A known plaintext attack on the ISAAC keystream generator

Relaterede dokumenter
Hermite-Hadamard-Fejer Type Inequalities for s Convex Function in the Second Sense via Fractional Integrals

Basic statistics for experimental medical researchers

Large time behavior of solutions for a complex-valued quadratic heat equation

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

The LWR Model in Lagrangian coordinates

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov.

Probabilistic properties of modular addition. Victoria Vysotskaya

Vina Nguyen HSSP July 13, 2008

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen

On the complexity of drawing trees nicely: corrigendum

DoodleBUGS (Hands-on)

Sign variation, the Grassmannian, and total positivity

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Help / Hjælp

Henstock-Kurzweil Laplace Transform

Resource types R 1 1, R 2 2,..., R m CPU cycles, memory space, files, I/O devices Each resource type R i has W i instances.

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan

E-PAD Bluetooth hængelås E-PAD Bluetooth padlock E-PAD Bluetooth Vorhängeschloss

Aktivering af Survey funktionalitet

Besvarelser til Lineær Algebra Reeksamen Februar 2017

Skriftlig Eksamen Beregnelighed (DM517)

Fejlbeskeder i SMDB. Business Rules Fejlbesked Kommentar. Validate Business Rules. Request- ValidateRequestRegist ration (Rules :1)

Åbenrå Orienteringsklub

ATEX direktivet. Vedligeholdelse af ATEX certifikater mv. Steen Christensen

Userguide. NN Markedsdata. for. Microsoft Dynamics CRM v. 1.0

Linear Programming ١ C H A P T E R 2

DET KONGELIGE BIBLIOTEK NATIONALBIBLIOTEK OG KØBENHAVNS UNIVERSITETS- BIBLIOTEK. Index

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1

Exercise 6.14 Linearly independent vectors are also affinely independent.

Business Rules Fejlbesked Kommentar

Skriftlig Eksamen Beregnelighed (DM517)

Trolling Master Bornholm 2015

Fejlbeskeder i Stofmisbrugsdatabasen (SMDB)

Some results for the weighted Drazin inverse of a modified matrix

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU

Trolling Master Bornholm 2015

Skriftlig Eksamen Diskret matematik med anvendelser (DM72)

Our activities. Dry sales market. The assortment

Adaptive Algorithms for Blind Separation of Dependent Sources. George V. Moustakides INRIA, Sigma 2

Multivariate Extremes and Dependence in Elliptical Distributions

TM4 Central Station. User Manual / brugervejledning K2070-EU. Tel Fax

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528)

Name: Week of April 15 MathWorksheets.com

User Manual for LTC IGNOU

Measuring Evolution of Populations

Fractional Wavelet Transform in Terms of Fractional Convolution

University of Copenhagen Faculty of Science Written Exam April Algebra 3

Danish and English. Standard Field Analysis (Diderichsen) Standard Field Analysis (Diderichsen)

Business Opening. Very formal, recipient has a special title that must be used in place of their name

Business Opening. Very formal, recipient has a special title that must be used in place of their name

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3

how to save excel as pdf

Unitel EDI MT940 June Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004)

Trolling Master Bornholm 2016 Nyhedsbrev nr. 5

Trolling Master Bornholm 2014

Trolling Master Bornholm 2013

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium

Læs vejledningen godt igennem, før du begynder at samle vuggen. Please read the instruction carefully before you start.

F o r t o l k n i n g e r a f m a n d a l a e r i G I M - t e r a p i

Eksamen i Signalbehandling og matematik

Please report absence, also if you don t plan to participate in dinner to Birgit Møller Jensen Telephone: /

Dårlig litteratur sælger - Trykkekultur i 1800-tallets Storbritannien og idag. Maria Damkjær Post.doc. i Engelsk Litteratur

Udbud på engelsk i UCL. Skabelon til beskrivelse

Trolling Master Bornholm 2014

UNISONIC TECHNOLOGIES CO.,

November hilsner fra NORDJYSKE Medier, Distributionen

Pædagogisk vejledning

Trolling Master Bornholm 2016 Nyhedsbrev nr. 3

Trolling Master Bornholm 2013

FORVANDLENDE FORBINDELSER: Et studie af migranters forbindelser til hjemstavnen og deres visioner for at deltage i lokal udvikling

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

Name: Week of April 22 MathWorksheets.com

University of Copenhagen Faculty of Science Written Exam - 8. April Algebra 3

WIKI & Lady Avenue New B2B shop

Virkningsfulde bønner og påkaldelser

Skriftlig Eksamen Automatteori og Beregnelighed (DM17)

Angle Ini/al side Terminal side Vertex Standard posi/on Posi/ve angles Nega/ve angles. Quadrantal angle

Gusset Plate Connections in Tension

Meget formel, modtager har en meget speciel titel som skal bruges i stedet for deres navne

Listen Mr Oxford Don, Additional Work

IPTV Box (MAG250/254) Bruger Manual

Popular Sorting Algorithms CHAPTER 7: SORTING & SEARCHING. Popular Sorting Algorithms. Selection Sort 4/23/2013

Meget formel, modtager har en meget speciel titel som skal bruges i stedet for deres navne

Læs venligst Beboer information om projekt vandskade - sikring i 2015/2016

Large Scale Sequencing By Hybridization. Tel Aviv University

Brug sømbrættet til at lave sjove figurer. Lav fx: Få de andre til at gætte, hvad du har lavet. Use the nail board to make funny shapes.

VEDLIGEHOLDELSE AF SENGE

ECE 551: Digital System * Design & Synthesis Lecture Set 5

Chapter 6. Hydrogen Atom. 6.1 Schrödinger Equation. The Hamiltonian for a hydrogen atom is. Recall that. 1 r 2 sin 2 θ + 1. and.

Portal Registration. Check Junk Mail for activation . 1 Click the hyperlink to take you back to the portal to confirm your registration

We hope you have enjoyed your holiday and that you are willing to help us improve our holiday support programme by completing this questionnaire.

Bilag. Resume. Side 1 af 12

Nyhedsmail, december 2013 (scroll down for English version)

Statistik for MPH: 7

On the Relations Between Fuzzy Topologies and α Cut Topologies

Sunlite pakke 2004 Standard (EC) (SUN SL512EC)

Matematik 2 AL. Opgave 2 (20p)

ANNONCERING AF CYKELTAXAHOLDEPLADSER I RØD ZONE OG LANGELINIE

Transkript:

A known plinex ck on he ISAAC keysrem generor Mrin Pudovkin mrip@online.ru Moscow Engineering Physics Insiue (Technicl Universiy) Deprmen of Crypology nd Discree Mhemics Absrc. Srem ciphers re ofen used in pplicions where high speed nd low dely re requiremen. The ISAAC keysrem generor is fs sofwre-oriened encrypion lgorihm. In his ppers he securiy of he ISAAC keysrem generor is invesiged. Crypnlyic lgorihm is developed for known plinex ck where only smll segmen of plinex is ssumed o be known. Keywords. ISAAC. Keysrem generor. Crypnlysis. 1 Inroducion Srem ciphers re n imporn clss of encrypion lgorihms. They encryp individul chrcers of plinex messge one ime, using n encrypion rnsformion, which vries wih ime. By conrs, block ciphers end o simulneously encryp groups of chrcers of plinex messge using fixed encrypion rnsformion. Srem ciphers re generlly fser hn block ciphers in hrdwre, nd hve less complex hrdwre circuiry. There is vs body of heoreicl knowledge on srem ciphers, nd vrious design principles for srem ciphers hve been proposed nd exensively nlyzed. The mos of srem ciphers proposed in open lierure re bsed on LFSRs (liner feedbck shif regisers). For sofwre implemenion, few keysrem generors hve been designed which re no bsed on shif regisers. One of hese generors is ISAAC. The ISAAC (Indirecion, Shif, Accumule, Add, nd Coun) keysrem generor ws inroduced in [1] by R. Jenkins s fs sofwre-oriened encrypion lgorihm. The im of his pper is o derive some crypnlyic lgorihm h find he correc iniil se of he ISAAC srem cipher using only smll segmen of oupu srem, nd o give precise esimes for he complexiy of he ck. Our resuls re inrinsic o he design principles of ISAAC nd re independen of he size of he key. The pper is orgnized s follows. In secion 2 we give generl descripion of ISAAC. In secion 3 we discuss some properies of ISAAC. Secion 4 describes ck on ISAAC. We conclude in secion 5. 2 Descripion of ISAAC ISAAC is in fc fmily of lgorihms indexed by prmeer m, which is posiive ineger. The inernl se of ISAAC ime consiss of ble S ={s [0],.,s [m-1]} of m=2 n K-bi words nd of wo K-bi words nd i. Le z denoe he oupu K-bi word of ISAAC ime. Le iniilly i 0 = 0 =0. K=2n+, >0. The key of ISAAC is he iniil ble S 0. 1

Jenkins kes m=256, n=8, K=32, p0=13, p1=6, p2=2, p3=16, θ 1 =θ 2 =2. Le θ 1,θ 2 <n. (( -1 <<p0) -1 ) if =0 (mod 4 ). G( -1,, p())= (( -1 >>p1) -1 ) if =1 (mod 4 ). (( -1 <<p2) -1 ) if =2 (mod 4 ). (( -1 >>p3) -1 ) if =3 (mod 4 ). where >> nd << indice roion o he righ nd lef, nd p0 if =0 (mod 4). p()= p1 if =1 (mod 4). p2 if =2 (mod 4). p3 if =3 (mod 4). The nex-se funcion F ) i = i -1 +1 (mod m ). b) = (G( -1,, p())+ s [(+ m/2 )(mod m )]) (mod 2 K ). c) s [i ]= (s -1 [(s -1 [i ]>>θ 1 ) (mod m )]+ + z -1 )(mod 2 K ). The oupu funcion f Oupu: z =(s [(s [i ]>>(n+θ 2 ))(mod m)]+s -1 [i ]) (mod 2 K ). 3 Properies of ISAAC In his secion we describe some properies of ISAAC h re used in he descripion of our ck. We will ssume h he oupu sequence z1, z2,, zm+1 is known. Le =(,K-1,,K-2,,,i,,,1,,0 ) be binry represenion of Z K, {, j } Z 2. Proposiion 1 1. The rnsformion F<< (,p)=((<<p) )= (K-1 K-p-1, K-2 K-p-2,, p+i i,, p 0, p-1, p-2,, 1, 0). 2. The rnsformion F >> (,p)=((>>p) )=( K-1, K-2,, p, K-1 K-p-1, K-2 K-p-2,, p+i i,, p 0 ). Proof Noe h (<<p)= ( K-p-1, K-p-2,, i,, 1, 0,0,,0 ). Thus, F<<(,p)=( (<<p) )= (K-1 K-p-1, K-2 K-p-2,, p+i i,, p 0, p-1, p-2,, 1, 0). Noe h (>>p)= (0,, 0, K-1, K-2,, p+1, p ). Therefore, F >> (,p)=( (>>p) )= ( K-1, K-2,, p, K-1 K-p-1, K-2 K-p-2,, p+i i,, p 0 ) The proposiion is proved. Denoe by q =s [s [i ] >>(n+θ 2 ) (mod m)]) (mod m) nd α = (s -1 []>> θ 1 )(mod m), =1,2.. 2

In proposiions given below we will ssume h j, α re known. Proposiion 2 If we know s m [0] (mod 2 ), s 1 [1] (mod 2 ),, s m-1 [m-1] (mod 2 ) nd z 1, z 2,, z m+1, hen s 0 [0] (mod 2 ), s0[1] (mod 2 ),, s0[m-1] (mod 2 ), cn be found for =m, m-1, m-2,, 2, 1 s follows. If j =0, m-1,,+1, hen [ s 0 ](mod 2 ) = ( z (mod 2 ) s0[ j ](mod 2 ))(mod 2 ). If 0<j<+1, hen s 0[ ](mod 2 ) = ( z (mod 2 ) s j [ j ](mod 2 ))(mod 2 ), Proof. Noe h nd Then z (mod 2 )=(s [j ] (mod 2 )+s -1 [i ] (mod 2 )) (mod 2 ), (s m [j m ] (mod 2 )+ s 0 [0] (mod 2 )) (mod 2 )= z m (mod 2 ), s j ] = s [ j ]. m[ m j m m s 0[0](mod 2 ) = ( zm (mod 2 ) s j [ jm ](mod 2 ))(mod 2 ). m Le us consider =m-1. If j m =0 (mod m), hen we ge s0[ m 1](mod 2 ) = ( zm 1 (mod 2 ) s0[0](mod 2 ))(mod 2 ). If 0<j m-1 <m, hen s m 1](mod 2 ) = ( z (mod 2 ) s [ j ](mod 2 ))(mod 2 ). 0[ m 1 j m 1 m 1 Now we consider =m-2 1. Assume h s 0 [0] (mod 2 ), s 0 [m-1] (mod 2 ),, s 0 [+1] (mod 2 ) hve been deermined. Then for j m =0, m-1,,+1 we hve [ s 0 ](mod 2 ) = ( z (mod 2 ) s0[ j ](mod 2 ))(mod 2 ). If 0<j <+1, hen we obin s 0[ ](mod 2 ) = ( z (mod 2 ) s j [ j ](mod 2 ))(mod 2 ). The proposiion is proved. Proposiion 3 If we know s m [0](mod 2 ), s 1 [1](mod 2 ),,s m-1 [m-1](mod 2 ) nd z 1, z 2,, z m+1, hen 1 (mod 2 ), 2 (mod 2 ),., m+1 (mod 2 ), cn be found s follows. If j >, hen (mod 2 )=( s [] (mod 2 )- s 0 [α ](mod 2 ) - z -1 (mod 2 )) (mod 2 ). If j, hen (mod 2 ) = (s [](mod 2 ) s [ α ](mod 2 ) z (mod 2 ))(mod2 ), α 1 where =1 m+1. Proof. Noe h for =1, 2,. we hve Whence, s [i ]= s -1 [α ]+ +z -1 (mod 2 K ). (mod 2 )=( s [i ] (mod 2 )- s -1 [α ](mod 2 ) - z -1 (mod 2 )) (mod 2 ). 3

Using proposiion 2 we cn find s 0 [0] (mod 2 ), s 0 [1] (mod 2 ),, s 0 [m-1] (mod 2 ). Le us remrk h for ny, d if d>, hen s [d]= s 0 [d] nd if d, hen s [d]= s d [d]. This implies h if α>, hen we ge (mod 2 )=( s [] (mod 2 )- s 0 [α ](mod 2 ) - z -1 (mod 2 )) (mod 2 ), if α, hen The proposiion is proved. α 1 (mod 2 ) = (s [](mod 2 ) s [ α ](mod 2 ) z (mod 2 ))(mod 2 ). Le q be he smlles number of p1, p3, i.e. q=min(p1, p3). Proposiion 4 Le τ 2n+θ2. If we know 1 (mod 2 τ ), 2 (mod 2 τ ),, i (mod 2 τ ),, m (mod 2 τ ) è s 2 [2+m/2] (mod 2 τ ), s 4 [4+m/2] (mod 2 τ ),., s 2i [(m/2+2i)(mod m)](mod 2 τ ),,s m [m](mod 2 τ ), hen 1 (mod 2 τ+q ), 3 (mod 2 τ+q ),, 2i+1 (mod 2 τ+q ),. m-1 (mod 2 τ+q ) cn be deermined s follows.,q-1+τ = b +1,τ-1,τ-1,,q+τ-j = b +1,τ-j,τ-j,.,τ = b +1,τ-q,τ-q. where =1 (mod 2), b +1 =( +1 (mod 2 τ )-s +1 [+1+m/2] (mod 2 τ )) (mod 2 τ ). Proof. By proposiion 1 F >> (,p)=((>>p) )=( K-1, K-2,, p, K-1 K-p-1, K-2 K-p-2,, p+i i,, p 0 ). From (mod 2 τ )=( F << ( -1,p()) (mod 2 τ )+s [+m/2] (mod 2 τ )) (mod 2 τ ), where =0 (mod 2), i follows h F >> ( -1,p()) (mod 2 τ )= b = ( (mod 2 τ )- s [+m/2] (mod 2 τ )) (mod 2 τ ). Hence, b,τ-1 = -1,p()-1+τ -1, τ-1,,b,τ-p() = -1,τ -1,τ-p(). Thus, we hve found unknown p() bis -1,p()-1+τ = b,τ-1-1,τ-1, -1,τ=b,τ-p() -1,τ-p(). Therefore, we hve compued 1 (mod 2 τ+p1 ), 3 (mod 2 τ+p3 ),, 4i+1 (mod 2 τ+p1 ), 4i+3 (mod 2 τ+p3 ),, m-1 (mod 2 τ+p3 ). This shows h 1 (mod 2 τ+q ),, 2i+1 (mod 2 τ+q ),. m-1 (mod 2 τ+q ) re found. The proposiion is proved. Le σ (j) be crry bi in j h -bi of he sum (G( -1,, p())+ s [(+ m/2 ) (mod m )]) (mod 2 K ), σ z (j) be crry bi in j h -bi of he sum (s [(s []>>(n+θ 2 ))(mod m)]+s -1 []) (mod 2 K ) nd σ s (j) be crry bi in j h -bi of he sum (s -1 [(s -1 []>>θ 1 ) (mod m )]+ + z -1 ) (mod 2 K ). Le 4

nd 0 δ (, k) = if if > k k 0 if > k ρ (, k) =. 1 if k Proposiion 5 If j<p(), hen 2i+1,j=2i,j sδ(2i+1,2i+1+m/2),j[2i+1+m/2] σ2i +1(j). If j p(), hen 2i+1,j = 2i,j 2i,j - p(2i+1) s δ(2i+1,2i+1+m/2),j [2i+1+m/2] σ 2i +1 (j). This proposiion cn esily be proved if noe h (mod 2 j )= (G( -1,, p()) (mod 2 j )+ s [(+ m/2 )(mod m )] (mod 2 j )) (mod 2 j ) nd j h -bi of G(2i,, p(2i+1)) is 2i,j if j<p(), G( 2i,, p(2i+1)) j = 2i,j 2i,j - p(2i+1) if j p(). Proposiion 6 If we know s [] (mod 2 j-1 ), s 0 [] (mod 2 j-1 ), α, j (mod 2 j-1 ), z -1 (mod 2 j-1 ), -1 (mod 2 j-1 ), hen σ s (j), σ z (j) nd σ 2i +1 (j) cn be compued s follows. σ s (j)= 1 if (s δ(, á )[α ](mod 2 j-1 )+z -1 (mod 2 j-1 )+,j-1 (mod 2 j-1 )) (mod 2 j+1 ) 2 j, 0 oherwise. σ z (j)= 1 if (s δ(, j ),j-1[j ] (mod 2 j-1 )+ s 0,j -1 [] (mod 2 j-1 )) (mod 2 j+1 ) 2 j, 0 oherwise. If j<p() nd =1 (mod 2), hen σ2i +1(j)= 1 if ( 2i(mod 2 j-1 )+s2i+1[2i+1+m/2](mod 2 j-1 )) (mod 2 j+1 ) 2 j, 0 oherwise. If j p() nd =1 (mod 2), hen σ j (j)= 1, if 1 ( 2 k + -1(mod 2 p()-1 )+sδ(,+m/2),j[+m/2] (mod 2 j-1 )) (mod 2 j+1 ) 2 j k= p() -1,k -1 p(),k ) 0, oherwise. Proof. Noe h σ s (j), σ (j) nd σ z (j) re equl o 1 if nd only if (G( -1,, p())+ s [(+ m/2 )(mod m)]) (mod 2 j+1 ) 2 j, (s [(s []>>(n+θ 2 ))(mod m)]+s -1 []) (mod 2 j+1 ) 2 j, (s -1 [(s -1 []>>θ 1 ) (mod m) ] + + z -1 ) (mod 2 j+1 ) 2 j. Thus, σ (j)= 1 if (G(-1,, p()) (mod 2 j-1 )+s[+m/2](mod 2 j-1 )) (mod 2 j+1 ) 2 j, 0 oherwise. 5

nd G( -1,, p() (mod 2 j-1 )= 2i (mod 2 j-1 ) j 1 k= p() -1,k -1 p(),k ) By he bove noes we obin he proof of he proposiion. if j<p(), ( 2 k + -1 (mod 2 p()-1 ) oherwise. Theorem 1 If we know α, j, 2i+1(mod 2 j ), 2i(mod 2 j-1 ), σ s (j), σ (j), σ z (j), z,j, =1,,m, i=0 m/2-1 nd j mx(p(1), p(3)), hen s,j [], s 0,j [], =1,,m, cn be found by solving he following sysem of equions. s0,j[0] sδ(m, j ),j[jm] = zm,j σm z (j), m s 0,j [1] s δ(1, j 1 ),j [j 1 ]= z 1,j σ z 1 (j), s0,j[] sδ(, j ),j[j]=z,j σ z (j), s 0,j [1+m/2]= 1,j σ 1 (j), s 0,j [] s δ(, j ),j[j ]=z,j σ z (j), s0,j[m-1] sδ(m-1, j ),j[jm-1]= zm-1,j σm z -1(j), m-1 s 1,j [1] s δ(1, α 1 ),j[α 1 ] = 1,j σ s 1 (j), s 2,j [2] s δ(2, α 2 ),j[α 2 ] s 0,j [3+m/2]= z 1,j 3,j 2,j - p(3) σ 3 (j) σ s 2 (j), s 3,j [3] s δ(3, α3 ),j[α 3 ] = z 2,j 3,j σ s 3 (j), (1) s 2i,j [2i] s δ(2i+1,2i+1+m/2),j [2i+1+m/2] s δ(2i, α2 i ),j[α 2i ]=z 2i-1,j 2i+1,j 2i,j - p(2i+1) σ 2i +1 (j) σ s 2i (j), s 2i+1,j [2i+1] s δ(2i+1, α 2 i+ 1 ),j s [α 2i+1 ] = z 2i,j 2i+1,j σ 2i +1 (j), s m-2,j [m-2] s δ(m-2, α m - 2 s m-1,j [m-1] s δ(m-1,m/2-1),j [m/2-1] s δ(m-1, α 1 ),j [α m-2 ]= z m-3,j m-2,j σ m s -2 (j), m ),j [α m-1 ]= z m,j m-1,j m-2,j - p(3) σ m -1 (j) σ m s -1 (j), s m,j [m] s δ(m, α m ),j[αm] = z m-1,j m,j σm s (j). 2i,j, i=0 m/2 cn be found s follows 2i,j = 2i+1,j 2i,j - p(2i+1) s δ(2i+1,2i+1+m/2),j [2i+1+m/2] σ 2i +1 (j). Proof Consider j h -bi of = (G( -1,, p())+ s [(+ m/2 )(mod m )]) (mod 2 K ), =1 (mod 2) s []= (s -1 [α ]+ + z -1 )(mod 2 K ), =1 m. z = (s [j ]+s 0 []) (mod 2 K ), =1 m. Thus, we obin he following sysem of equions. 1,j=s0,j[1+m/2] σ1 (j), s 1,j [1]= s δ(1, α 1 ),j[α 1 ] 1,j σ 1 s (j), 6

z 1,j = s δ(1, j 1 ),j[j 1 ] s 0,j [1] σ z 1 (j), s 2,j [2]= s δ(2, α 2 ),j[α 2 ] z 1,j 2,j σ s 2 (j), z 2,j = s δ(2, j 2 ),j [j 2 ] s 0,j [2] σ z 2 (j), 3,j = 2,j 2,j - p(3) s 0,j [3+m/2] σ 3 (j), s 3,j [3]= s δ(3, α3 ),j[α 3 ] z 2,j 3,j σ s 3 (j), z 3,j = s δ(3, j 3 ),j [j 3 ] s 0,j [3] σ z 3 (j), (2) s 2i,j [2i]= s δ(2i, α 2 i ),j[α 2i ] z 2i-1,j 2i,j σ s 2i (j), z 2i,j = s δ(2i, j 2i),j[j 2i ] s 0,j [2i] σ z 2i (j), 2i+1,j=2i,j 2i,j - p(2i+1) sδ(2i+1,2i+1+m/2),j[2i+1+m/2] σ2i +1(j), s 2i+1,j [2i+1]= s δ(2i+1, α 2 i+ 1 ),j s [α 2i+1 ] z 2i,j 2i+1,j σ 2i +1 (j), z 2i+1,j = s δ(2i+1, j 2i+ 1 ),j z [j 2i+1 ] s 0,j [2i+1] σ 2i +1 (j), s m-2,j [m-2]= s δ(m-2, α m - 2 ),j s [α m-2 ] z m-3,j m-2,j σ m -2 (j), z z m-2,j = s δ(m-2, j m-2 ),j[j m-2 ] s 0,j [m-2] σ m -2 (j), m-1,j=m-2,j m-2,j - p(m-1) sδ(m-1,m/2-1),j[m/2-1] σm -1(j), s m-1,j [m-1]= s δ(m-1, α m 1 ),j s [α m-1 ] z m,j m-1,j σ m -1 (j), z z m-1,j = s δ(m-1, j m-1),j[j m-1 ] s 0,j [m-1] σ m -1 (j), s m,j [m]= s δ(m, α m ),j[α m ] z m-1,j m,j σ s m (j), zm,j= sδ(m, j ),j[jm] s0,j[0] σm z (j). m Noe h s,j [], s 0,j [], 2i,j, =1,, m, i=0 m/2, re unknown nd he number of unknown vlues in (2) is 5m/2. By proposiion 6 we hve 2i,j = 2i+1,j 2i,j - p(2i+1) s δ(2i+1,2i+1+m/2),j [2i+1+m/2] σ 2i +1 (j), where i=1 m/2-1. If we replce 2i,j by 2i+1,j 2i,j - p(2i+1) s δ(2i+1,2i+1+m/2),j [2i+1+m/2] σ 2i +1 (j) in (2), we ge 1,j =s 0,j [1+m/2] σ 1 (j), s 1,j [1]= s δ(1, α 1 ),j[α 1 ] 1,j σ s 1 (j), z 1,j = s δ(1, j 1 ),j[j 1 ] s 0,j [1] σ1 z (j), s 2,j [2]= s δ(2, α 2 ),j[α 2 ] z 1,j 3,j 2,j - p(3) s 0,j [3+m/2] σ 3 (j) σ s 2 (j), z 2,j = s δ(2, j 2 ),j [j 2 ] s 0,j [2] σ z 2 (j), s 3,j [3]= s δ(3, α3 ),j[α 3 ] z 2,j 3,j σ s 3 (j), z3,j= sδ(3, j ),j[j3] s0,j[3] σ3 z (j), 3 (3) s 2i,j [2i]= s δ(2i, α 2 i ),j[α 2i ] z 2i-1,j 2i+1,j 2i,j - p(2i+1) s δ(2i+1,2i+1+m/2),j [2i+1+m/2] σ 2i +1 (j) σ s 2i (j), z 2i,j = s δ(2i, j ),j[j 2i 2i ] s 0,j [2i] σ2i z (j), s 2i+1,j [2i+1]= s δ(2i+1, α 2 i+ 1 ),j s [α 2i+1 ] z 2i,j 2i+1,j σ 2i +1 (j), z 2i+1,j = s δ(2i+1, j 2i+ 1 ),j z [j 2i+1 ] s 0,j [2i+1] σ 2i +1 (j), 7

s m-2,j [m-2]= s δ(m-2, α m -2 ),j s [α m-2 ] z m-3,j m-2,j σ m -2 (j), z z m-2,j = s δ(m-2, j m-2 ),j[j m-2 ] s 0,j [m-2] σ m -2 (j), s m-1,j [m-1]= s δ(m-1, α m 1 ),j s [α m-1 ] z m,j m-1,j m-2,j - p(3) s δ(m-1,m/2-1),j [m/2-1] σ m -1 (j) σ m -1 (j), zm-1,j= sδ(m-1, j ),j[jm-1] s0,j[m-1] σm z -1(j), m-1 s m,j [m]= s δ(m, α m ),j[α m ] z m-1,j m,j σ s m (j), z m,j = s δ(m, j m ),j[j m ] s 0,j [0] σ m z (j), We sress h he number of equions nd he number of unknown vlues in (3) re 2m. If we rewrie (3) such h unknown elemens in he equions re on he lef, nd known vlues on he righ, hen we hve s 0,j [0] s δ(m, j m ),j [j m ] = z m,j σ z m (j), s 0,j [1] s δ(1, j 1 ),j [j 1 ]= z 1,j σ z 1 (j), s 0,j [] s δ(, j ),j[j ]=z,j σ z (j), s0,j[1+m/2]= 1,j σ1 (j), s 0,j [] s δ(, j ),j[j ]=z,j σ z (j), z s 0,j [m-1] s δ(m-1, j m-1),j[j m-1 ]= z m-1,j σ m -1 (j), s 1,j [1] s δ(1, α 1 ),j[α 1 ] = 1,j σ s 1 (j), s 2,j [2] s δ(2, α 2 ),j[α 2 ] s 0,j [3+m/2]= z 1,j 3,j 2,j - p(3) σ 3 (j) σ s 2 (j), s3,j[3] sδ(3, α 3 ),j[α3] = z2,j 3,j σ3 s (j), (1) s 2i,j [2i] s δ(2i+1,2i+1+m/2),j [2i+1+m/2] s δ(2i, α 2 i ),j[α 2i ]=z 2i-1,j 2i+1,j 2i,j - p(2i+1) σ 2i +1 (j) σ s 2i (j), s2i+1,j[2i+1] sδ(2i+1, α ),j[α2i+1] = z2i,j 2 i+ 1 2i+1,j σ2is +1(j), s m-2,j [m-2] s δ(m-2, α m - 2 ),j s [α m-2 ]= z m-3,j m-2,j σ m -2 (j), sm-1,j[m-1] sδ(m-1,m/2-1),j[m/2-1] sδ(m-1, α ),j[αm-1]= zm,j m 1 m-1,j m-2,j - p(3) σm -1(j) σm s -1(j), s m,j [m] s δ(m, α m ),j[α m ] = z m-1,j m,j σ s m (j), The heorem is proved. 4 Ack on ISAAC In his secion we describe known plinex ck on he ISAAC keysrem generor. Firs le us crry ou n esimion of he uniciy disnce DISAAC of ISAAC. Recll h he uniciy disnce is he number of keysrem symbols h need o be observed in known plinex ck before he key cn be uniquely deermined. 8

Noe h he number of vrious ses of he ISAAC is equl o m 2 K 2 Km. Then we ge h K D ISAAC K+ Km ( 2 ) = m 2. Therefore, D ISAAC m+2. Le us denoe wih mrk * guessed elemens of S * nd elemens of he oupu sequence {z i * } produced on he guessed iniil se. The mehod consiss of four seps. Sep 1. Guess s m [0] (mod 2 2n+θ2 ),, s [] (mod 2 2n+θ2 ),, s m-1 [m-1] (mod 2 2n+θ2 ). Sep 2 Le =2n+θ2. 1. Use proposiion 2 o compue s 0 [], =0,1,,m-1. 2. Use proposiion 3 o compue (mod 2 2n+θ2 ), =1 m+1. 3. Le τ=. Use proposiion 4 o compue 2j+1(mod 2 τ+q ), j=0 m/2-1. 4. To find s m [0](mod 2 τ+q ), s 1 [1] (mod 2 τ+q ),, s m-1 [m-1] (mod 2 τ+q ), s 0 [0] (mod 2 τ+q ), s 0 [1] (mod 2 τ+q ),,s 0 [m-1] (mod 2 τ+q ), 2i (mod 2 τ+q ), i=0 m/2, we do he following. ) Le j=τ+1. b) While j τ+q do. Use heorem 1 o compue sm[0]( mod 2 j ),,sm-1[m-1] ( mod 2 j ), s0[0] ( mod 2 j ),, s 0 [m-1] ( mod 2 j ), 2i ( mod 2 j ), i=0 m/2. Tke j=j+1. Sep 3 Le τ=2n+θ2+q. While τ<k. 1. Use proposiion 4 o compue 2j+1 (mod 2 τ+q ), j=0 m/2-1. 2. To find s m [0] (mod 2 τ+q ), s 1 [1] (mod 2 τ+q ),, s m-1 [m-1] (mod 2 τ+q ), s 0 [0] (mod 2 τ+q ), s 0 [1] (mod 2 τ+q ),,s 0 [m-1] (mod 2 τ+q ), 2i (mod 2 τ+q ), i=0 m/2, we do he following. ) Le j=τ+1. b) While j τ+q do. Use o heorem 1 o compue s m [0]( mod 2 j ),,s m-1 [m-1] ( mod 2 j ), s 0 [0] ( mod 2 j ),, s 0 [m-1] (mod 2 j ), 2i ( mod 2 j ), i=0 m/2. Tke j=j+1. Sep 4 Compue he firs L = D ISAAC of elemens of he oupu sequence z 1 *, z 2 *, z L *. If z 1 * = z 1, z 2 * = z2, zl * = zl hen we hve found he correc iniil se of he cryposysem, oherwise reurn o sep 1. Le us esime he complexiy of he mehod. We my ssume h he probbiliy P{s * 0 [0] (mod 2 (2n+θ2) )= s 0 [0] (mod 2 (2n+θ2) ),,s * 0 [m-1] (mod 2 (2n+θ2) )= s 0 [m-1] (mod 2 (2n+θ2) )} = 1/ 2 (2n+θ2)m. Then he verge of guessed elemens is equl o 2 (2n+θ2)m-1. The complexiy of soluion of sysems of equions seps 2, 3 cn be esimed (K-2n-θ2) (2m)/3. Therefore, he complexiy of he mehod is equl o T me =2 (2n+θ2)m-1 (K-2n-θ2) (2m)/3. Noe h he complexiy of he brue force ck is equl o T br =2 K m-1. For m=256, n=8, K=32, p0=13, p1=6, p2=2, p3=16, θ 1 =θ 2 =2, we ge T me =4.67 10 1240, T br = 5.91 10 2446. 9

5 Conclusion We hve described crypnlyic lgorihm on he ISAAC srem cipher. The lgorihm ries o deduce he iniil se in known plinex ck. The described mehod depends on difference K-2n. If K-2n-θ2 2n, hen he complexiy of he ck is pproximed o be less hn ime of serching hrough he squre roo of ll possible iniil ses. For vlues used in he cryposysem we ge he complexiy T me =4.67 10 1240. ISAAC remins secure cipher for prcicl pplicions. References. [1] R.J. Jenkins, ISAAC, Fs Sofwre Encrypion Cmbridge 1996, vol. 1039, D. Gollmnn ed., Springer-Verlg. [2] R. J. Jenkins ISAAC hp://ourworld.compuserve.com/homepges/ bob_jenkins/isc.hm [3] Vrfolomeev A.A., Zhukov A.E., Pudovkin M., ''Anlysis of Srem Ciphers '', Moscow, 2000. [4] Pudovkin M. A Cycle Srucure of he Alleged RC4 Keysrem Generor. Journl of "Securiy of informion echnologies", Moscow, 4, 2000. 10