SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt

Relaterede dokumenter
Spørgsmål 1 (5%) Forklar med relevant argumentation, at den stationære temperaturfordeling i områdets indre er bestemt ved følgende randværdiproblem

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt

OPGAVE 1. f(t) = f 0 cos(ωt)

Besvarelser til Lineær Algebra Reeksamen Februar 2017

Basic statistics for experimental medical researchers

Computing the constant in Friedrichs inequality

STRUCTURAL DYNAMICS, VOL. 9. Computational Dynamics

Probabilistic properties of modular addition. Victoria Vysotskaya

Sign variation, the Grassmannian, and total positivity

Exercise 6.14 Linearly independent vectors are also affinely independent.

Chapter 6. Hydrogen Atom. 6.1 Schrödinger Equation. The Hamiltonian for a hydrogen atom is. Recall that. 1 r 2 sin 2 θ + 1. and.

Eksamen i Signalbehandling og matematik

Linear Programming ١ C H A P T E R 2

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

On the complexity of drawing trees nicely: corrigendum

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU

Pontryagin Approximations for Optimal Design of Elastic Structures

Multivariate Extremes and Dependence in Elliptical Distributions

Evaluating Germplasm for Resistance to Reniform Nematode. D. B. Weaver and K. S. Lawrence Auburn University

Black Jack --- Review. Spring 2012

University of Copenhagen Faculty of Science Written Exam April Algebra 3

Skriftlig Eksamen Beregnelighed (DM517)

yt () p0 cos( t) OPGAVE 1

Unitel EDI MT940 June Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004)

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A +

Matematisk modellering og numeriske metoder. Overskrifter

what is this all about? Introduction three-phase diode bridge rectifier input voltages input voltages, waveforms normalization of voltages voltages?

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende

IBM Network Station Manager. esuite 1.5 / NSM Integration. IBM Network Computer Division. tdc - 02/08/99 lotusnsm.prz Page 1

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1

University of Copenhagen Faculty of Science Written Exam - 8. April Algebra 3

Givet en cirkulr plade med den stationre temperaturfordeling u(r;), hvor u(r;) tilfredsstiller

Small Autonomous Devices in civil Engineering. Uses and requirements. By Peter H. Møller Rambøll

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3

User Manual for LTC IGNOU

Læs vejledningen godt igennem, før du begynder at samle vuggen. Please read the instruction carefully before you start.

Statistik for MPH: 7

Martin Lohse. Passing. Three mobile for accordion. Composed

RoE timestamp and presentation time in past

Matematik F2 Opgavesæt 6

to register

applies equally to HRT and tibolone this should be made clear by replacing HRT with HRT or tibolone in the tibolone SmPC.

DM549 Diskrete Metoder til Datalogi

Kvant Eksamen December timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer.

Status på det trådløse netværk

F o r t o l k n i n g e r a f m a n d a l a e r i G I M - t e r a p i

Angle Ini/al side Terminal side Vertex Standard posi/on Posi/ve angles Nega/ve angles. Quadrantal angle

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528)

Skriftlig Eksamen Beregnelighed (DM517)

Noter til kursusgang 8, IMAT og IMATØ

Trolling Master Bornholm 2014

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

TM4 Central Station. User Manual / brugervejledning K2070-EU. Tel Fax

Prøveeksamen nr. 2: Signalbehandling og matematik

Semi-smooth Newton method for Solving Unilateral Problems in Fictitious Domain Formulations

DoodleBUGS (Hands-on)

Help / Hjælp

Wander TDEV Measurements for Inexpensive Oscillator

Reexam questions in Statistics and Evidence-based medicine, august sem. Medis/Medicin, Modul 2.4.

Avancerede bjælkeelementer med tværsnitsdeformation

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

Aktivering af Survey funktionalitet

19.3. Second Order ODEs. Introduction. Prerequisites. Learning Outcomes

Analyseinstitut for Forskning

Trolling Master Bornholm 2014

Vina Nguyen HSSP July 13, 2008

DONG-område Resten af landet

To the reader: Information regarding this document

Trolling Master Bornholm 2012

Mat 1. 2-timersprøve den 17. maj 2016.

X M Y. What is mediation? Mediation analysis an introduction. Definition

DM549. Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1. Svar 2.h: x Z: y Z: x + y = 5. Svar 1.e: x Z: y Z: x + y < x y

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Løsning af skyline-problemet

Frequency Dispersion: Dielectrics, Conductors, and Plasmas

Fejlbeskeder i SMDB. Business Rules Fejlbesked Kommentar. Validate Business Rules. Request- ValidateRequestRegist ration (Rules :1)

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

DesignMat Uge 1 Gensyn med forårets stof

Appendix 1 Properties of Fuels

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov.

Special VFR. - ved flyvning til mindre flyveplads uden tårnkontrol som ligger indenfor en kontrolzone

Pattern formation Turing instability

Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009

DM559/DM545 Linear and integer programming

Skriftlig Eksamen Diskret matematik med anvendelser (DM72)

Samlevejledning til tremmeseng 70 x 140 Assembly instruction for cot 70 x 140

Some results for the weighted Drazin inverse of a modified matrix

Noter til kursusgang 9, IMAT og IMATØ

how to save excel as pdf

Portal Registration. Check Junk Mail for activation . 1 Click the hyperlink to take you back to the portal to confirm your registration

Improving data services by creating a question database. Nanna Floor Clausen Danish Data Archives

ECE 551: Digital System * Design & Synthesis Lecture Set 5

Curve Modeling B-Spline Curves. Dr. S.M. Malaek. Assistant: M. Younesi

BILAG 3: UDKAST TIL FREKVENSTILLADELSE

The GAssist Pittsburgh Learning Classifier System. Dr. J. Bacardit, N. Krasnogor G53BIO - Bioinformatics

CHAPTER 8: USING OBJECTS

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen

Elektriske apparater til husholdningsbrug o.l. Sikkerhed Del 1: Generelle krav

Transkript:

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 9. juni 23 kl. 9.-3. Alle hjælpemidler er tilladt OPGAVE f(x) x Givet funktionen f(x) x, x [, ] Spørgsmål (%) Foretag en udvikling af funktionen f(x) i en Fourier-Bessel række, idet der benyttes Bessel funktioner af orden n. Egenværdier udtages af randbetingelsen J (λ). Spørgsmål 2 (%) Foretag en udvikling af funktionen f(x) i en Fourier-Legendre række. Hjælp: Ved løsning af spørgsmål udnyttes, at funktionen er symmetrisk om x. Foretag indledningsvis på basis heraf en Fourier-Bessel udvikling af delfunktionen defineret på intervallet x [, ].

2 OPGAVE 2 Givet begyndelsesværdiproblemet y (x) 2y(x) + sin(πx), x ], [ y() hvor y (x) d dx y(x). Spørgsmål (5%) Løs det anførte begyndelsesværdiproblem ved hjælp af Laplace transformation. OPGAVE 3 Givet følgende begyndelsesværdiproblem for et system af frihedsgrad q(t)+.5 q(t)+ q(t) sint, t ], [ q() q() hvor q(t) d q(t) betegner differentiation mht. t. dt Spørgsmål (%) Bestem ved numerisk integration med den centrale differensmetode funktionsværdien q(.6) med anvendelse af tidsskridtet t.3. Spørgsmål 2 (5%) Undersøg om algoritmen er numerisk stabil med det specificerede tidsskridt.

3 OPGAVE 4 Givet et generelt egenværdiproblem defineret ved følgende masse- og stivhedsmatricer M 2 4, K 4 Spørgsmål (%) Bestem den laveste egenvektor og tilhørende egenværdi ved invers vektoriteration. Spørgsmål 2 (%) Bestem den største egenvektor og tilhørende egenværdi ved fremad (forward) vektoriteration. Spørgsmål 3 (%) Bestem den laveste egenvektor og tilhørende egenværdi ved Sturmsekvens iteration (teleskopmetoden). Det understreges, at uagtet en analytisk løsning på problemet let kan tilvejebringes, ønskes numeriske løsninger på alle 3 spørgsmål. Alle 3 spørgsmål betragtes som besvaret, når 2 iterationer er gennemført. Startvektorer for iterationerne vælges frit. OPGAVE 5 Givet et generelt egenværdiproblem defineret ved følgende masse- og stivhedsmatricer 2 4 M 4, K 2 4 Spørgsmål (2%) Bestem de 2 laveste egenvektorer og tilhørende egenværdier ved hjælp af subspace iteration. Spørgsmålet betragtes som besvaret, når blot en enkelt subspace iteration er gennemført. Start vektorbasis vælges frit.

4 SOLUTIONS PROBLEM Question : f(x) x Fig. : Restriction of function f(x) to the interval [,]. At first the Fourier-Bessel expansion is performed for the part of the function defined on the interval [,] as shown in Fig.. Since λ the Fourier-Bessel series follows from (.5.9-2) where f(x) c + c i J (λ i x), x [, ] () i2 c 2 2 c i 2 2 J 2 (λ i) x ( x ) dx 3 xj (λ i x) ( x ) dx, i 2, 3,... and the eigenvalues are defined from the roots of, cf. (6-4-6) and Table 6.2 (2) J (λ i) J (λ i ) λ 2 3.837 λ 3 7.56 λ 4.74 λ 5 3.324. (3)

5 The expansion () may be extended to the entire interval [, ] by replacing x with x, i.e. f(x) c + ( c i J λi x ), x [, ] (4) i2 Question 2: f(x) x Fig. 2: Function f(x) defined on entire interval [-,]. The Fourier-Legendre series follows from (.5.2-22) f(x) where c n P n (x), x [, ] (5) n c n 2n + 2, n odd f(x)p n (x)dx ( ) 2n + f(x)p n (x)dx, n even (6) In (6) it has been used that f(x) f( x) is an even function of x, and the Legendre polynomials are even or odd functions of x, depending on n is even or odd, cf. (6.4.9). The low-order expansion coefficients for even order of n may be evaluated as follows, cf. (6.4.9)

6 c ( 2 + ) c 2 ( 2 2+ ) c 4 ( 2 4+ ) ( x ) dx 2 ( x ) 2( 3x 2 ) dx 5 8 ( ) ( x 8 35x 4 3x 2 +3 ) dx 3 6 (7) PROBLEM 2 Question : Using Theorems 7.2 and 7.8 the Laplace transform of the differential equation becomes L{y (x)} 2L{y(x)} + L{sin(πx)} sy (s) y() 2Y (s)+ π s 2 + π 2 Y (s) ( ) π + s +2 s 2 + π 2 π 2 + π +4 π 2 +4 s +2 π π 2 +4 s s 2 + π 2 + 2π π 2 +4 s 2 + π 2 () where Y (s) L{y(x)} e sx y(x)dx (2) Then the solution follows from the inverse Laplace transform of (). Use of Theorem 7.3 provides y(x) π2 + π +4 π 2 +4 e 2x π π +4 cos(πx)+ 2π sin(πx) (3) 2 π +4 2

7 PROBLEM 3 The "matrix" formulation of the equation of motion reads, see Note, eq. () MÜ(t)+C U(t)+KU(t) } R(t) U() U, U() U () where } M [], C [.5], K [], R(t) [sin t] U [], U [] (2) The algorithm reads, cf. Note, eq. (5) U j+ A U j + A 2 U j + B R j, j,,... (3) where, cf. Note, eq. (6) ( ) ( ) A M + C K 2 M [.89578] t 2 2 t t 2 ( ) ( ) A 2 M + C M C [.985] t 2 2 t 2 2 t ( ) B M + C t 2 2 t [.8933] (4) At the evaluation of the "matrices" A, A 2, B the time step t.3 has been used. The startvalue U is calculated by Note, eq. (7) U U U t + ( 2 2Ü t Ü M C U ) KU + R() (5) Since, R() [sin()] [], it follows that U []. Then, based on (3) the following calculations are performed

8 } q(.3) U.89578.985 +.8933 sin(.). q(.6) U 2.89578..985 +.8933 sin(.3).264 (6) The analytical solution of the initial value problem is given as ( ( ) q(t) e ζt ζ ( ) ) cos ζ2 t + 2ζ sin ζ2 t cos t.3446 (7) ζ 2 2ζ where t.6 and ζ.25 have been inserted. As seen the numerical solution is not very accurate due to the rather large time step. Question 2: The period of the undamped eigenvibrations is T 2π 2π (8) Since, cf. Note, eq. (29) t.3 T 2π.5 π < π (9) it follows that the central difference method is numerical stable with the selected time step. PROBLEM 4 The following start vector is used both in Question and Question 2: Φ ()

9 Question : The matrix A becomes, cf. (8-4) A 4 2 4.66667 2 5.66667 (2) At the st and 2nd iteration step the following calculations are performed, see Box 8..66667 Φ 2 5.66667 2.66667 Φ 29.22 7.66667 2.66667 7.66667.66667.5653 Φ 2 2 5.66667.453.9658 Φ 2 39.628 2.86323 Φ T M Φ 29.22 (3).5653.453.9658 2.86323 Φ T 2 M Φ 2 39.628 (4).44.45484 Since Φ 2 has been normalized to unit modal mass, the Rayleigh quotient based on Φ 2 provides the following estimate for λ, cf. (7-25) T.44 4.44 ρ(φ 2 ).5883 (5).45484.45484 The exact solutions with the indicated accuracies were obtained after 4 iterations λ.5883, Φ ().4323.4553 (6) Question 2: The matrix B becomes, cf. (8-35) B 2 4 4 2.42857.7429.8574.42857 (7)

At the st and 2nd iteration step the following calculations are performed, see Box 8.3 2.42857.7429 Φ.8574.42857.7429 Φ 5.4286.42857 2.42857.7429.75593 Φ 2.8574.42857.8898.978 Φ 2 7.24.72893.7429.42857 Φ T M Φ 5.4286 (8).75593.8898.978.72893 Φ T 2 M Φ 2 7.24 (9).7438.275 Since Φ 2 has been normalized to unit modal mass, the Rayleigh quotient based on Φ 2 provides the following estimate for λ 2, cf. (7-25) ρ(φ 2 ) T.7438 4.7438.275.275 2.69799 () The exact solutions with the indicated accuracies were obtained after 5 iterations λ 2 2.6983, Φ (2).74224.283 () Question 3: At first a calculation with µ. is performed, which produces the following results 3.8. K.M..6 P (2) (.), sign(p (2) (.)) + P () (.) 3.8, sign(p () (.)) + P () (.) 3.8.6 (.) 2.7, sign(p () (.)) + (2)

Hence, the sign sequence of the Sturm sequence becomes +++, corresponding to the number of sign changes n sign in the sequence. From this is concluded that both eigenvalues are larger than µ.. Similar calculations are performed for µ.,.2,...,.6 µ. : Sign sequence + ++ n sign µ.2 : Sign sequence + ++ n sign µ.3 : Sign sequence + ++ n sign µ.4 : Sign sequence + ++ n sign µ.5 : Sign sequence + ++ n sign µ.6 : Sign sequence + + n sign (3) From this is concluded that the st eigenvalue is placed somewhere in the interval.5 <λ <.6. Next, similar calculations are performed for µ.5,.52,...,.59 µ.5 : Sign sequence + ++ n sign µ.52 : Sign sequence + ++ n sign µ.53 : Sign sequence + ++ n sign µ.54 : Sign sequence + ++ n sign µ.55 : Sign sequence + ++ n sign µ.56 : Sign sequence + ++ n sign µ.57 : Sign sequence + ++ n sign µ.58 : Sign sequence + ++ n sign µ.59 : Sign sequence + + n sign (4) From this is concluded that the st eigenvalue is confined to the interval.58 <λ <.59. Proceeding in this manner after 27 iterations the st eigenvalue is confined to the interval.5882 < λ <.5883. Setting λ.5883, the linear equation (-63) attains the form ( K.5883M) Φ() [ 3.68234.5883.5883.36468 ] [ Φ() Φ () 2 ] [ ] (5)

2 Setting Φ () the st equation provides Φ () 2 3.68234 (.5883) 3.7764 Φ () 3.7764 (6) Normalization to unit modal mass provides, cf. (6-54) Φ ().4323.4553 (7) which agrees with (6). PROBLEM 5 Question : The following start vector basis is used Φ [ Φ () Φ (2) ] () The matrix A becomes, cf. (6-44) 4 A K M 4 Then, the st iterated vector basis becomes, cf. (-4) 2.25 2.5.75 4 3. 9. 3. (2) 2.75 2.5.25 Φ [ Φ() Φ (2) ] AΦ.25 2.5.75 3. 9. 3..75 2.5.25 4.5 3 5. 9 (3) 4.5 2 The Rayleigh-Ritz analysis based on the calculated basis Φ provides the following projected mass and stiffness matrices, cf. (6-44), (-2), (-3)

3 4.5 3 M Φ T M Φ 5. 9 4.5 2 4.5 3 K Φ T K Φ 5. 9 4.5 2 2 4.5 3 4 5. 9 2 4.5 2 T 4 4.5 3 5. 9 4 4.5 2 The corresponding eigenvalue problem (-3) becomes K Q M Q R 25 74 [q () q (2) ] 7 69 [q () q (2) ] ρ, 74 44 69 43 ρ 2, R.9349 2.255 T, Q [.2598 ].5684.387.95943 [ 25 ] 74 74 44 [ 7 ] 69 69 43 (4) (5) The estimate of the lowest eigenvectors after the st iteration becomes, cf. (-34) 4.5 3 Φ Φ Q 5. 9 4.5 2.2598.5684.387.95943.2852.3245.42454.873 (6).2465.63899 Correspondingly, after the 2nd and 5th iteration steps the following matrices are calculated R 2.9328 2.443.2267.48 Φ 2.42727.6298.226.58493.9328 R 9 5 2..2252.49995 Φ 5.42735.3.2252.55, Q 2, Q 5 [.9328 ].345.25 2.5692 [.9328 ].. 2. (7) (8)

4 The subspace iteration process converged much faster to the st eigensolution than to th 2nd eigensolution. This is because the convergence rate to the st eigenvalue r, λ /λ 3.9328/3.57338 is much smaller than the the convergence rate to the 2nd eigenvalue r,2 λ 2 /λ 3 2./3.57338, cf. (-36). Finally, it should be checked that the calculated eigenvalues are indeed the lowest two by a Sturm sequence or Gauss factorization check. The 2nd calculated eigenvalue becomes ρ 2,5 2., so let µ 2.. Both K and M are on a three-diagonal form, so the Sturm sequence algorithm (-6) may be used on the matrix K 2.M, i.e..2 3. K 2.M 3. 7.4 3. 3..2 P (3) (2.), sign(p (3) (2.)) + P (2) (2.).2, sign(p (2) (2.)) P () (2.) (.2) ( 7.4) ( 3.) 2 8.3, sign(p () (2.)) P () (2.) (.2) ( 8.3) ( 3.) 2 (.2) 3.548, sign(p () (2.)) + (9) Hence, the sign sequence of the Sturm sequence becomes + +, corresponding to a number of sign changes n sign 2. From this is concluded that two eigenvalues are smaller than µ 2., and that the calculated eigenvalues are indeed the lowest two.