Indholdsfortegnelse Forord... 3 Teknisk introduktion... 4 Indledning... 5 Introduktion
Simulering af stokastiske fænomener med Excel
Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen
Personlig stemmeafgivning
Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt
Grupperede observationssæt Deskriptiv statistik: Middelværdi, frekvensfordeling, sumkurve, kvartilsæt, boxplot
Grupperede datasæt: Middelværdi, intervalfrekvens og kumuleret frekvens. Bilbestandens alder i 2005 fremgår af følgende tabel. Alder i år ]0;4] ]4;8] ]8;12] ]12;16] ]16;20] ]20;24] Antal i tusinde 401
for matematik pä B-niveau i hf
for matematik pä B-niveau i hf 014 Karsten Juul TEST 1 StikprÅver... 1 1.1 Hvad er populationen?... 1 1. Hvad er stikpråven?... 1 1.3 Systematiske fejl ved valg af stikpråven.... 1 1.4 TilfÇldige fejl
Hvad siger statistikken?
Eleverne har tidligere (fx i Kolorit 7, matematik grundbog) arbejdet med især beskrivende statistik (deskriptiv statistik). I dette kapitel fokuseres i højere grad på, hvordan datamateriale kan tolkes
