Fagets IT Introduktion til MATLAB

Størrelse: px
Starte visningen fra side:

Download "Fagets IT Introduktion til MATLAB"

Transkript

1 Fagets IT Introduktion til MATLAB Mads G. Christensen Afdeling for Kommunikationsteknologi, Aalborg Universitet. MATLAB 2002 p.1/28

2 Kursusoversigt 1. Introduktion, matrix-indeksering, -operationer og -manupulation. 2. Plot, eksportering og formattering af plot, hente og gemme data. 3. Programmering i MATLAB, script, funktioner. 4. Løsning af standardproblemer vha. MATLAB. Kurset holdes på et praktisk niveau med et minimum af teori, og der gives masser af eksempler. Forelæsningerne vil være forholdsvis korte, så I kan få god tid til opgaverne. MATLAB 2002 p.2/28

3 Om kurset MATLAB-kurset er et PE-kursus og støtter som sådan op om jeres projektarbejde og vil blive evalueret igennem projektet. Det forventes således, at I anvender MATLAB i situationer, hvor det måtte være relevant i projektet. Dette kan være til at udføre simuleringer på en model (f.eks. kredsløbsmodel) i jeres projekt. Eller til dataanalyse hvor data opsamles eller genereres og visualiseres (dvs. til at lave figurer til rapport). Tal endelig med lærer/hjælpelærer under opgaveløsningen om mulige applikationer af MATLAB i jeres projekt. MATLAB bruges på overbygningen for elektronik og datateknik, og I vil få stor nytte af det hele vejen igennem studiet. MATLAB 2002 p.3/28

4 Emner mm1 af 4: Hva MATLAB er Hjælp og litteratur Matematiske udtryk i MATLAB Matrix-indeksering, -operationer og -manipulation MATLAB 2002 p.4/28

5 Hva MATLAB er MATLAB er et program til numeriske, tekniske beregninger. Det kan bruges til Forskning og udvikling Avanceret lommeregner Simuleringer Dataanalyse (visualisering, f.eks. figurer til rapport) Prototyping (nem implementation) Eksempler på toolboxes: Digital Signal Processing Image Processing Control, etc. MATLAB 2002 p.5/28

6 Hælp og litteratur Hjælp i/til MATLAB: demo help <funktion> lookfor <ord> info <funktion> Litteratur (gratis): help/pdf_doc/matlab/getstart.pdf help/techdoc/matlab.shtml MATLAB 2002 p.6/28

7 Udtryk i MATLAB MATLAB er opbygget omkring matematiske udtryk. I modsætning til de fleste programmeringssprog kan disse indholde hele matricer. Udtryk opbygges af: Eksempel: Variable (a=5) Tal (1, 1.1, -99, e23m j) Operatorer (+, -, *, /) Funktioner (sqrt(), sin()) >> a=(1+sqrt(5))/2 a = MATLAB 2002 p.7/28

8 Operatorer Operatorer og præcedensregler: + Addition Subtraktion Multiplikation / Division ˆ Potens Kompleks konjugering () Specifikation af evalueringsrækkefølge MATLAB 2002 p.8/28

9 Udtryk i MATLAB Flere funktioner kan angives en linie. Disse separeres vha., eller ; alt efter om output skal vises. Eks.: >> sin(0);cos(0); >> sin(0),cos(0); 0 >> sin(0),cos(0) 0 1 Hvis et udtryk fortsættes på næste linie angives dette med... MATLAB 2002 p.9/28

10 Matricer Den basale datastruktur i MATLAB er en matrix, og MATLAB er bygget op om lineær algebra, heraf navnet. En matrix er en 2-dimensional array (tabel) indeholdende elementer a ij : a 11 a a 1N a 21 a a 2N A = (1)... a M1 a M2... a MN Dette kaldes en M N matrix, hvor M er antal rækker og N antal søjler. MATLAB 2002 p.10/28

11 Matricer En matrix genereres i MATLAB ved: >> A=[1 2 3; 4 5 6] A = Dvs. elementerne i en række separeres vha. space og i søjler med ;. Størrelsen af en matrix kan findes ved: >> size(a) 2 3 Som I kan se, er en vektor en M 1 eller 1 M matrix, og en skalar er en 1 1 matrix. MATLAB 2002 p.11/28

12 a M1 x 1 + a M2 x 2... a MN x N = b M (2) Matricer En matrix er en kompakt repræsentation af en række lineære udtryk, hvor vi ønsker at finde de ubekendte x 1... x M : a 11 x 1 + a 12 x 2... a 1N x N = b 1 a 21 x 1 + a 22 x 2... a 2N x N = b 2. =. Ved at skrive de ukendte parametre som en søjlevektor x og b 1... b M som b fås: Ax = b MATLAB 2002 p.12/28

13 Mactricer Altså: a 11 a a 1N a 21 a a 2N x 1 x 2.. = b 1 b 2.. (4) a M1 a M2... a MN x N b M hvor b i = N a ij x j (5) j=1 MATLAB 2002 p.13/28

14 Indeksering Elementet i række i, søjle j af matrix A angives i MATLAB A(i, j): >> A=[1 2 3;4 5 6]; >> A(2,3) 6 >> A(1:2,3) 3 6 >> A(1,:) Indices i MATLAB er positive heltal og starter med 1 (træls)! MATLAB 2002 p.14/28

15 Kolon-operatoren Kolon-operatoren kan bruges til at generere vektorer: >> 3: >> -1:-2: >> 1:0.1: MATLAB 2002 p.15/28

16 Søjle- og rækkevektorer En søjlevektor laves om til en rækkevektor ved transponering: >> A=[1 2 3] A = >> A Bemærk: A er en hermitisk transponering, dvs. den kompleks-konjugerer også! fliplr() eller flipud bruges til at reversere rækkefølgen af elementerne i en matrix i vertikal eller horizontal retning. MATLAB 2002 p.16/28

17 Matricer (specialtilfælde) Tom matrix angives med []. Denne kan bruges til at slette søjler/rækker: >> A=[1 2 3; 4 5 6]; >> A(:,2)=[] A = Det sidste indeks i et indekseringsudtryk kan findes med end(): >> A(end,end) 6 MATLAB 2002 p.17/28

18 Array-operatorer Array-operationer (elementvis): >> A=[1 2 3]; A.^ >> A.^[0 1 2] >> A./[2 1 2] >> A.*[2 1 2] MATLAB 2002 p.18/28

19 Matrix/skalar-operationer Addition af matrix og skalar: >> [1 2; 3 4] Skalering af matrix med skalar: >> [1 2; 3 4]* MATLAB 2002 p.19/28

20 Matrix-operationer Addition/subtraktion af matricer: >> [1 2; 3 4]-[1 2 3]??? Error using ==> - Matrix dimensions must agree. >> [1 2; 3 4]-[1 0; 0 1] Addition/subtraktion af matricer er kun defineret for matricer af samme størrelse. De fleste (begynder-)problemer i MATLAB er relateret til indeksering og størrelser på matricerne! MATLAB 2002 p.20/28

21 Matrix-multiplikation Matrix-multiplikation: AB = C Elementerne i matricen C er givet ved: c ij = n a ik b kj k=1 a i1 a i1... a i5 b 1j b 2j. b 5j = c ij MATLAB 2002 p.21/28

22 Matrix-multiplikation Heraf følger at antal søjler i A skal svare til antal rækker i B: Eksempel: m rækker n søjler >> A=[1 2 3;4 5 6]; >> B=[1 2;1 2;1 2]; >> A*B n rækker p søjler = m rækker p søjler MATLAB 2002 p.22/28

23 Præcision og format MATLAB benytter double precision IEEE floating point (64 bit). Hertil hører et par specialtilfælde NaN og Inf: >> 1/0 Inf >> 0/0 NaN Hvordan output skal vises styres med format. Se help format. MATLAB 2002 p.23/28

24 Komplekse tal Komplekse tal (i- og j-operatorerne): >> sqrt(-1) i >> j^2-1 Omskrivning til polær repræsentation af komplekse tal gøres vha. abs() og angle(). MATLAB 2002 p.24/28

25 Operatorer Matrix-operationer: + Addition [1 2 3]+[4 5 6]=[5 7 9] Subtraktion [1 2 3]-[4 5 6]=[ ] Multiplikation [1 2 3]*[4; 5; 6]=32 ˆ Potens [1 2; 3 4]^2=[7 10; 15 22] Array-operationer (elementvise):.ˆ Potens [1 2 3].^[0 2 1]=[1 4 3]./ Division [1 2 3]./[2 1 3]=[ ]. Multiplikation [1 2 3].*[2 1 2]=[2 2 6] MATLAB 2002 p.25/28

26 Matrix-manipulation Der findes en række funktioner til at manipulere med matricer. repmat() er en af dem. Denne gentager matricer et antal gange: >> A=[1 2;3 4]; >> repmat(a,2,2) Dvs. hvis A er M N og vi kalder repmat(a,k,l), så får vi en matrix ud med dimensionerne MK NL. MATLAB 2002 p.26/28

27 Matrix-manipulation En anden nyttig funktion er reshape(). reshape(a,m,n) returneres en M N matrix. Eks. >> A=[1 2;3 4;5 6] A = >> reshape(a,2,3) Elementerne tages søjlevis fra A (den skal have MN elementer i alt). MATLAB 2002 p.27/28

28 Introduktion til MATLAB MATLAB kan kun læres på en måde: Just do it! Opgaver, slides og senere også opgavebesvarelser kan findes på mgc/teaching/matlab/ MATLAB 2002 p.28/28

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Matlab-kommandoer. Robert Jacobsen. 9. august 2010

Matlab-kommandoer. Robert Jacobsen. 9. august 2010 Matlab-kommandoer Robert Jacobsen 9. august 2010 1 Kommandoer til Matlabs funktionaliteter Ønsker man at køre Matlab fra terminalen, ses de mulige options med matlab -help. For at starte Matlab uden det

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2018 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2018 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Skjernvej

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund [email protected] http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund [email protected] http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - [email protected] http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Introduktion Indtastning Funktioner Scripts Optimering. Matlab

Introduktion Indtastning Funktioner Scripts Optimering. Matlab - [email protected] http://www.math.aau.dk/ robert/teaching/2010/matlab 9. august 2010 1/39 Disposition 1. Lidt om. 2. Basiskursus. 3. Opgaver. 4. Mere til basiskursus. 5. Opgaver. 2/39 MATLAB = MATrix

Læs mere

Lineær Algebra, 2015 1. kursusgang

Lineær Algebra, 2015 1. kursusgang Lineær Algebra, 2015 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2015 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Fredrik

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Matricer og Matrixalgebra

Matricer og Matrixalgebra enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Program for de næste 3 1/4 dobbeltlektion

Program for de næste 3 1/4 dobbeltlektion Matricer Program for de næste 3 1/4 dobbeltlektion Tirsdag 3. september 11.00 12.00: Afsnit 8.1, 8.2, 8.3 og 8.5 Torsdag 5. september 12.30 16.15 12.30 14.15: Opgaveregning lokale 261/409 14.30: Vi mødes

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

Note om endelige legemer

Note om endelige legemer Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på

Læs mere

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Computere er uvurderlige redskaber for personer der ønsker at arbejde med matematiske modeller

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Ligningssystemer - nogle konklusioner efter miniprojektet

Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en

Læs mere

Computerstøttet beregning

Computerstøttet beregning CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist [email protected] Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/

Læs mere

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Eksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 4. januar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n.

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n. Simple fejlforplantningslov Landmålingens fejlteori Lektion 6 Den generelle fejlforplantningslov Antag X, X,, X n er n uafhængige stokastiske variable, hvor Var(X )σ,, Var(X n )σ n Lad Y g(x, X,, X n ),

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Aflevering 4: Mindste kvadraters metode

Aflevering 4: Mindste kvadraters metode Aflevering 4: Mindste kvadraters metode Daniel Østergaard Andreasen December 2, 2011 Abstract Da meget få havde løst afleveringsopgave 4, giver jeg har en mulig (men meget udførlig) løsning af opgaven.

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Dette miniprojekt omhandler en anvendelse af Lineær Algebra til computergrafik og planeters omløbsbaner.

Dette miniprojekt omhandler en anvendelse af Lineær Algebra til computergrafik og planeters omløbsbaner. Lineær algebra Beskrivelse Denne dag vil bestå af to miniprojekter, hvor underviser vil give en kort præsentation af hvert emne et om formiddagen og et om eftermiddagen, og herefter være til rådighed til

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Kort introduktion til MATLAB

Kort introduktion til MATLAB BILAG H Kort introduktion til MATLAB Matlab er et interaktivt programmeringssprog udviklet til manipulering af vektorer og matricer, og er baseret på LINPACK og EISPACK bibliotekerne. På grund af den lette

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Bits, bit operationer, integers og floating point

Bits, bit operationer, integers og floating point Denne guide er oprindeligt udgivet på Eksperten.dk Bits, bit operationer, integers og floating point Denne artikel beskriver hvordan data gemmes som bits og hvordan man kan manipulere med bits. Den forudsætter

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

Guide til det basale i MATLAB

Guide til det basale i MATLAB Indledning Guide til det basale i MATLAB Jens E. Wilhjelm Ørsted DTU, Ørsteds Plads, Bygning 349 Danmarks tekniske universitet 2800 Kgs. Lyngby Forord (Ver. 1.1 3/9/07) 2005-2006 by J. E. Wilhjelm Denne

Læs mere

Komplekse tal og Kaos

Komplekse tal og Kaos Komplekse tal og Kaos Jon Sporring Datalogisk Institut ved Københavns Universitet Universitetsparken 1, 2100 København Ø August, 2006 1 Forord Denne opgave er tiltænkt gymnasiestuderende med matematik

Læs mere

MATLAB. Introduktion til. anden udgave. Udarbejdet af Johnny Ottesen & Thomas Frommelt

MATLAB. Introduktion til. anden udgave. Udarbejdet af Johnny Ottesen & Thomas Frommelt Introduktion til MATLAB anden udgave Udarbejdet af Johnny Ottesen & Thomas Frommelt IMFUFA, RUC, Juni 2000 ii Indhold Forord v 1 Opstart af MATLAB 1 1.1 Opstart................................ 1 1.2 Kommandolinie...........................

Læs mere

Lær Python dag 1 - modul 1

Lær Python dag 1 - modul 1 Lær Python dag 1 - modul 1 Introduktion, basis python Steffen Berg Klenow Jonas Bamse Andersen Syddansk Universitet Indhold 1. Velkommen 2. Programmering i python 3. Typer, variabler og udtryk 1 Velkommen

Læs mere

Hvis du har vinduer abne fra en tidligere session, sa luk dem ned { vi vil have

Hvis du har vinduer abne fra en tidligere session, sa luk dem ned { vi vil have Forberedelse: Matlab for absolutte fodgngere Kort introduktion til G-databaren. St dig ved en ledig maskine og gennemfr loginprocessen. Hvis du har vinduer abne fra en tidligere session, sa luk dem ned

Læs mere

DANMARKS TEKNISKE UNIVERSITET

DANMARKS TEKNISKE UNIVERSITET DANMARKS TEKNISKE UNIVERSITET Skriftlig prøve, 14. december 2018, 4 timer Side 1 af 18 Kursus navn: 02101 Indledende Programmering Kursus : 02101 Tilladte hjælpemidler: Ikke-digitale skriftlige hjælpemidler

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer 1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

PHP 3 UGERS FORLØB PHP, MYSQL & SQL

PHP 3 UGERS FORLØB PHP, MYSQL & SQL PHP 3 UGERS FORLØB PHP, MYSQL & SQL Uge 1 & 2 Det basale: Det primære mål efter uge 1 og 2, er at få forståelse for hvordan AMP miljøet fungerer i praksis, og hvordan man bruger PHP kodesproget til at

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Noter til C# Programmering Selektion

Noter til C# Programmering Selektion Noter til C# Programmering Selektion Sætninger Alle sætninger i C# slutter med et semikolon. En sætning kontrollerer sekvensen i programafviklingen, evaluerer et udtryk eller gør ingenting Blanktegn Mellemrum,

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

Introduktion til MatLab

Introduktion til MatLab Introduktion til MatLab Kasper Bjering Jensen, Tinne Hoff Kjeldsen, RUC, september 2010 MatLab forkortelse for Matrix Laboratorium Gå sammen to og to og arbejd jer igennem side 1-3. Ca. kl. 14 springer

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

Første del af rapporten består af et diagram, der viser, hvor mange point eleverne på landsplan fik i de enkelte opgaver.

Første del af rapporten består af et diagram, der viser, hvor mange point eleverne på landsplan fik i de enkelte opgaver. Til matematiklæreren Dette er en rapport omtaler prøven med hjælpemidler maj 2016. Rapporten kan bruges til at evaluere dit arbejde med klassen og få ideer til dit arbejde med kommende klasser i overbygningen.

Læs mere

Lineær algebra Kursusgang 6

Lineær algebra Kursusgang 6 Lineær algebra Kursusgang 6 Mindste kvadraters metode og Cholesky dekomposition Vi ønsker at finde en mindste kvadraters løsning til det (inkonsistente) ligningssystem hvor A er en m n matrix. Ax = b,

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

Chapter 7: Transport-, assignment- & transshipmentproblemer

Chapter 7: Transport-, assignment- & transshipmentproblemer Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet 6. januar,

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem Eksamensopgaver datalogi, dlc 2011 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 VisiRegn ideer 1 Talregning Inge B. Larsen [email protected] INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 Vejledning til Talregning

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere