Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem
|
|
|
- Kjeld Møller
- 10 år siden
- Visninger:
Transkript
1 Eksamensopgaver datalogi, dlc 2011 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet) fra en liste af navne, og det skal kunne udtrække et eller flere numre i et givet interval. Det skal altså være en form for elektronisk hat, hvor man lægger sedler i hatten og trækker en eller flere af disse. Da lodtrækninger ofte gennemføres i fuld offentlighed pga. spændingselementet, skal programmet laves med henblik på at det er spændende for tilskuerne at overvære en lodtrækning. Løsning af opgaven involverer bl.a. specifikation af programmets brugerflade og herunder krav til hvordan input henholdsvis output skal foreligge fastlæggelse af datastruktur og repræsentation af disse beskrivelse af programmets algoritmer valg af platform og værktøjer til udviklingen programmering gennemførsel af test overvejelser omkring forbedringer af programmet
2 Eksamensopgaver datalogi, dlc 2011 side 2/5 2. Body Mass Index I biologi vil man gerne kunne beregne en persons BMI (Body Mass Index), der er udtryk for dennes placering i forhold til normalvægten. Der skal laves et program, der kan gøre dette. BMI beregnes ud fra vægt og højde. BMI = vægt (i kilo) divideret med højde (i meter) i anden potens, altså: Hvis BMI er under 18,5 er man undervægtig; mellem 18,5 og 25 har man normalvægt; mellem 25 og 30 er man overvægtig; og over 30 er man fed! Programmet skal kunne gemme resultatet samt registrere et træningsmål, altså en ønsket ny vægt efter 14 dage. Programmet skal kunne kontrollere om målet er opnået ved næste kørsel. Løsning af opgaven involverer bl.a. specifikation af programmets brugerflade og herunder krav til hvordan input henholdsvis output skal foreligge fastlæggelse af datastruktur og repræsentation af disse beskrivelse af programmets algoritmer valg af platform og værktøjer til udviklingen programmering gennemførsel af test overvejelser omkring forbedringer af programmet
3 Eksamensopgaver datalogi, dlc 2011 side 3/5 3. Datastruktur og programstruktur I sandsynlighedsregning i matematik arbejder man blandt andet med sandsynligheden for bestemte udfald af kast med én terning. For at simulere (efterligne) terningkast kan man med fordel benytte et edb-program, som indeholder en tilfældighedsgenerator. Der skal laves et program, der kan simulere et antal terningkast med én terning. Efter alle kastene skal vises, hvor mange kast der er foretaget i alt, hvor mange der blev ettere, hvor mange toere osv. Og endelig skal programmet beregne og vise den procentvise fordeling af ettere, toere osv. Programmet kan videreudbygges til kast med to eller flere terninger. Du skal gøre rede for: events (hændelser) strukturerede datatyper der er anvendt i programmet (arrays) programstruktur, hvormed menes den rækkefølge programmets instruktioner udføres i, især når der fraviges fra sekventiel struktur procedurer og funktioner: du skal kunne forklare dem linie for linie
4 Eksamensopgaver datalogi, dlc 2011 side 4/5 4. Sortering af navneliste Der skal fremstilles et program, som kan sortere en liste med personnavne, hvor denne foreligger i en tekstfil. Programmet skal kunne indlæse tekstfilen, vise navnene i sorteret form og gemme en sorteret liste i en tekstfil. I skal bl.a. forholde jer til: programmets brugerflade hvilke krav skal eller kan der stilles til format af navnelisten i tekstfilen datastruktur for programmet algoritme for programmet og herunder specielt sorteringsalgoritmen implementering af programmet (redskaber og anvendelse af disse) strategi for test af programmet
5 Eksamensopgaver datalogi, dlc 2011 side 5/5 5. SL69 og assemblerprogrammering (Euklids algoritme) Der skal fremstilles et program til SL69, som kan udføre Euklids algoritme Modificeret algoritme fra Wikipedia som ikke benytter division: funktion SFD(a, b) sålænge a b hvis b>a så t := a a := b b := t a := a - b returner a til bestemmelse af den største fælles divisor for to heltal. Foruden selve programmet forventes det, at I gennemgår grundlæggende egenskaber for SL69 maskinen. I skal bl.a. forholde jer til: programmets brugerflade (input og output) valg af datarepræsentation Layout af memory algoritme for programmet implementering af programmet (redskaber og anvendelse af disse) test af programmet SL69 arkitektur og det binære talsystem Overvej hvordan dette program kan videreudvikles til at bestemme om et indlæst tal er et primtal
Eksamensopgaver datalogi, dl/vf 2010 side 1/5. 1. Lodtrækningssystem
Eksamensopgaver datalogi, dl/vf 2010 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)
Simulering af stokastiske fænomener med Excel
Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
INSTITUT FOR DATALOGI, AARHUS UNIVERSITET
INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 22. juni 2012, kl. 9.00-13.00 Eksamenslokale: Finlandsgade
Algoritmer og invarianter
Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 29. februar, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
Abstrakte datatyper C#-version
Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Abstrakte datatyper C#-version Finn Nordbjerg 1/9 Abstrakte Datatyper Denne note introducerer kort begrebet abstrakt datatype
Simulering af stokastiske fænomener med Excel
Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)
Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.
Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1 1 Paritet Diskret matematik. I mange matematikopgaver er det en god ide at se på paritet dvs. hvornår en bestemt størrelse er henholdsvis lige
Matador. Hvert hus koster: 2000 Et hotel koster: 2000 + 4 huse Pantsætningsværdien er 2000 kr.
Matador Problembeskrivelse Matador består af en spilleplade med 40 felter, biler (som udgør spillebrikker), to terninger, huse, hoteller, lykkekort, pengesedler og skødekort. Hvert felt har et nummer og
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2019 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 27. februar, 2019 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004
Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes
Undersøgende aktivitet om primtal. Af Petur Birgir Petersen
Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Definition: Et primtal er et naturligt tal større end 1, som kun 1 og tallet selv går op i. Eksempel 1: Tallet 1 ikke et primtal fordi det ikke
19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse.
19 Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. Sammenligning af hashtabeller og søgetræer. 281 Hashing-problemet (1). Vi ønsker at afbilde n objekter på en tabel
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2018 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 20. marts, 2019 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
DM02 opgaver ugeseddel 2
DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2018 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 13. marts, 2018 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2015 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 3. marts, 2015 Dette projekt udleveres i to dele. Hver del har sin deadline, således
Fig. 1 Billede af de 60 terninger på mit skrivebord
Simulation af χ 2 - fordeling John Andersen Introduktion En dag kastede jeg 60 terninger Fig. 1 Billede af de 60 terninger på mit skrivebord For at danne mig et billede af hyppighederne flyttede jeg rundt
Oversigt. Indhold mm.5: Latch es og flip-flops Analyse af synkrone sekventielle kredsløb Syntese. Boolsk algebra, byggeblokke,
Oversigt Indhold mm.5: Latch es og flip-flops Analyse af synkrone sekventielle kredsløb Syntese Boolsk algebra, byggeblokke, talsystemer Kombinatoriske kredsløb, minimering Sekventielle kredsløb, analyse
Statistik og sandsynlighed
Statistik og sandsynlighed Statistik handler om at beskrive og analysere en stor mængde data. som I eller andre har indsamlet. Det kan fx være tal, der fortæller om, hvor mange lynnedslag der er i Danmark
Allan C. Malmberg. Terningkast
Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig
Først falder den med 20% af 100 = 20 kr, dernæst stiger den med 30% af 80 = 24 kr. Der er 91 dage mellem datoerne, svarende til 13 uger.
ud af deltagere må være børn, da der er dobbelt så mange børn som voksne. Derfor er der i alt børn med på skovturen. ud af børn må være piger, da der er dobbelt så mange piger som drenge. Det vil sige,
Automatisering Af Hverdagen
Automatisering Af Hverdagen Programmering - Eksamensopgave 10-05-2011 Roskilde Tekniske Gymnasium (Kl. 3,3m) Mads Christiansen & Tobias Hjelholt Svendsen 2 Automatisering Af Hverdagen Indhold Introduktion:...
Videregående Programmering for Diplom-E Noter
Videregående Programmering for Diplom-E Noter 1. Uddelegering Ét af de væsentlige principper i objektorienteret programmering er, at enhver klasse selv skal kunne "klare ærterne". Enhver klasse skal altså
DM536. Rapport og debug
DM536 Rapport og debug Kilder Vigtig.it (Felix Palludan Hargreaves) http://vigtig.it/dm502/howto_report.pdf http://vigtig.it/blog/teaching/#toc-relevant-tips Peter Schneider-Kamp http://imada.sdu.dk/~petersk/dm536/project2.pdf
Plade PRIS 100% NORDISK PLAST. PP-H Ekstruderet Grå GARANTI. Nordisk Plast Tlf. 86 48 48 11 [email protected] www.nordiskplast.
16 PP Plader Grå 16.2 Grå/Natur 16.3 Rundstænger Grå 16.4 Natur 16.5 ELS Sort 16.6 30 GF Sort 16.6 30 PET F Sort 16.6 Emnerør Grå 16.7 Opdateret: 1. oktober 2015 Plade Grå Polypropylen Homopol. plader
Cecilie Maria Nielsen, Mathias Fornitz Eriksen og Martin Arnetoft klasse 1.6 07-05-2010
ROSKILDE TEKNISKE GYMNASIUM Eksamensopgave Kommunikation/it Cecilie Maria Nielsen, Mathias Fornitz Eriksen og Martin Arnetoft klasse 1.6 07-05-2010 Vi har valgt at beskæftige os med opgave 1 fra oplæget.
Michael Jokil 11-05-2012
HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 20. april, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
Brøk Laboratorium. Varenummer 72 2459
Brøk Laboratorium Varenummer 72 2459 Leg og Lær om brøker Brøkbrikkerne i holderen giver brugeren mulighed for at sammenligne forskellige brøker. Brøkerne er illustreret af cirkelstykker som sammenlagt
Introduktion til DM507
Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Introduktion til kurset Rolf Fagerberg Forår 2019 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, Institut for Matematik og Datalogi (IMADA) Forskningsområde: algoritmer
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2019 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 10. april, 2019 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2017 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 6. april, 2017 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
DM72 Diskret matematik med anvendelser
DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n
Opgaver til C# - Beregninger og udskrift til skærm
Opgaver til C# - Beregninger og udskrift til skærm Opgave 1 Indtast følgende programkode (som er en tillempning af en klassiker) og afvikl den System.Console.WriteLine("Jeg ælsker C#"); Prøv at skriv en
Skriftlig Eksamen Algoritmer og Datastrukturer (dads)
Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.
Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så
Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =
Talteoriopgaver Træningsophold ved Sorø Akademi 2007
Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 HTX
INSTITUT FOR DATALOGI, AARHUS UNIVERSITET
INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,
Om at udregne enkeltstående hexadecimaler i tallet pi
Om at udregne enkeltstående hexadecimaler i tallet pi I 996 var det en sensation, da det kom frem, at det var lykkedes D. Bailey, P. Borwein og S. Plouffe at finde en formel for tallet π, med hvilken man
Indhold. Maskinstruktur... 3. Kapitel 1. Assemblersprog...3. 1.1 Indledning...3 1.2 Hop-instruktioner... 7 1.3 Input og output...
Indhold Maskinstruktur... 3 Kapitel 1. Assemblersprog...3 1.1 Indledning...3 1.2 Hop-instruktioner... 7 1.3 Input og output... 9 Kapitel 2. Maskinkode... 13 2.1 Den fysiske maskine... 13 2.2 Assemblerens
DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E
Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E Vejledende løsninger til
Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.
Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden
Skriftlig Eksamen Algoritmer og Datastrukturer (dads)
Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =
University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 3
DM502 Forelæsning 3 Indlæsning fra tastatur Udskrift til skærm Repetition Beregning af middelværdi Gentagelse med stop-betingelse (while) Heltalsdivision Division med nul Type-casting ( (double) ) Betinget
Skriftlig eksamen i Datalogi
Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2
Klasse Situation Observation 3. klasse Før spillet. Der bliver spurgt ind til hvad børnene
Bilag 1 - Feltobservationer I dette bilag findes Feltobservationer, noteret under folkeskoleelevernes spilforløb. Disse feltobservationer er fremstillet i en skematisk opstilling, hvis første kolonne tydeliggør
Primtal - hvor mange, hvordan og hvorfor?
Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret
1. Hovedramme 2. Bag stabilisator 3. For stabilisator 4. Cykelstyrsstang 5. Cykelstyr 6. Computer 7. Sædestang 8. Sæde 9. Pedaler 10.
1. Hovedramme 2. Bag stabilisator 3. For stabilisator 4. Cykelstyrsstang 5. Cykelstyr 6. Computer 7. Sædestang 8. Sæde 9. Pedaler 10. Plastik beslag 11. Adapter (6VDC, 500mA) M8x70 bolt (4)-4 M8x15mm skrue
matematik Demo excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk
matematik excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk matematik excel 2 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale
Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet
Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet penge Periode Mål Eleverne skal: Lære at anvende simpel hovedregning gennem leg og praktiske anvende addition og
BRP 6.9.2006 Kursusintroduktion og Java-oversigt
BRP 6.9.2006 Kursusintroduktion og Java-oversigt 1. Kursusintroduktion 2. Java-oversigt (A): Opgave P4.4 3. Java-oversigt (B): Ny omvendings -opgave 4. Introduktion til næste kursusgang Kursusintroduktion:
Fra tilfældighed over fraktaler til uendelighed
Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at
Sammenlign og byt. Et eksempel på dokumentering af et program
Sammenlign og byt Et eksempel på dokumentering af et program Sammenlign og byt Jeg har valgt, som et eksempel, at dokumentere et meget enkelt program som indlæser to tal, sammenligner dem og udskriver
Andre måder at lære matematik på!
24-10-2011 side 1 Andre måder at lære matematik på! Mette Hjelmborg CFU Hjørring 15-11-2011 24-10-2011 side 2 Andre måder at lære matematik på! Kurset henvender sig til lærere, der gerne vil have inspiration
Matematikken bag kryptering og signering RSA
Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal
Faglige delmål og slutmål i faget Matematik. Trin 1
Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former.
SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. Statistisk sandsynlighed Her finder man sandsynligheden for en hændelse ved at kigge på en
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 6. juni 2016, kl. 15:00 19:00 Besvarelsen skal afleveres elektronisk. Se
Fagets IT Introduktion til MATLAB
Fagets IT Introduktion til MATLAB Mads G. Christensen [email protected] Afdeling for Kommunikationsteknologi, Aalborg Universitet. MATLAB 2002 p.1/28 Kursusoversigt 1. Introduktion, matrix-indeksering, -operationer
Reeksamen i Diskret Matematik
Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet Torsdag den 9. august, 202. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede sider med ialt 2 opgaver.
Talteori II. C-serien består af disse arbejdskort: C1 Talteori på forskellige klassetrin C2 Den pythagoræiske tripelsætning
1 Talteori er ikke direkte nævnt i Fælles Mål 2009 som et fagområde, alle skal arbejde med. Det betyder dog ikke, at talteori nødvendigvis må vælges fra som indhold i skolen. Faktisk kan det tænkes, at
Øvelse 2. SPSS og sandsynlighedsregning
Øvelse 2 SPSS og sandsynlighedsregning Der er flere forskellige formål med opgaverne i denne øvelse. Det væsentligste formål er at arbejde lidt med sandsynlighedsregningen, binomialfordelingen og de store
Mondiso matematik for 1. til 3. klasse
Mondiso matematik for 1. til 3. klasse Programmet henvender sig til elever i indskoling. Det kan også benyttes af børn på højere klassetrin, som har behov for at få genopfrisket det grundlæggende i matematikken.
c) For, er, hvorefter. Forklar.
1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:
Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik
Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik Dette er en beskrivelse af et samspil mellem fagene Natur/Teknologi og matematik i to 6. klasser på Tingkærskolen
IDAP manual Analog modul
IDAP manual Analog modul Dato: 15-06-2005 11:01:06 Indledning Til at arbejde med opsamlede og lagrede analoge data i IDAP portalen, findes en række funktions områder som brugeren kan anvende. Disse områder
Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen
Vigtigste nye emner i.,. og.5 Sandsynlighedsregning. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Siene Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: [email protected] Binomialfordelingen
REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer
LÆRERVEJLEDNING REELLE TAL Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Danskerne og ketchup Medieforbrug Decimaltal, brøker og procent og 2 Procentregning
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Projekt 4.8. Kerners henfald (Excel)
Projekt.8. Kerners henfald (Excel) Når radioaktive kerner henfalder under udsendelse af stråling, sker henfaldet I følge kvantemekanikken helt spontant, dvs. rent tilfældigt uden nogen påviselig årsag.
Vejledende Matematik A
Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes
