Fagets IT Introduktion til MATLAB
|
|
|
- Mads Jeppesen
- 10 år siden
- Visninger:
Transkript
1 Fagets IT Introduktion til MATLAB Mads G. Christensen Afdeling for Kommunikationsteknologi, Aalborg Universitet. MATLAB 2002 p.1/28
2 Kursusoversigt 1. Introduktion, matrix-indeksering, -operationer og -manupulation. 2. Plot, eksportering og formattering af plot, hente og gemme data. 3. Programmering i MATLAB, script, funktioner. 4. Løsning af standardproblemer vha. MATLAB. Kurset holdes på et praktisk niveau med et minimum af teori, og der gives masser af eksempler. Forelæsningerne vil være forholdsvis korte, så I kan få god tid til opgaverne. MATLAB 2002 p.2/28
3 Om kurset MATLAB-kurset er et PE-kursus og støtter som sådan op om jeres projektarbejde og vil blive evalueret igennem projektet. Det forventes således, at I anvender MATLAB i situationer, hvor det måtte være relevant i projektet. Dette kan være til at udføre simuleringer på en model (f.eks. kredsløbsmodel) i jeres projekt. Eller til dataanalyse hvor data opsamles eller genereres og visualiseres (dvs. til at lave figurer til rapport). Tal endelig med lærer/hjælpelærer under opgaveløsningen om mulige applikationer af MATLAB i jeres projekt. MATLAB bruges på overbygningen for elektronik og datateknik, og I vil få stor nytte af det hele vejen igennem studiet. MATLAB 2002 p.3/28
4 Emner mm1 af 4: Hva MATLAB er Hjælp og litteratur Matematiske udtryk i MATLAB Matrix-indeksering, -operationer og -manipulation MATLAB 2002 p.4/28
5 Hva MATLAB er MATLAB er et program til numeriske, tekniske beregninger. Det kan bruges til Forskning og udvikling Avanceret lommeregner Simuleringer Dataanalyse (visualisering, f.eks. figurer til rapport) Prototyping (nem implementation) Eksempler på toolboxes: Digital Signal Processing Image Processing Control, etc. MATLAB 2002 p.5/28
6 Hælp og litteratur Hjælp i/til MATLAB: demo help <funktion> lookfor <ord> info <funktion> Litteratur (gratis): help/pdf_doc/matlab/getstart.pdf help/techdoc/matlab.shtml MATLAB 2002 p.6/28
7 Udtryk i MATLAB MATLAB er opbygget omkring matematiske udtryk. I modsætning til de fleste programmeringssprog kan disse indholde hele matricer. Udtryk opbygges af: Eksempel: Variable (a=5) Tal (1, 1.1, -99, e23m j) Operatorer (+, -, *, /) Funktioner (sqrt(), sin()) >> a=(1+sqrt(5))/2 a = MATLAB 2002 p.7/28
8 Operatorer Operatorer og præcedensregler: + Addition Subtraktion Multiplikation / Division ˆ Potens Kompleks konjugering () Specifikation af evalueringsrækkefølge MATLAB 2002 p.8/28
9 Udtryk i MATLAB Flere funktioner kan angives en linie. Disse separeres vha., eller ; alt efter om output skal vises. Eks.: >> sin(0);cos(0); >> sin(0),cos(0); 0 >> sin(0),cos(0) 0 1 Hvis et udtryk fortsættes på næste linie angives dette med... MATLAB 2002 p.9/28
10 Matricer Den basale datastruktur i MATLAB er en matrix, og MATLAB er bygget op om lineær algebra, heraf navnet. En matrix er en 2-dimensional array (tabel) indeholdende elementer a ij : a 11 a a 1N a 21 a a 2N A = (1)... a M1 a M2... a MN Dette kaldes en M N matrix, hvor M er antal rækker og N antal søjler. MATLAB 2002 p.10/28
11 Matricer En matrix genereres i MATLAB ved: >> A=[1 2 3; 4 5 6] A = Dvs. elementerne i en række separeres vha. space og i søjler med ;. Størrelsen af en matrix kan findes ved: >> size(a) 2 3 Som I kan se, er en vektor en M 1 eller 1 M matrix, og en skalar er en 1 1 matrix. MATLAB 2002 p.11/28
12 a M1 x 1 + a M2 x 2... a MN x N = b M (2) Matricer En matrix er en kompakt repræsentation af en række lineære udtryk, hvor vi ønsker at finde de ubekendte x 1... x M : a 11 x 1 + a 12 x 2... a 1N x N = b 1 a 21 x 1 + a 22 x 2... a 2N x N = b 2. =. Ved at skrive de ukendte parametre som en søjlevektor x og b 1... b M som b fås: Ax = b MATLAB 2002 p.12/28
13 Mactricer Altså: a 11 a a 1N a 21 a a 2N x 1 x 2.. = b 1 b 2.. (4) a M1 a M2... a MN x N b M hvor b i = N a ij x j (5) j=1 MATLAB 2002 p.13/28
14 Indeksering Elementet i række i, søjle j af matrix A angives i MATLAB A(i, j): >> A=[1 2 3;4 5 6]; >> A(2,3) 6 >> A(1:2,3) 3 6 >> A(1,:) Indices i MATLAB er positive heltal og starter med 1 (træls)! MATLAB 2002 p.14/28
15 Kolon-operatoren Kolon-operatoren kan bruges til at generere vektorer: >> 3: >> -1:-2: >> 1:0.1: MATLAB 2002 p.15/28
16 Søjle- og rækkevektorer En søjlevektor laves om til en rækkevektor ved transponering: >> A=[1 2 3] A = >> A Bemærk: A er en hermitisk transponering, dvs. den kompleks-konjugerer også! fliplr() eller flipud bruges til at reversere rækkefølgen af elementerne i en matrix i vertikal eller horizontal retning. MATLAB 2002 p.16/28
17 Matricer (specialtilfælde) Tom matrix angives med []. Denne kan bruges til at slette søjler/rækker: >> A=[1 2 3; 4 5 6]; >> A(:,2)=[] A = Det sidste indeks i et indekseringsudtryk kan findes med end(): >> A(end,end) 6 MATLAB 2002 p.17/28
18 Array-operatorer Array-operationer (elementvis): >> A=[1 2 3]; A.^ >> A.^[0 1 2] >> A./[2 1 2] >> A.*[2 1 2] MATLAB 2002 p.18/28
19 Matrix/skalar-operationer Addition af matrix og skalar: >> [1 2; 3 4] Skalering af matrix med skalar: >> [1 2; 3 4]* MATLAB 2002 p.19/28
20 Matrix-operationer Addition/subtraktion af matricer: >> [1 2; 3 4]-[1 2 3]??? Error using ==> - Matrix dimensions must agree. >> [1 2; 3 4]-[1 0; 0 1] Addition/subtraktion af matricer er kun defineret for matricer af samme størrelse. De fleste (begynder-)problemer i MATLAB er relateret til indeksering og størrelser på matricerne! MATLAB 2002 p.20/28
21 Matrix-multiplikation Matrix-multiplikation: AB = C Elementerne i matricen C er givet ved: c ij = n a ik b kj k=1 a i1 a i1... a i5 b 1j b 2j. b 5j = c ij MATLAB 2002 p.21/28
22 Matrix-multiplikation Heraf følger at antal søjler i A skal svare til antal rækker i B: Eksempel: m rækker n søjler >> A=[1 2 3;4 5 6]; >> B=[1 2;1 2;1 2]; >> A*B n rækker p søjler = m rækker p søjler MATLAB 2002 p.22/28
23 Præcision og format MATLAB benytter double precision IEEE floating point (64 bit). Hertil hører et par specialtilfælde NaN og Inf: >> 1/0 Inf >> 0/0 NaN Hvordan output skal vises styres med format. Se help format. MATLAB 2002 p.23/28
24 Komplekse tal Komplekse tal (i- og j-operatorerne): >> sqrt(-1) i >> j^2-1 Omskrivning til polær repræsentation af komplekse tal gøres vha. abs() og angle(). MATLAB 2002 p.24/28
25 Operatorer Matrix-operationer: + Addition [1 2 3]+[4 5 6]=[5 7 9] Subtraktion [1 2 3]-[4 5 6]=[ ] Multiplikation [1 2 3]*[4; 5; 6]=32 ˆ Potens [1 2; 3 4]^2=[7 10; 15 22] Array-operationer (elementvise):.ˆ Potens [1 2 3].^[0 2 1]=[1 4 3]./ Division [1 2 3]./[2 1 3]=[ ]. Multiplikation [1 2 3].*[2 1 2]=[2 2 6] MATLAB 2002 p.25/28
26 Matrix-manipulation Der findes en række funktioner til at manipulere med matricer. repmat() er en af dem. Denne gentager matricer et antal gange: >> A=[1 2;3 4]; >> repmat(a,2,2) Dvs. hvis A er M N og vi kalder repmat(a,k,l), så får vi en matrix ud med dimensionerne MK NL. MATLAB 2002 p.26/28
27 Matrix-manipulation En anden nyttig funktion er reshape(). reshape(a,m,n) returneres en M N matrix. Eks. >> A=[1 2;3 4;5 6] A = >> reshape(a,2,3) Elementerne tages søjlevis fra A (den skal have MN elementer i alt). MATLAB 2002 p.27/28
28 Introduktion til MATLAB MATLAB kan kun læres på en måde: Just do it! Opgaver, slides og senere også opgavebesvarelser kan findes på mgc/teaching/matlab/ MATLAB 2002 p.28/28
Kursusgang 3 Matrixalgebra Repetition
Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem
Matlab-kommandoer. Robert Jacobsen. 9. august 2010
Matlab-kommandoer Robert Jacobsen 9. august 2010 1 Kommandoer til Matlabs funktionaliteter Ønsker man at køre Matlab fra terminalen, ses de mulige options med matlab -help. For at starte Matlab uden det
Lineær Algebra, kursusgang
Lineær Algebra, 2018 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2018 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Skjernvej
Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund [email protected] http://www.jesperlund.com
Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund [email protected] http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder
Matematik for økonomer 3. semester
Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben
Kursusgang 3 Matrixalgebra Repetition
Kursusgang 3 Repetition - [email protected] http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix
Introduktion Indtastning Funktioner Scripts Optimering. Matlab
- [email protected] http://www.math.aau.dk/ robert/teaching/2010/matlab 9. august 2010 1/39 Disposition 1. Lidt om. 2. Basiskursus. 3. Opgaver. 4. Mere til basiskursus. 5. Opgaver. 2/39 MATLAB = MATrix
Lineær Algebra, 2015 1. kursusgang
Lineær Algebra, 2015 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2015 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Fredrik
Lineær algebra 1. kursusgang
Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
Lineær algebra: Matrixmultiplikation. Regulære og singulære
Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =
Matricer og Matrixalgebra
enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,
Lineær Algebra, kursusgang
Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.
Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers
Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis
Modulpakke 3: Lineære Ligningssystemer
Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation
DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004
Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes
Program for de næste 3 1/4 dobbeltlektion
Matricer Program for de næste 3 1/4 dobbeltlektion Tirsdag 3. september 11.00 12.00: Afsnit 8.1, 8.2, 8.3 og 8.5 Torsdag 5. september 12.30 16.15 12.30 14.15: Opgaveregning lokale 261/409 14.30: Vi mødes
DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer
DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum
Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen
Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen
Note om endelige legemer
Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på
Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010
Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Computere er uvurderlige redskaber for personer der ønsker at arbejde med matematiske modeller
Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1
Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte
Ligningssystemer - nogle konklusioner efter miniprojektet
Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax
Lineær algebra: Spænd. Lineær (u)afhængighed
Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1
Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version
Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en
Computerstøttet beregning
CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist [email protected] Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/
Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet
Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider
Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet
Eksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 4. januar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider
Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra
1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.
SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret
Teoretiske Øvelsesopgaver:
Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere
Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n.
Simple fejlforplantningslov Landmålingens fejlteori Lektion 6 Den generelle fejlforplantningslov Antag X, X,, X n er n uafhængige stokastiske variable, hvor Var(X )σ,, Var(X n )σ n Lad Y g(x, X,, X n ),
Oversigt [LA] 6, 7, 8
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen
Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3
Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte
Aflevering 4: Mindste kvadraters metode
Aflevering 4: Mindste kvadraters metode Daniel Østergaard Andreasen December 2, 2011 Abstract Da meget få havde løst afleveringsopgave 4, giver jeg har en mulig (men meget udførlig) løsning af opgaven.
Skriftlig Eksamen Algoritmer og Datastrukturer (dads)
Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.
LinAlgDat 2014/2015 Google s page rank
LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en
Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller
Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning
Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis
Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2
Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket
Nøgleord og begreber
Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel
Dette miniprojekt omhandler en anvendelse af Lineær Algebra til computergrafik og planeters omløbsbaner.
Lineær algebra Beskrivelse Denne dag vil bestå af to miniprojekter, hvor underviser vil give en kort præsentation af hvert emne et om formiddagen og et om eftermiddagen, og herefter være til rådighed til
Lineær Algebra. Lars Hesselholt og Nathalie Wahl
Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,
Kort introduktion til MATLAB
BILAG H Kort introduktion til MATLAB Matlab er et interaktivt programmeringssprog udviklet til manipulering af vektorer og matricer, og er baseret på LINPACK og EISPACK bibliotekerne. På grund af den lette
Matricer og lineære ligningssystemer
Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix
Bits, bit operationer, integers og floating point
Denne guide er oprindeligt udgivet på Eksperten.dk Bits, bit operationer, integers og floating point Denne artikel beskriver hvordan data gemmes som bits og hvordan man kan manipulere med bits. Den forudsætter
Kvadratiske matricer. enote Kvadratiske matricer
enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,
To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra
Guide til det basale i MATLAB
Indledning Guide til det basale i MATLAB Jens E. Wilhjelm Ørsted DTU, Ørsteds Plads, Bygning 349 Danmarks tekniske universitet 2800 Kgs. Lyngby Forord (Ver. 1.1 3/9/07) 2005-2006 by J. E. Wilhjelm Denne
Komplekse tal og Kaos
Komplekse tal og Kaos Jon Sporring Datalogisk Institut ved Københavns Universitet Universitetsparken 1, 2100 København Ø August, 2006 1 Forord Denne opgave er tiltænkt gymnasiestuderende med matematik
MATLAB. Introduktion til. anden udgave. Udarbejdet af Johnny Ottesen & Thomas Frommelt
Introduktion til MATLAB anden udgave Udarbejdet af Johnny Ottesen & Thomas Frommelt IMFUFA, RUC, Juni 2000 ii Indhold Forord v 1 Opstart af MATLAB 1 1.1 Opstart................................ 1 1.2 Kommandolinie...........................
Lær Python dag 1 - modul 1
Lær Python dag 1 - modul 1 Introduktion, basis python Steffen Berg Klenow Jonas Bamse Andersen Syddansk Universitet Indhold 1. Velkommen 2. Programmering i python 3. Typer, variabler og udtryk 1 Velkommen
Hvis du har vinduer abne fra en tidligere session, sa luk dem ned { vi vil have
Forberedelse: Matlab for absolutte fodgngere Kort introduktion til G-databaren. St dig ved en ledig maskine og gennemfr loginprocessen. Hvis du har vinduer abne fra en tidligere session, sa luk dem ned
DANMARKS TEKNISKE UNIVERSITET
DANMARKS TEKNISKE UNIVERSITET Skriftlig prøve, 14. december 2018, 4 timer Side 1 af 18 Kursus navn: 02101 Indledende Programmering Kursus : 02101 Tilladte hjælpemidler: Ikke-digitale skriftlige hjælpemidler
Matematik og FormLineære ligningssystemer
Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix
Egenværdier og egenvektorer
1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.
Lineær Algebra eksamen, noter
Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,
PHP 3 UGERS FORLØB PHP, MYSQL & SQL
PHP 3 UGERS FORLØB PHP, MYSQL & SQL Uge 1 & 2 Det basale: Det primære mål efter uge 1 og 2, er at få forståelse for hvordan AMP miljøet fungerer i praksis, og hvordan man bruger PHP kodesproget til at
Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2
Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel
Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018
Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Noter til C# Programmering Selektion
Noter til C# Programmering Selektion Sætninger Alle sætninger i C# slutter med et semikolon. En sætning kontrollerer sekvensen i programafviklingen, evaluerer et udtryk eller gør ingenting Blanktegn Mellemrum,
Skriftlig Eksamen Algoritmer og Datastrukturer (dads)
Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =
Introduktion til MatLab
Introduktion til MatLab Kasper Bjering Jensen, Tinne Hoff Kjeldsen, RUC, september 2010 MatLab forkortelse for Matrix Laboratorium Gå sammen to og to og arbejd jer igennem side 1-3. Ca. kl. 14 springer
Diagonalisering. Definition (diagonaliserbar)
1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og
Første del af rapporten består af et diagram, der viser, hvor mange point eleverne på landsplan fik i de enkelte opgaver.
Til matematiklæreren Dette er en rapport omtaler prøven med hjælpemidler maj 2016. Rapporten kan bruges til at evaluere dit arbejde med klassen og få ideer til dit arbejde med kommende klasser i overbygningen.
Lineær algebra Kursusgang 6
Lineær algebra Kursusgang 6 Mindste kvadraters metode og Cholesky dekomposition Vi ønsker at finde en mindste kvadraters løsning til det (inkonsistente) ligningssystem hvor A er en m n matrix. Ax = b,
Komplekse tal. x 2 = 1 (2) eller
Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse
Lineære ligningssystemer og Gauss-elimination
Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g
Chapter 7: Transport-, assignment- & transshipmentproblemer
Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper
Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet 6. januar,
Dynamisk programmering. Flere eksempler
Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld
Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem
Eksamensopgaver datalogi, dlc 2011 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)
t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25
Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.
Eksamen i Lineær Algebra
Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede
Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3
VisiRegn ideer 1 Talregning Inge B. Larsen [email protected] INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 Vejledning til Talregning
Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014
Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.
Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger
Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft
