Lærervejledning. Foreløbig version til de to første kapitler



Relaterede dokumenter
Vejledning til forløb om regnestrategier med multiplikation og division

Årsplan for 2. årgang Kapitel 1: Jubii. Kapitel 2: Mere om positionssystemet

Årsplan for 2. årgang. Kapitel 1: Jubii. Kapitel 2: Mere om positionssystemet

ÅRTSPLAN FOR 2. A MATEMATIK 2015/16

Fase 1: Førtanken: Klassesamtalen, målsættelse og erfaringer gennem værkstedsarbejde. Fase 2: Opgaveløsning matematisk fordybelse og træning

Årsplan 2018/19 Matematik 3. årgang. Kapitel 1: Jubii

Årsplan matematik 2. klasse

Værksteder fra Kontext plus, Positionsspil, Geogebra, EVA ark.

EN SKOLE FOR LIVET. Uge Emne Mål Materialer/aktiviteter

Årsplan Matematrix 3. kl. Kapitel 1: Jubii

Årsplan for 1.klasse 2018/19 Matematik

Årsplan for Matematik 3. klasse Skoleåret 2018/2019

Årsplan for matematik 2.kl. på Herborg Friskole

Positionssystemet, 2 3 uger (7 lektioner), 2. klasse.

Årsplan klasse matematik Skoleåret Lærer: Kamilla Horsholt og Pernille Rokkjær

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring

Ideer til matematik-aktiviteter i yngstetrinet

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder

Årsplan for matematik 3.klasse 2019/20

Årsplan for 2. kl. matematik

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Årsplan for matematik i kl.

Format 2 - Mål og årsplaner

Årsplan for matematik i 1. klasse

Årets overordnede mål inddelt i kategorier

3. klasse 6. klasse 9. klasse

EN SKOLE FOR LIVET ÅRSPLAN 18/19

Årsplan Matematik klasse Færdigheds- og Læringsmål. opgaver i delemnerne: 38 Hvor mange er Eleven kan afrunde

MaxiMat og de forenklede Fælles mål

Evaluering af matematik undervisning

Matematik samlet evaluering for Ahi Internationale Skole

Matematik 2. klasse Årsplan. Årets emner med delmål

Årsplan for 2.klasse 2018/19 Matematik

Årsplan for matematik i 2. klasse

Matematik - undervisningsplan

Matematik. Matematiske kompetencer

Årsplan for 2.kl i Matematik

Årsplan for matematik i 3. klasse

tjek.me Forårskatalog 2018 Matematik By Knowmio

Selam Friskole Fagplan for Matematik

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Årsplan for 5. klasse, matematik

Årsplan matematik 1.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer

Talforståelse. Du skal veksle mønterne. Vis, hvor mange måder du kan gøre det på. Kopi opgave. Navn:

Årsplan matematik 6.A. Lærer: Jens Frederik Horsens

Vi skal fortsat primært arbejde med det prisvindende lærebogssystem Format.

Årsplan for 3.klasse 2018/19 Matematik

MATEMATIK kernebog. Michael Wahl Andersen Bent Lindhardt Alinea. Kun til brug for Lise Holm, Forberedelsesskolen. Skoleåret 2015/2016

ÅRSPLAN 1. KLASSE MATEMATIK 2016/2017 Eva Bak Nyhuus

Årsplan for matematik

Årsplan for matematik i 4. klasse

Vejledende årsplan for matematik 4.v 2008/09

Årsplan for 5. klasse, matematik

2 Brøker, decimaltal og procent

2. KLASSE UNDERVISNINGSPLAN MATEMATIK!

Årsplan Matematik 3.klasse 2016/2017

Det vigtigste ved læring af subtraktion er, at eleverne

Emmas og Frederiks nye værelser - maling eller tapet?

Kolorit 3. klasse - LV, Evalueringssider, Blandet 3A og 3B ny udgave. Kolorit 3. klasse - Lærervejledning (ny net-udgave) Bog 3A

Årsplan for 2. klasse i matematik

Årsplan matematik 5. klasse. Kapitel 1: Godt i gang

ÅRSPLAN M A T E M A T I K

ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I

2. Christian den Fjerde. Årsplan (Matematik PHO) Elevbog s. 2-11

Andreas Nielsen Kalbyrisskolen 2009

Årsplan for Matematik hold 1. (0. og 1. klasse) Skoleåret 2017/2018

Forenklede Fælles Mål. Matematik i marts 27. marts 2014

Reformen. Forenklede Fælles Mål

Matematik Delmål og slutmål

2. Absalon. Årsplan (Matematik MA)

MATEMATIK. Basismål i matematik på 1. klassetrin:

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Færdigheds- og vidensområder Evaluering. Regnestrategier Færdighedsmål

Fag matematik 1. klasse 17/18

Kompetencer

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

2. KLASSE UNDERVISNINGSPLAN MATEMATIK

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Årsplan matematik 3.klasse - skoleår 14/15- Ida Skov Andersen

Årsplan matematik 2.klasse - skoleår 14/15- Majbrit Trampedach

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Trinmål Matematik. Børnehaveklasse Efter 3. klasse Fagligt bånd. Matematiske kompetencer. Problemløsning. Regnesymboler. Talforståelse Mængder

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Faglig årsplan for 2. klasse. Matematik

Årsplan Matematik 1. klasse 2017/18

Folkeskolereformen nye muligheder Hotel Nyborg Strand

Faglige delmål og slutmål i faget Matematik. Trin 1

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence)

Læreplan Mat 3. Uge Forløb: Areal og koordinatsystem

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

LÆRINGSMÅL PÅ NIF MATEMATIK

Matematik Matematik efter Lillegruppen (0-1 kl.)

Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet

Grundliggende regning og talforståelse

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Forenklede Fælles Mål. Aalborg 30. april 2014

Årsplan for matematik 4.kl udarbejdet af Anne-Marie Kristiansen (RK)

Matematik/Formaal-for-faget-matematik

MATEMATIK. Formål for faget

Transkript:

Lærervejledning Foreløbig version til de to første kapitler

Talsystemet og at gange Kernebogen s. 5-25 Fælles Mål Eleven kan anvende flercifrede naturlige Eleven har viden om naturlige tals tal til at beskrive antal og rækkefølge opbygning i titalssystemet Eleven kan udvikle metoder til multiplikation og division med naturlige tal Eleven har viden om strategier til multiplikation og division Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi Eleven har viden om beregninger med de fire regningsarter inden for de naturlige tal, herunder anvendelse af regneark Hvad vil det sige at gange? Vi har valgt over for eleverne at anvende det dagligdags kendte udtryk gange for en multiplikation, idet det gør det nemmere, når vendinger som et antal gange og lignende indgår i forklaringer. I det følgende anvender vi dog det professionelle mere præcise ord multiplikation. Det er i den sammenhæng vigtigt at være opmærksom på, at der er forskellige fremtrædelsesformer af multiplikation. Multiplikation kan opfattes som: En geometrisk repræsentation fx som et arealforhold Der er 4 gange 6 sodavand i kassen. Et mængdeforhold Der er fire poser med 17 stk. Et forhold fx Ida har 4 gange så mange bolsjer som Lau. Gentaget addition fx 7 + 7 + 7. Gentaget addition er ofte den første erfaring med multiplikative processer, eleverne viser. På sigt skal eleverne gerne erfare, at en sådan gentaget addition kan gøres mere hensigtsmæssig ved at betragte den som en multiplikationsproces. I den sammenhæng er det centralt, at eleverne så tidligt som muligt opdager, at division er den modsatte regneproces. Der er 9 rækker med 5 brikker i hver række. 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 (fortløbende addition) 2

5-10- 15-20- 25-30- 35-40- 45 (5- tabellen) 9 * 5 = 45 (matematisk symbolsprog) Er multiplikation svært? I addition arbejder man med samme objekter fx lægger man 7 æbler sammen med 15 æbler. I multiplikation er to forskellige variable. Det kan eksemplificeres med jeg har 3 kroner og får 4 kroner mere altså objektet kroner. Hvorimod der ved multiplikationen vi er 3 personer med 4 kroner hver er tale om to forskellige objekter både kroner og personer. Denne forskel har nogle forskere beskrevet som en højere abstraktion. Det er også den almindelige erfaring, at fortløbende addition synes at være mange eleves begyndende multiplikationstænkning fremfor en egentlig multiplikation. Den kommutative lov Den kommutative lov siger, at faktorernes orden er ligegyldig en pointe ikke alle elever har tilegnet sig endnu i 4. klasse. En af årsagerne kan være, at man opfatter fx 4 * 12 og 12 * 4 som to forskellige situationer. Der er forskel på, om man fx til en fødselsdag vælger, at uddele 4 slikposer med 12 stykker slik i hver pose eller 12 poser med 4 stykker slik i hver. Multiplikation med 0, 10 og 100 Dette kapitel sætter fokus på at gange med 0, 10 og 100. At gange med 0, 10 og 100 bør bygge på en grundlæggende forståelse af titalssystemet og 0, 10 og 100 s funktion i dette talsystem. Det er derfor vigtigt, at eleverne ikke kun støtter sig til mekaniske huskeregler og udenadslære, som man ganger med 10 ved at sætte et 0 bag på. Denne form for fokus på memoteknik kan medføre, at eleverne løber ind i problemer, fordi den indlærte regel ikke slår til ved fx 1,25 * 10. Det er bedre, at eleverne indser at hver position i tallet bliver ti gange større og i denne sammenhæng efterlader en tom plads til enerne. Til at fremme forståelsen af, hvad det vil sige at gange med 0, kan det være en god idé for eleverne at diskutere indholdet af sætninger, som ingen gange har jeg fem, ingen gange har jeg 75 eller jeg har ingen rækker med 75 i hver. Således bliver de abstrakte regneudtryk 0 * 5 = 0 og 0 * 75 = 0 gjort mere håndgribelige. Gangetabellerne Der har en overgang været taget afstand fra det at træne gangetabeller. Vi er fortalere for, at tabellerne skal automatiseres, så godt de kan. Vær dog opmærksom på, at elever som viser tegn på talblindhed kan have usædvanligt svært ved det. Generelt er det dog en rimelig paratviden. Viden om gangetabellen er en forudsætning for hurtigt overslag og vil understøtte en fornuftig balance mellem hovedregning og lommeregnerregning. Det er dog vigtigt i denne sammenhæng at skelne mellem mekanisk indlærte multiplikationstabeller og forståelse af selve begrebet multiplikation. 3

Indlæring af gangetabellen kræver mange gentagelser for at blive operationel. Der findes et hav af forskellige tabellege, som både kan laves i skolen og i hjemmet, og hvor fokus er på at øve tabellerne. Det er vigtigt at have for øje, at målet er, at eleverne bliver i stand til at anvende multiplikation i forskellige situationer og med stigende grad af abstraktion. Gangetabellen er midlet til det - ikke et mål i sig selv. Algoritmer I 4. klasse skal eleverne fortsat udvikle egne beregningsmetoder i arbejdet med de naturlige tal. Det er vigtigt, at eleverne får mulighed for at udvikle deres egen algoritme for bedre at opnå den fulde forståelse for, hvad der sker undervejs, når der regnes. Som konsekvens heraf viser vi ikke en bestemt standardalgoritme. På Viden om siderne tages i stedet forskellige multiplikationsalgoritmer op til diskussion. Der er således mulighed for at tage udgangspunkt i de algoritmer, der er vist på side 23 i kernebogen eller man kan lade eleverne undersøge hjemme, hvilke algoritmer forældrene anvender. Det kan være end særlige god ide, at se på opstillinger hvor man spalter fx gangestykket 127 * 5 op, så 127 * 5 bliver til 100 * 5 + 20 * 5 + 7 * 5. Det kan visualiseres på forskellig måde med gitre og skemaer fx den italienske gittermetode. Eksempel: Illustration af gittermetoden se s.37 i gammel lærervejledning 4

Intro Om klassesamtalen Der kan være store forskelle i viden om multiplikationstabellen. Det kan være en god ide at undersøge dette, inden man begynder kapitlerne. Man kunne tage tabellen op og se på, om der var mønstre i hundredetavlen fx hvor ligger 2- tabellen, 5 tabellen, 3- tabellen osv som opstart på klasseaktiviteten på introsiden. Det kunne fx være på en stor hundredetavle i en skolegård eller ved at lægge hundredetavlen med talkort på en gang, i en aula eller lignende. Eleverne skal så fungere som brikker, og placere sig på tal, som indgår i en bestemt tabel, så de oplever mønstrene på egen krop. Der bør også være opmærksomhed på, hvorvidt eleverne kan genkende en multiplikationsproces i en eller anden virkelighedsramme. Det kan ske ved at eleverne selv giver eksempler på en regnehistorie, som indeholder 4 * 3. Kom evt. ind på forskellen mellem, at fem personer har 2 kr. hver og så 2 personer har fem kr. hver. Brugen af lommeregner kunne også indgå hvordan er det nu, man bruger den, når man ganger. Foretag nogle sjove beregninger på lommeregneren med eleverne fx 11 * 11 og 111 * 111 og fortsæt. Skriv evt. en række tal på tavlen, som er en blanding af flere tabeller og lad eleverne finde tal, som hører sammen og hvorfor. Her er tallene 2, 3, 6, 7, 8, 9, 12, 15, 14 Kan du samle nogle af tallene, som hører sammen i samme tabel? Om fotografiet Hvor mange sko er der på hver hylde? Lad eleverne fortælle om de kan se, hvad det er for sko (bowling). De har måske prøvet at have skoene på. Viser fotoet alle de sko, der er i bowlinghallen? Hvorfor ikke eller hvorfor? Er der et bestemt system skoene ligger i? (skoene bliver større og større fra oven og ned fra str. 4 til str. 7) Hvordan vil I tælle skoene? Lad eleverne komme frem med en god måde at tælle det samlede antal. Hvad skal regnes med? (Man kan kun se noget af skoene til højre aftal om de er med). Lad dem tælle hver især og se om de er enige. Spørg ind til deres forretningsgang og tællemåde. (Der er 76 sko). Hvordan vil I regne jer til svaret? Lad eleverne hver især notere deres udregningsmetode. Saml derefter op i plenum på deres forskellige bud på udregningsmetoder. Diskuter i fællesskab, hvilke udregningsmetode der er hurtigst og mest hensigtsmæssig. Bemærk, om nogen regner 2 * 8 * 5-4 (2 par sko mangler). 5

Hvor mange par sko kan der ses i alt? Kom ind på ordet par - hvad betyder det? Få dem arbejdet ind i retningen af at antallet af par kan omregnes til sko ved at gange med to. (38 x 2 sko) Hvor mange par sko vil der være, hvis der er ti gange så mange? Antallet er nu aftalt. Lad eleverne lægge 76 sammen 10 gange på lommeregner. De kan evt. gætte og kontrollere på lommeregner. Er der mon et system? Måske er der elever der ved hvad det vil sige at gange med 10. Lad dem prøve at forklare deres fremgangsmåde. Om klasseaktiviteten Eleverne skal hver især undersøge tabelmønstre i hundredetavlen. Se tidligere beskrivelser. Eleverne kan blandt andet se på, hvordan nogle tal går igen i flere tabeller og nogen indgår slet ikke. De kan på opdagelse i særlige mønstre og forsøge at gennemskue sammenhænge. De kan farvelægge talmønstrene og lave en udstilling af det. Supplerende Gangetabel Udlever en gangetabel, hvor der mangler en række tal eleverne skal forsøge at finde de manglende tal. De svagest præsterende elever kan få hjælp af lommeregnere. Tabel- bingo Hver elev skal fremstille en bingoplade. Eleverne vælger, hvilke af de nedenstående tal de ønsker på deres bingoplade. Eleverne skal skrive et tal i hver rubrik. 0,1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,27,28,30,32,35,36,40,42,45,49,54,56, 63,64,72,81 Billede af bingoplade Fremstil to sæt talkort fra 0 9. Læreren trækker to kort fra bunken og siger gangestykket, der fremkommer, højt fx 4 * 7. Eleverne har lommeregner eller en gangetabel til rådighed. De elever, der har produktet 28, lægger en markør på sin plade eller sætter et kryds over tallet med blyant. Fortsæt indtil en af eleverne får banko. Tabelmemory Spilles parvis. 6

Fremstil 16 sæt talkort, hvor de otte indeholder gangestykker, og de andre otte er resultatet af gangestykkerne. Eleverne fordeler kortene tilfældigt på bordet og trækker på skift to kort. Kan de pares, så gangestykke og resultat passer sammen, har man et stik. Det giver lov til at trække to nye kort. Passer kortene ikke sammen er det den andens tur. Den, der har flest stik til sidst, har vundet. FLERE EKSEMPLER 7

Musikfestivalen Kernebogen s. 6-9 Læringsmål Eleven kan anvende titalssystemet til at beskrive et større antal. kan identificere positioner som enere, tiere, hundreder, tusinder m.m. kan veksle mellem enere, tiere, hundreder og tusinder. afrunde til nærmeste 100 og 1000. Faglige og metodiske kommentarer Kapitlet indledes med et scenarie om Musikfestivalen, hvor der er fokus på større tal og positionssystemet. Eleverne skal arbejde med pladsernes betydning i et naturligt tal som en indledning til udvikling af regnestrategier inden for multiplikation og division. Der vil for en del elever være tale om stof, de kender til, men der vil også være en del, som har brug for at få det repeteret. Vi tager udgangspunkt i tælleapparater og den måde et sådant apparat virker. Har man adgang til et sådant mekanisk eller elektronisk - kan det måske være motiverende at medbringe det til klassen. Det kan være en god ide sammen at tælle videre fra nogle skarpe hjørner. Spørg ind til, hvad der sker når man trykker på én mere på et tælleapparat, hvor der står 9, 99, 999, 9999 måske 1009 osv. Bemærk, at der kan være elever, som ikke er klar over, at den første rude i tælleapparat er den yderste til højre. Hvilket er modsat læseretningen, som går fra venstre mod højre. Eleverne kommer ind i problemstillinger, hvor de skal veksle såvel tiere, hundreder og tusinder til større tal. Eleverne skal kunne omsætte 23 tiere til 2 hundreder og 3 tiere. De skal kunne omsætte 49 hundreder til 4 tusinde og 9 hundrede osv. I den sammenhæng kan det være en god ide at inddrage konkrete materialer, som har været brugt tidligere som fx pengesedler/mønter. Afrunding tages op i forbindelse med en diskussion om nøjagtighed. Kommentarer til opgaver og IT Opgave 1-2 Eleverne skal sammenligne og tage stilling til tallenes størrelse. Tallene er valgt, så de ligger tæt på hinanden, så eleverne kan se hvordan pladsen i tallet har betydning for størrelsen. Der indgår opgaver, hvor eleven skal beregne forskellen mellem tallene og derfor have udviklet subtraktive strategier. Der lægges ikke op til standardopstillinger men snarere hovedregning og talmanipulation, hvor man kløver tallene fornuftigt og ser på mulige regnemetoder. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 8

De følges op af opgaver, som undersøger elevenes evne til at bruge positionerne til at skabe tal og antal samt læse og skrive tallene. I opgave 2b skal eleverne skrive et tal som kan passe til ca. 5000 besøgende. Ordet ca. indeholder ikke en klar definition, men et typiske svar vil være tal som er + - 50. Opgave 3 Opgaven sætter fokus på, hvordan et naturligt tal vokser på de forskellige positioner. Der er elever, som undrer sig over, at tusindepladsen forøges med kun 1, når man lægger 1000 til. Opgave 4 Eleverne skal forholde sig til forskellen mellem store tal og forsøge at tænke i regnestrategier fx en fylde op metode. Fra 19 373 op til 19 976 er der sket en stigning på 6 hundreder, 0 tiere og 3 enere dvs. at der er kommet 603 gæster ind. Opgave 5 Eleverne skal demonstrere at de kan afrunde naturlige tal til nærmeste 10, 100 og 1000. De skal desuden ind i overvejelser om afrundet svar overfor præcise svar. Lad dem gå ind i situationer hvor afrundet svar er godt nok. At svare på hvad der er bedst afhænger af situationen. Skal man fx vide om der er plads til alle på festivalen kan et svar i tusinde være godt nok. Skal man svare på, hvor mange penge der er kommet ind i entreindtægter vil et præcist antal måske være bedre. IT regneark: Musikfestivalen På ark 1 skal eleverne afrunde besøgstal til nærmeste 100 og 1000 samt tegne et diagram over besøget. På ark 2 skal eleverne arbejde med funktionen Autosum. En vigtig erfaring eleverne vil gøre sig er, at et dokument kan bestå af flere ark. Opgave 6-9 Nogle elever kender sikkert en flippermaskine de har måske endda prøvet en. Det kan være værd at bringe sådanne erfaringer ud i klassen. Vi bygger fagligt videre på arbejdet med positioner knyttet til pointgivning på flippermaskinerne, når kuglen rammer forskellige forhindringer på dens vej mod mål. Det fagligt centrale i scenariet er, at man kan ramme fx hundredeforhindringen mere end 10 gange fx 13 gange. Det kræver så en oversættelse til 1 tusinde og 3 hundreder. Eleverne skal således kunne håndtere en sådan veksling mellem pladserne i et naturligt tal. IT- regneark: Flippermaskinen På ark 1 kan eleverne få regnearket til at udregne point på spil på flippermaskinen. På ark 2 anvender eleverne autosum til at samle point sammen. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 9

Udfordringen Vi ser på forskel mellem store tal og lægger op til, at eleverne selv finder strategisk gode måder at fylde tal op på fra fx 11 653 op til 20 000 i stedet for at foretage en standardopstilling med at låne. I det her tilfælde skal eleverne kunne kløve tallet 20 000 til fx 19 999 + 1. Eleverne kan fylde op fra position til position og ender med resultatet 07 346 som tillægges den ene vi fjernede i starten. Det endelige svar er så 7347. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 10

Nødhjælpen Kernebogen s. 10-13 Læringsmål Eleven kan opfatte multiplikation som gentaget addition af det samme tal. kan omsætte multiplikationsprocesser til divisionsprocesser. kan genkende forskellige multiplikationsprocesser i virkeligheden. har udviklet en forretningsgang ved beregninger ved enkle multiplikationer af flercifrede tal. kan gennemskue forskellige multiplikationsalgoritmer. kan multiplicere med 0, 10 og 100. Faglige og metodiske kommentarer Arbejdet med antalsbestemmelse, der med fordel kan foretages ved hjælp af multiplikation, er omdrejningspunktet for dette scenarie. Der tages udgangspunkt i fortløbende addition. Indledende lægges der op til, at eleverne arbejder med optælling ved at tælle antallet af dåser i en række og derefter multiplicere med antallet af rækker i de tre forskellige rammetyper. For den blå ramme kan man tænke det som 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 (fortløbende addition) 6-12- 18-24- 30-36- 42-48 (tabelkundskaber) 8 * 6 = 48 (matematisk symbolsprog) Eleverne bliver i dette afsnit introduceret til multiplikation som en kommunikativ regneoperation. I gennem arbejdet vil eleverne få mulighed for at gøre sig erfaringer med at faktorernes orden er ligegyldig, da 8 * 6 = 6 * 8. En indsigt nogle elever stadig kan have svært ved. Det er basal viden, at eleverne har kendskab til de små tabeller. Hvis nogle elever finder det svært at forestille sig dåserne, så kan det en god ide at bruge konkrete materialer fx centicubes. Eleverne kan også tegne dåserne som krydser på kvadratpapir. Kommentarer til opgaver og IT Opgave 1 2 I disse opgaver arbejdes der med fortløbende addition samt elevernes tabelkundskaber. Regnearket K4+ 03 bygger videre på at eleverne skal opnå fortrolighed med enkelte grundlæggende funktioner. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 11

Opgave 3 Denne opgave har flere løsningsmuligheder fx 1 * 16, 2 * 8, 4 * 4. I denne opgave vil der være elever, der kan finde på at arbejde den modsatte vej og derfor foreslår at dividere. Dette kan være en oplagt lejlighed til at tale om multiplikation og division som modsatte regningsarter. Opgave 4 Denne opgave har flere løsningsmuligheder fx 1 * 36, 2* 18, 3* 12, 6 * 6. Det kan være en god ide at lade eleverne argumentere for, hvorfor nogle løsningsmuligheder er bedre end andre. Spørg fx klassen, hvilken en ramme de ville anbefale Nødhjælpen at vælge og hvorfor. Opgave 5 Der bliver i denne opgave sat fokus på at gange med en faktor blandt andet faktor 10. Vær i den sammenhæng opmærksom på, at eleverne ikke bare sætter et nul bag på som en udenadslære de ikke forstår. Spørg ind til, hvad det vil sige at gange med 10, så fokus er på deres forståelse af denne regneproces. Lad fx eleverne afprøve systemet med at gange med 10 ved at bruge lommeregneren og foretage forløbende multiplikation. I opgave b arbejdes der den modsatte vej. Nogle elever vil derfor foreslå at dividere. I denne situation vil det være relevant at tale om division og multiplikation som modsatte regningsarter og fokus bør derfor være på forskellige beregningsmåder. 2 rammer (72 : 36, 36 + 36, 2 * 36) 4 rammer (144 : 36, 36 + 36 + 36 + 36, 72 + 72, 2 *72, 4 *36) Osv. Opgave 6-7 Der er flere måder at løse denne opgave på. Det kan være hensigtsmæssigt at opdele dåserne i rektangler og derefter tælle sammen. Opgaven her lægger op til en samtale om regningsarternes hierarki. Det kan være en hjælp for en af eleverne at bruge konkrete materialer, udregninger eller tegninger til at forklare deres løsningsforslag fx 4 * 3 + 5 * 7 + 3 * 4 + 5 * 6. Bemærk, at man i opgave b i 1. udgaven har skrevet 1 * 6 som burde være 1 * 7. Ret det evt. i bogen eller accepter en løsning der passer til det skrevne. Der følges op af en opgave, hvor eleverne bundter i enheder af 36 svarende til den grønne ramme. Et eksempel på division som det modsatte af en multiplikationsproces. Opgave 8 Vi udvider opfattelsen af multiplikation ved at tilføre ekstra faktorer i regnestykkerne. Vi har her at gøre med regnestykket 3 * 2 som udvides til 3 * 2 * 8. Og derefter en udvidelse med et tocifret tal svarende til 3 * 4 * 12. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 12

Opgave 9 11 Eleverne skal her finde frem til en regnestrategi, som involverer gangestykker med flercifrede tal der ikke blot kan beregnes som hovedregning. Som grundregel er det befordrende for indsigten i en gangealgoritme, at man skitserer sig til et resultat, før man formaliserer det. Det anbefales, at eleverne kløver tallene fx at de tænker på regnestykket 37 * 7 som 30 * 7 + 7 * 7. Det er årsagen til, at vi forsøger at vise scenariet med melsække lagt i særlig rækkefølge. En skitse kunne være Illustration af rektangel delt op i en side med 30 og 7 samt en side med 7. Inden i rektanglet står der henholdsvis 210 og 49. Sørg for at eleverne rationaliserer deres tegning af melsække så det blot er prikker eller endnu nemmere at det fx er en tern. I opgave 11 beskriver vi igen den modsatte handling, at resultatet kendes men at multiplikationsstykket skal findes. Udfordringen I udfordringen bedes eleverne om at videreudvikle deres algoritme og skitser til multiplikation af tocifrede tal ganget med flercifrede tal. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 13

Feriecentret Kernebogen s. 14 17 Læringsmål Eleven kan anvende store dele af multiplikationstabellen. har viden om den kommutative lov (a * b = b * a). genkende forskellige multiplikationsprocesser i virkeligheden. kan anvende og gennemføre multiplikation og addition i samme regneudtryk (den distributive lov). Faglige og metodiske kommentarer Eleverne skal primært opleve sammenhængen mellem division og multiplikation og arbejde med regneoperationernes hierarki. Det er centralt for elevernes indlæring, at de får forståelse for, at man kun kan multiplicere, når det drejer sig om gruppering af ens elementer. Det samme gør sig gældende for division. I dette scenarie vil eleverne opleve den kommutative lov og forskellen i de to muligheder. Fx (2 * 12) sovepladser i 12- sengshytter og (12 * 2) sovepladser i 2- sengshytter. Det vil blive suppleret af øvelser i, hvordan den distributive lov virker altså at a(b + c) = ab + ac. Kommentarer til opgaver og IT Opgave 1 I opgave a skal eleverne kunne orientere sig på oversigtskortet af feriecentret og finde ud af, hvor mange af hver slags hytte, der er. Nogle elever vil vælge at lave fortløbende addition fx 12 + 12 = 24 sovepladser, hvor andre vil sige 2 hytter á 12 sovepladser = 2 * 12 = 24 sovepladser. Opgaven kalder på evner til at overskue information og fremkalde den nødvendige information. I opgave b anbefaler vi brug af digitale værktøjer fx lommeregner. Det er dog vigtigt, at eleverne er klar over, hvorvidt deres lommeregner har indbygget rigtige regnehierakiske beregninger eller ej. Lad eventuelt eleverne først afprøve deres lommeregner. Opgave 2 Dette er en åben opgave og derfor er der også flere løsningsmuligheder. Opgaven lægger op til forskellige overvejelser om fordelingen af elever og lærere i hytterne. Opgave 3 I opgave a og b vil eleverne (med rette) kunne blive i tvivl om de skal gange eller dividere. I dette tilfælde vises det at gange og division hænger tæt sammen. De kan fx Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 14

løse opgave a ved at sige 48 : 6 = 8 eller ved at spørge hvad skal jeg gange med 6 for at få 48 altså 6 * x = 48. Opgave 4 Denne tegning kan fremstilles såvel som på computer. Til de elever, som synes, det er en uoverskuelig opgave, findes der et hjælpe- kopiark. Opgave 5 Denne opgave ligger meget op til faglig læsning i forhold til hvordan eleverne læser informationerne på siden og orienterer sig på siden. De skal samtidig kunne trække på deres viden fra de foregående opgaver om antallet af hytter og sengepladser. Denne viden skal de bruge når de færdiggør skemaet. IT regneark: Feriecentret Eleverne kan anvende regnearket til at udregne sengepladser. Opgave 6 Ligesom i opgave 3 er det her gældende, at eleverne kan løse opgaven ved hjælp af såvel gange som division. De kan sige 48 : 4 = 12 eller 4* antal hytter = 48 så må antallet af 4- sengshytter være 12. Opgave 7 I opgave a og b handler skal eleverne anvende de regnehierakiske regler. De skal vide, at man skal gange, før man lægger til. De skal således opdage, at Madsen har glemt denne regneregel. Han har bare regnet fra venstre mod højre og sagt 2 * 12 er 24, 24 + 20 er 44 og 44 * 4 er 176. Det rigtige svar er 104. De kan evt. undersøge beregningen på lommeregner fx om der kommer forskellige svar. Opgave 8 I denne opgave skal eleverne holde styr på de forskellige informationer, de har fået oplyst omkring hytter, antal sengepladser og så udvidelsen af feriecentret. Nogle vil have brug for at blive gjort opmærksomme på, at det kan være hensigtsmæssigt at bruge tegningen fra opgave 4 og skemaet fra opgave 5. Andre vil lynhurtigt kunne se, at det er svarene fra opgave 5. b der blot skal lægges sammen og hvortil de 48 nye sovepladser skal lægges oveni. Opgave 9 Eleverne bruger deres viden om hvordan de beregner sengepladser til en ny situation, som en form for repetition. Der kan være tvivl om der i opgave b er tale om at de tænkte udvidelse har fundet sted eller om det er det feriecenter der er oplyst fra begyndelsen af scenariet. Begge svar kan være rigtige det er kun et spørgsmål hvad eleverne vælger. Udgangspunktet er at udvidelsen ikke har fundet sted men blot har været en plan fra lejrchefens side. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 15

Udfordringen Udfordringen i denne opgave ligger dels i, at eleverne skal løse opgaven ved hjælp af regnearket Hytteleje og dels i det åbne spørgsmål b, hvor eleverne selv skal tage stilling til, hvordan Madsen bedst muligt kan tjene 5000 kr. ekstra. Der er således mange svarmuligheder til opgave b. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 16

Aktiviteter Tænk sig hvis der var kæmper til Materialer: Målebånd, lommeregner, regnearket Kæmpen Det er første gang eleverne ser mærket med et stort M. Det er for at signalerer at der i opgaven er elementer af modelleringskompetencen. Eleverne skal forsøge at beregne sig til mål på kæmpen som synes troværdige. Det gør du ud fra det fodaftryk som er skitseret i bogen. Arbejdet består i at se at der en vis proportionalitet mellem elevens egen fods størrelse og kæmpens fods størrelse. Det typiske, eleverne gør, er at måle med deres egen fod eller sko, hvor mange gange den kan være på fodaftrykket. Det vil svare til ca. 5 gange med den fodstørrelse der almindeligvis er hos en 4. klasses elev. Det kan være en god ide at medbringe fodaftrykket i form af et udklip fx fra en borddug så eleverne rent fysisk får fodaftrykket udleveret. Når først eleverne finder denne proportionalitetsfaktor, kan arbejdet gå med mange andre mål, som man vil finde ved først at måle på sig selv og så gange op til Kæmpens størrelse. Erfaringerne siger, at eleverne kan blive ganske grebet at denne aktivitet, så det kan være nødvendigt at aftale en tidsbegrænsning for, hvor mange mål der skal indgå i beskrivelsen af kæmpen. Nogle elever har måske bemærket at folk med samme højde godt kan have forskellige længder fod hvilket gør modellen der regnes efter lidt ustabil. Lad det evt. indgå i en afsluttende snak med eleverne. Der vil givet være elever som ønsker at tegne og dekorere denne her Kæmpe evt. give ham navn og skrive om ham. Bent 23/8/14 21:57 Deleted: I regnearket Kæmpen kan eleven foretage beregninger af mål på Kæmpen. Fremstil jeres eget ti- talsystem Her skal eleverne opfinde et nyt hemmeligt talsprog. De bevarer grundtallet 10 og navnene på tallene så i første omgang er det udelukkende cifrenes udseende der laves om. Der skal altså ske en oversættelse fra de nye tegn til de gamle traditionelle tegn. Gør eleverne opmærksom på, at det er en god ide, hvis de ti cifre: er nemme at huske og gengive. er forskellige, så man ikke blander dem sammen. Eleverne skal fremstille en plustabel og en gangetabel samt en tallinje fra 0 20. Når eleverne efterfølgende skal regne i dette nye tegnsprog, vil de opdage, at det kan være en hjælp at have disse i nærheden, når der regnes. Som en udvidelse kan man overveje, om nogle elever vil stille sig den udfordring, at cifrene får nye navne. Gangerier og lommeregner Materialer: Lommeregner, regnearket Gangerier Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 17

I denne spilleaktivitet berører eleverne indirekte arbejdet med kubiktal og kubikrod gennem en undersøgende og legende tilgang med lommeregneren. Læg mærke til hvilke strategier eleverne anvender, er der tale om et kvalificeret gæt eller et gæt ud i den blå luft? Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 18

Eftertanken Som afsluttende evaluering på kapitlet kan der anvendes: De tre kompetenceorienterede opgaver på Eftertankesiden. Et EVA- ark, som er en diagnostisk test, der undersøger elevernes målopfyldelse inden for kapitlets stofområde. Elevernes egen faglige logbog, hvor de formulerer deres viden. Påstanden I eftertankeopgaven Påstanden skal eleverne arbejde med tankegang- og ræsonnementskompetencen. Eleverne skal tage stilling til rigtigheden af hver af de tre påstande. De skal altså for hvert spørgsmål overveje argumenter for om påstanden er altid rigtig, nogle gange rigtig og aldrig rigtig. Første påstand er altid rigtig, så længe vi arbejder med de rationale tal. Anden påstand må også være rigtig, idet vi ved, at x * 0 = 0. Hvis der er mange faktorer i gangestykket 3 * 4 * 5 * 6 * 0. Tredje påstand er måske lidt mere besværlig. Hvis det kun er de naturlige tal, som indgår, er svaret at det nogle gange er rigtigt. Hvis man tænker på alle tænkelige situationer med tal, er der mange flere fx 0,5 * 200. Giv en historie I eftertankeopgaven Giv en historie skal eleverne arbejde med problembehandlingskompetencen ved at opstille et problem omkring gange. Der sættes fokus på deres forståelse af den kommutative lov. Vis det I eftertankeopgaven Vis det skal eleverne arbejde med kommunikationskompetencen. De indleder med at skaffe sig et overblik over gangestykker, der giver 336. Opløst i primtalsfaktorer er det 7 * 3 * 2 4. Eleverne kan således selv afgøre sværhedsgraden af det gangestykke de vil vise på en film fx 2 * 168 eller 21 * 16. De kan anvende deres mobiltelefon eller Ipad evt. kameraer fra skolen. Huskeren Eleven formulerer med egne ord deres viden og færdigheder inden for at gange. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 19

At dele Kernebogen s. 27-43 Fælles Mål Eleven kan udvikle metoder til Eleven har viden om strategier til multiplikation og division med naturlige multiplikation og division tal Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi Eleven har viden om beregninger med de fire regningsarter inden for de naturlige tal, herunder anvendelse af regneark Division og multiplikation er modsatte regningsarter. Hvor multiplikation kan forstås som gentaget addition, kan division ses som gentaget subtraktion.. Division hænger altså sammen med multiplikation, hvilket kan få elever til at tro, at egenskaberne ved begge regningsarter kan direkte overføres hvilket ikke passer. Til eksempel gælder den kommutative lov ved multiplikation men ikke ved division. 12 : 3 er ikke det samme som 3 : 12. Der er forskel i svaret på problemstillingen 12 stykker slik skal deles mellem 3 børn, og 3 stykker slik der deles mellem 12 børn. Desuden vil der altid med multiplikation blive et resultat inden for de hele tal, mens det ikke er tilfældet med division. Det er vigtigt at være opmærksom på, at mange elever anvender multiplikative strategier, når de dividerer. Det kan der være flere forklaringer på: De mestrer multiplikation. Da der er tale om modsatrettede regningsarter kan det i nogle tilfælde være hurtigere og derfor mere hensigtsmæssigt at løse ved hjælp af multiplikation. De blander ofte multiplikation og division sammen. Vi siger fx 12 delt med 3, 12 divideret med 3, og hvor mange gange går 3 op i 12?. Denne type af formuleringer lægger umiddelbart op til, at eleverne tænker 3,6,9,12 fire gange går 3 op i 12 altså 12 divideret med 3 er 4. Eleverne anvender således en multiplikativ tankegang til at løse problemet 12 : 3. Dele eller dividere? Det er muligt at stille spørgsmål, som variationer af den samme problemstilling fx 24 : 3 = 8. Hvad er 24 divideret med 3? Hvad skal 24 deles med for at få 8? Hvad bliver 3 * 8? Hvad skal man gange 3 med for at få 24? Osv. Det kan være væsentlig, at eleverne oplever disse sprogbrug og kan genkende dem som divisionsopgaver. Kontext+ 4 Foreløbig lærervejledning til At dele 5. juli 2014 Side 20