Mundtlig gruppeprøve. Odense 13. maj 2013

Størrelse: px
Starte visningen fra side:

Download "Mundtlig gruppeprøve. Odense 13. maj 2013"

Transkript

1 Mundtlig gruppeprøve Odense 13. maj 2013

2 Den store positive nyhed Aldrig før har så mange matematiklærere været på kursus som i til de generelle foredrag Mindst 1500 til workshops med fremstilling af prøveoplæg

3 De 8 matematiske kompetencer 2002 offentliggørelse her i Odense 2003 med i undervisningsvejledningen 2009 selve formålet med undervisningen 2013 Så prøver vi eleverne i deres besiddelse af matematisk kompetence

4 Muligheder - udfordringer Genopdage mundtligheden i matematikundervisningen - og nyde den positive effekt på elevernes læring og præstationer Hvordan bedømmer vi kompetencer problemstilling og åbenhed

5 Den svære problemstilling Åbne spørgsmål betyder ikke frit valg Problemstilling ikke opgaver Eleverne skal kunne arbejde undersøgende Eleverne skal have mulighed for at vise deres matematiske kompetence

6 Et eksempel: Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Hvordan kan figuren konstrueres i et dynamisk geometriprogram? Tage Werner påstod bl.a., at de otte længste linjestykker i kvadratet er lige lange der er kongruente og ligedannede figurer i kvadratet, og at disse figurers arealer kan beregnes størrelsen på hver vinkel i kvadratets figurer kan findes ved at beregne. Problemstilling Jeres opgave er at undersøge Tage Werners tre påstande om kvadratet. I skal både bruge it-værktøjer, beregninger og matematiske forklaringer.

7 Standby sheet eller ideside Ideer: Konstruer Tages kvadrat ved hjælp af et it-værktøj. I kan fx lade sidelængden være 10. Beskriv, hvordan Tages kvadrat kan konstrueres. Undersøg længderne af de længste linjestykker i Tages kvadrat. Kan I finde resultaterne på flere forskellige måder? Har Tage Werner ret i påstand 1)? Kan I forklare hvorfor/ hvorfor ikke uden at måle? Læg mærke til nogle af figurerne, der gemmer sig i Tages kvadrat: Har disse figurer kongruente og/eller ligedannede makkere? Hvis ja: Hvordan kan I være sikre på, at figurerne er kongruente og/eller ligedannede? Find - på flere forskellige måder - arealet af nogle kongruente og/eller ligedannede figurer. Kan I bruge resultatet fra før til at beregne størrelsen af flere vinkler i Tages kvadrat?

8 Vurdering Vurdering af matematiske kompetencer og arbejdsmåder i prøvesituationen kan foregå på baggrund af følgende spørgsmål: Viser eleven sine matematiske kompetencer ved at handle på en indsigtsfuld måde i forbindelse med problemstillingen? Kan eleven benytte sin viden og sine færdigheder i forhold til problemstillingen? Arbejder eleven undersøgende og systematisk, viser eleven initiativ, indgår i dialog og samarbejder med sin gruppe Kan eleven kommunikere med og om matematik? Mobil: Side 8

9 Bedømmelsen Matematiser e Færdigheder /Analyse Fortolkning At bringe det virkelige problem over i matematikkens verden Overvejer valg af: - målemetode - måleredskab - løsningsmuligheder At kunne behandle problemet i matematikkens verden Anvender formler til beregning Måler længde og tid (uden gps) Beregner Oversætter mellem enheder Af matematiske resultater til brug i den virkelige verden Evaluerer ideerne ift. kriterierne Vurderer om resultat er realistisk Sammenligner og forholder sig til resultater

10 Tekstopgivelse Undervisningsforløb, hvor der har været fokus på en matematisk kompetence fx problembehandlings-, modellerings- eller ræsonnementskompetencen. Projekter med rapportskrivning, præsentationer, film eller anden form for fremlæggelse. Kender eleverne kompetencerne som begreber eller kan de alene udøve dem? Anvendte it-værktøjer Arbejds- og organisationsformer.

11 Den daglige undervisning Projektorienteret Kompetencebaseret Med undersøgende arbejdsmåder Med andre skriftlige arbejder end opgaveløsning Med andre kommunikationsformer end skrift Med masser af mundtlighed

12 Hvad sker der til juni 160 tekstopgivelser gennemses 80 mundtlige censorer vil samle prøveoplæg sammen til evaluering Evaluering med gode råd kommer i PEU og andre skrifter Løbende vil der være hjælp at hente fx på SkoleKom

13 Fremtiden Glostrup: Ingen lærer må lades alene tilbage Brug dit fagteam En ny lærerkultur

14 Hvad sker der ellers Folkeskolereform Arbejdsgruppe for matematik 3 årigt udviklingsprojekt

Opgave 1 -Tages kvadrat

Opgave 1 -Tages kvadrat Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker

Læs mere

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Mundtlig gruppeprøve i matematik 2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve Eller kun delvist kan prøve

Læs mere

Mundtlig prøve i matematik

Mundtlig prøve i matematik Mundtlig prøve i matematik Onsdag d. 5. december 2012 CFU Sjælland Mari-Ann Skovlund & Mikael Scheby Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve, eller

Læs mere

UCC - Matematikdag - 08.04.14

UCC - Matematikdag - 08.04.14 UCSJ Målstyret + 21 PD - UCC - 25.02.14 www.mikaelskaanstroem.dk Der var engang. Skovshoved Skole Hvad svarer du på elevspørgsmålet: Hvad skal jeg gøre for at få en højere karakter i mundtlig matematik?

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen

Læs mere

Mundtlighed i matematikundervisningen

Mundtlighed i matematikundervisningen Mundtlighed i matematikundervisningen 1 Mundtlighed Annette Lilholt Side 2 Udsagn! Det er nemt at give karakter i færdighedsregning. Mine elever får generelt højere standpunktskarakter i færdighedsregning

Læs mere

Odense, den 4. marts 2013 Heidi Kristiansen. 04-03-2013 Heidi Kristiansen - Folkeskolens afsluttende prøver i matematik

Odense, den 4. marts 2013 Heidi Kristiansen. 04-03-2013 Heidi Kristiansen - Folkeskolens afsluttende prøver i matematik Odense, den 4. marts 2013 Heidi Kristiansen Oplæg til mundtlig gruppeprøve, der gør det muligt at evaluere kompetencer hvordan??? indeholde tydelige problemstillinger rene eller anvendte matematiske problemer,

Læs mere

Mundtlig matematik. - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces..

Mundtlig matematik. - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces.. Mundtlig matematik - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces.. Hjørring 7. sep. 2012 Line Engsig matematikvejleder på Skovshoved Skole og Mikael

Læs mere

Tabelrapport. Evaluering af mundtlig gruppeprøve i matematik folkeskolens prøver

Tabelrapport. Evaluering af mundtlig gruppeprøve i matematik folkeskolens prøver Tabelrapport Evaluering af mundtlig gruppeprøve i matematik folkeskolens prøver 2014 Tabelrapport Evaluering af mundtlig gruppeprøve i matematik folkeskolens prøver 2014 Tabelrapport 2014 Danmarks Evalueringsinstitut

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

TRIGONOMETRI, 4 UGER, 9.KLASSE.

TRIGONOMETRI, 4 UGER, 9.KLASSE. TRIGONOMETRI, 4 UGER, 9.KLASSE. FRA FÆLLES MÅL Målsætninger for undervisningsforløbet er opsat efter kompetence, færdigheds og vidensmål samt læringsmål i lærersprog. Geometri og måling Fase 3 Geometriske

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

MaxiMat det digitale matematiksystem

MaxiMat det digitale matematiksystem MaxiMat det digitale matematiksystem 0.-10. klasse 4. og 7. er udkommet 1., 5. og 8. klasse er klar til skolestart 2014 MaxiMat er et fleksibelt digitalt matematiksystem, der fuldt udbygget indeholder

Læs mere

Vejledning til prøverne i faget matematik

Vejledning til prøverne i faget matematik Vejledning til prøverne i faget matematik Kvalitets- og Tilsynsstyrelsen Center for Prøver, Eksamen og Test Marts 2014 Indhold Forord... 4 1. Indledning... 5 Prøvernes forskellige dele... 5 2. FSA... 9

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

Evaluering af kompetencer

Evaluering af kompetencer Evaluering af kompetencer Odense den 13. maj 2013 http://tinyurl.com/cca2glm Montaigne Man burde spørge hvem der ved rigtigst, ikke hvem der ved mest. KOMPIS http://tinyurl.com/d4m295w Målsætning og planlægning

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Komrapporten Kompetencer og matematiklæring. Ideer og inspiration til udvikling af matematikundervisningen

Læs mere

Vejledning til folkeskolens prøver i faget matematik 9. klasse

Vejledning til folkeskolens prøver i faget matematik 9. klasse Vejledning til folkeskolens prøver i faget matematik 9. klasse Styrelsen for Undervisning og Kvalitet August 2016 Indhold Indledning... 2 1 Prøvegrundlag (Fælles mål)... 3 1.1 Prøvernes forskellige dele...

Læs mere

Konference om mundtlige prøver. PRØV! Et program til de mundtlige prøver (og det daglige arbejde?)

Konference om mundtlige prøver. PRØV! Et program til de mundtlige prøver (og det daglige arbejde?) Konference om mundtlige prøver PRØV! Et program til de mundtlige prøver (og det daglige arbejde?) Faglig læsning for matematiklærere Bekendtgørelse nr. 1824 af 16. december 2015 om folkeskolens prøver

Læs mere

Vejledning til prøverne i matematik

Vejledning til prøverne i matematik Vejledning til prøverne i matematik Styrelsen for Undervisning og Kvalitet Februar 2016 1 af 78 Indholdsfortegnelse 1. Indledning... 5 2. FP9... 9 2.1 Prøve i matematik uden hjælpemidler... 9 2.2 Prøve

Læs mere

SYNLIG LÆRING OG LÆRINGSMÅL I MATEMATIK. Sommeruni 2015. Louise Falkenberg og Eva Rønn

SYNLIG LÆRING OG LÆRINGSMÅL I MATEMATIK. Sommeruni 2015. Louise Falkenberg og Eva Rønn SYNLIG LÆRING OG LÆRINGSMÅL I MATEMATIK Sommeruni 2015 Louise Falkenberg og Eva Rønn UCC PRÆSENTATION Eva Rønn, UCC, er@ucc.dk Louise Falkenberg, UCC, lofa@ucc.dk PROGRAM Mandag d. 3/8 Formiddag (kaffepause

Læs mere

Torsdag d. 7. november 2013

Torsdag d. 7. november 2013 Torsdag d. 7. november 2013 Nyt fra ministeriet klaus.fink@uvm.dk Side 1 Hvad viser dette? 1 2 3 klaus.fink@uvm.dk Side 2 Den mundtlige gruppeprøve Beskikkede censorer: Det er gået godt Men der er stadig

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

ÅRSPLAN MATEMATIK 3.KLASSE

ÅRSPLAN MATEMATIK 3.KLASSE ÅRSPLAN MATEMATIK 3.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Kompetencemål for Matematik, klassetrin

Kompetencemål for Matematik, klassetrin Kompetencemål for Matematik, 4.-10. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske kompetencer, matematikdidaktisk teori samt matematiklærerens praksis i folkeskolen og bidrager

Læs mere

Klasse: 3. årgang Fag: Matematik År: 2016/17. Læringsmål Hvad er de overordnet læringsmål for klassen?

Klasse: 3. årgang Fag: Matematik År: 2016/17. Læringsmål Hvad er de overordnet læringsmål for klassen? Årsplan Klasse: 3. årgang Fag: Matematik År: 2016/17 Periode Fælles Mål Hvilke kompetencemål og områder sigtes der mod? Læringsmål Hvad er de overordnet læringsmål for klassen? Tiltag Hvad skal eleverne

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2017 Marie

Læs mere

KOMPETENCEMÅL OG MUNDTLIG PRØVE I MATEMATIK

KOMPETENCEMÅL OG MUNDTLIG PRØVE I MATEMATIK (TOMAS@DPU.DK) INSTITUT FOR UDDANNELSE OG PÆDAGOGIK (DPU) KONFERENCE OM MUNDTLIGE PRØVER ODENSE CONGRESS CENTER UNI VERSITET HVAD ER GOD EVALUERING? To klassiske kvalitetskriterier: Validitet: Måler evalueringen

Læs mere

Undervisningsbeskrivelse for Matematik A 2. E 2011/2012

Undervisningsbeskrivelse for Matematik A 2. E 2011/2012 Undervisningsbeskrivelse for Matematik A 2. E 2011/2012 Termin Undervisningen afsluttes den 16. maj 2012 Skoleåret hvor undervisningen har foregået: 2011-2012 Institution Skive Teknisk Gymnasium Uddannelse

Læs mere

Matematik. Evaluering, orientering og vejledning

Matematik. Evaluering, orientering og vejledning Folkeskolens afsluttende evaluering Matematik 2016 Evaluering, orientering og vejledning Uddannelsesstyrelsen 1. Konklusion Denne evaluering bygger på prøveresultaterne for skriftlige og mundtlige prøver

Læs mere

Matematikvejlederdag. Ankerhus 3. november Side 1

Matematikvejlederdag. Ankerhus 3. november Side 1 Matematikvejlederdag Ankerhus 3. november 2014 Klaus.fink@uvm.dk Side 1 Oplægget Nyheder Fagligt fokus Læringsmålstyret undervisning Klaus.fink@uvm.dk Side 2 Udviklingsprogrammet Klaus.fink@uvm.dk Side

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Marie

Læs mere

Matematik i marts. nu i april

Matematik i marts. nu i april Matematik i marts nu i april Dagens fødselar 2 127 1 1857 1876 Diofantiske ligninger En løsning for N>1: N = 24 og M = 70 François Édouard Anatole Lucas (4 April 1842 3 October 1891) 2, 1, 3, 4, 7, 11,

Læs mere

Årsplan 9. Klasse Matematik Skoleåret 2015/16

Årsplan 9. Klasse Matematik Skoleåret 2015/16 Årsplan 9 Klasse Matematik Skoleåret 2015/16 Hovedformål Årsplanen for 9 Klasse i Matematik tager udgangspunkt i Forenklede Fællesmål (Undervisningsministeriet) Formålet med undervisningen er, at eleverne

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

KOMPETENCEMÅL OG MUNDTLIG PRØVE I MATEMATIK

KOMPETENCEMÅL OG MUNDTLIG PRØVE I MATEMATIK (TOMAS@DPU.DK) INSTITUT FOR UDDANNELSE OG PÆDAGOGIK (DPU) KONFERENCE OM MUNDTLIGE PRØVER ODENSE CONGRESS CENTER UNI VERSITET HVAD ER GOD EVALUERING? To klassiske kvalitetskriterier: Validitet: Måler evalueringen

Læs mere

Kompetencer, færdigheder og evaluering

Kompetencer, færdigheder og evaluering Kompetencer, færdigheder og evaluering Tomas Højgaard (tomas@dpu.dk) Danmarks Pædagogiske Universitetsskole Foredrag på MONA-konferencen 2010 Fredericia, 27. oktober 2010 Evaluering Tre delprocesser (jf.

Læs mere

MatematiKan og Fælles Mål

MatematiKan og Fælles Mål MatematiKan og Fælles Mål MatematiKan er et digitalt værktøj til matematik. Det hører til gruppen af interaktive CAS værktøjer. Denne type digitale værktøjer er kendetegnet ved, at de har en delvis blank

Læs mere

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder. Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette

Læs mere

Ringsted, 17.-18. september, 2015

Ringsted, 17.-18. september, 2015 Ringsted, 17.-18. september, 2015 Lidt om ideen med læringsmålstyret undervisning FFM og matematiske kompetencer FFM, læringsmålsstyring og matematiske kompetencer Hvad betyder synlig læring? Det synlige

Læs mere

Kompetencemål for Matematik, klassetrin

Kompetencemål for Matematik, klassetrin Kompetencemål for Matematik, 1.-6. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske arbejds- og tænkemåder, matematikdidaktik samt matematiklærerens praksis i folkeskolen og

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Matematik og målfastsættelse

Matematik og målfastsættelse Matematik og målfastsættelse Målfastsættelse, feedforward og evaluering i matematik, oplæg og drøftelse 1 Problemløsning s e k s + s e k s t o l v 2 Punkter Målfastsættelse af undervisning i matematik

Læs mere

MATEMATIK UDSTYKNING AF SKOLEHAVEN SIDE 1 MATEMATIK. Udstykning af skolehaven

MATEMATIK UDSTYKNING AF SKOLEHAVEN SIDE 1 MATEMATIK. Udstykning af skolehaven SIDE 1 MATEMATIK UDSTYKNING AF SKOLEHAVEN MATEMATIK Udstykning af skolehaven SIDE 2 MATEMATIK UDSTYKNING AF SKOLEHAVEN MATEMATIK UDSTYKNING AF SKOLEHAVEN 3 MATEMATIK UDSTYKNING AF SKOLEHAVEN INTRODUKTION

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Evaluering og feedback i matematikundervisningen. Sommeruni, august 2015

Evaluering og feedback i matematikundervisningen. Sommeruni, august 2015 Evaluering og feedback i matematikundervisningen Sommeruni, august 2015 Forskellige hensigter med evaluering Hvad evalueres? Af hvem? Hvorfor? Elevens læringsudbytte Læreren For at kunne give feedback,

Læs mere

Forenklede Fælles Mål Matematik. Maj 2014

Forenklede Fælles Mål Matematik. Maj 2014 Forenklede Fælles Mål Matematik Maj 2014 Matematiske kompetencer Tal og algebra Statistik og sandsynlighed Geometri og måling Skrivegruppen Annette Lilholt, lærer Hjørring Line Engsig, lærer Gentofte Bent

Læs mere

Kompetencemål i undervisningsfaget Matematik yngste klassetrin

Kompetencemål i undervisningsfaget Matematik yngste klassetrin Kompetencemål i undervisningsfaget Matematik yngste klassetrin Kort bestemmelse af faget Faget matematik er i læreruddannelsen karakteriseret ved et samspil mellem matematiske emner, matematiske arbejds-

Læs mere

Matematika rsplan for 5. kl

Matematika rsplan for 5. kl Matematika rsplan for 5. kl 2015-2016 Årsplanen tager udgangspunkt i fællesmål (færdigheds- og vidensmål) efter 6. klassetrin. Desuden tilrettelægges undervisningen efter læseplanen for matematik. Formålet

Læs mere

Matematikken og naturens kræfter

Matematikken og naturens kræfter INTRO Omdrejningspunktet for dette tema er matematikkens anvendelse som beskrivelsesmiddel i forbindelse med fysiske love. Temaet er inddelt i følgende fire emner: Pendulure Frit fald Bremselængder og

Læs mere

HVAD STÅR DER I DE NYE FÆLLES MÅL OM DEN MATEMATISKE KOMPETENCE, KOMMUNIKATION? KØBENHAVN 29. SEPTEMBER 2015

HVAD STÅR DER I DE NYE FÆLLES MÅL OM DEN MATEMATISKE KOMPETENCE, KOMMUNIKATION? KØBENHAVN 29. SEPTEMBER 2015 HVAD STÅR DER I DE NYE FÆLLES MÅL OM DEN MATEMATISKE KOMPETENCE, KOMMUNIKATION? KØBENHAVN 29. SEPTEMBER 2015 BINDENDE/VEJLEDENDE BINDENDE MÅL OG TEKSTER: FAGETS FORMÅL KOMPETENCEMÅL (12 STK.) FÆRDIGHEDS-

Læs mere

Matematik. Odense 12. september 2014

Matematik. Odense 12. september 2014 Matematik Odense 12. september 2014 Fra undervisningsmål til læringsmål Fokus på elevernes læring Kompetencemål Målstyret undervisning Forenkling og præcisering klaus.fink@uvm.dk Side 2 Fagformål Fælles

Læs mere

Vejledning til prøverne i faget matematik

Vejledning til prøverne i faget matematik Vejledning til prøverne i faget matematik Kvalitets- og Tilsynsstyrelsen Center for Kvalitetsudvikling, Prøver og Eksamen Marts 2013 Indhold Forord...4 1. Indledning...5 Prøvernes forskellige dele...5

Læs mere

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb 8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb Kaffepause 10:00-10:15 Frokost 12:15-13:00 Kaffepause 13:45-14:00 SPROGLIG UDVIKLING

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 3. semester efterår 2010 Titel 5 til og med Titel 10 Institution Grenaa Tekniske Gymnasium Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2016 Marie

Læs mere

Kompetencemål for Matematik, 4.-10. klassetrin

Kompetencemål for Matematik, 4.-10. klassetrin Kompetencemål for Matematik, 4.-10. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske arbejds- og tænkemåder, matematikdidaktisk teori samt matematiklærerens praksis i folkeskolen

Læs mere

Kvalitets- og Tilsynsstyrelsen udsender hermed nyheder om folkeskolens afsluttende prøver.

Kvalitets- og Tilsynsstyrelsen udsender hermed nyheder om folkeskolens afsluttende prøver. Kvalitets- og Tilsynsstyrelsen Frederiksholms Kanal 25 1220 København K Tlf. 3392 5000 Fax 3392 5567 E-mail ktst@ktst.dk www.ktst.dk CVR nr. 29634750 Nyhedsbrev om folkeskolens afsluttende prøver 2012/2013

Læs mere

Kompetencemål for Matematik, 1.-6. klassetrin

Kompetencemål for Matematik, 1.-6. klassetrin Kompetencemål for Matematik, 1.-6. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske kompetencer, matematikdidaktik samt matematiklærerens praksis i folkeskolen og bidrager herved

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2016 Marie

Læs mere

Ræsonnement og tankegang. DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC

Ræsonnement og tankegang. DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Ræsonnement og tankegang DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Mål og indhold for workshoppen Mål At I kan Indhold opstille og synliggøre læringsmål knyttet til ræsonnement og tankegang på

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Forskellig eller ens? Geometriforløb i 5 klasse.

Forskellig eller ens? Geometriforløb i 5 klasse. Forskellig eller ens? Geometriforløb i 5 klasse. Introduktion til undervisningsforløbet Forløbet behandler forskellige plangeometriske problemstillinger ud fra dagligdagsbegreberne ens og forskellig. Alle

Læs mere

Nyt i faget Matematik

Nyt i faget Matematik Almen voksenuddannelse Nyt i faget Matematik Juli 2012 Indhold Bekendtgørelsesændringer Ændringer af undervisningsvejledningen Den nye opgavetype ved den skriftlige prøve efter D Ændringer af rettevejledningen

Læs mere

Årsplan Matematik 3.klasse 2016/2017

Årsplan Matematik 3.klasse 2016/2017 Årsplan Matematik 3.klasse 2016/2017 Undervisningen i matematik tager udgangspunkt i Trix 3A og 3B, som består af 2 grundbøger og en. Der vil derudover suppleres med opgaver i Pirana 3 samt opgaver på

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015 FFM Matematik pop-up eftermiddag CFU, UCC 11. Maj 2015 Formål Deltagerne har: Kendskab til Forenklede Fælles Måls opbygning Kendskab til tankegangen bag den målstyrede undervisning i FFM Kendskab til læringsmål

Læs mere

Matematik. Evaluering, orientering og vejledning

Matematik. Evaluering, orientering og vejledning Folkeskolens afsluttende prøver Matematik 2015 Evaluering, orientering og vejledning Institut for Læring Evaluering af årets matematikprøver 2015 Færdighedsprøven På landsbasis gik 593 folkeskoleelever

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

WORKSHOP 1C, DLF-kursus, Krogerup Højskole, den 19. oktober 2015

WORKSHOP 1C, DLF-kursus, Krogerup Højskole, den 19. oktober 2015 WORKSHOP 1C, DLF-kursus, Krogerup Højskole, den 19. oktober 2015 opstille og synliggøre læringsmål knyttet til repræsentation og symbolbehandling på forskellige klassetrin udvikle og vurdere undervisningsaktiviteter

Læs mere

Matematik A - Læreplan for forsøg med netadgang ved skriftlig eksamen

Matematik A - Læreplan for forsøg med netadgang ved skriftlig eksamen Matematik A - Læreplan for forsøg med netadgang ved skriftlig eksamen 1. Identitet og formål 1.1 Identitet Matematik A Stx, september 2009 Matematik bygger på abstraktion og logisk tænkning og omfatter

Læs mere

Pythagoras Sætning. Frank Nasser. 20. april 2011

Pythagoras Sætning. Frank Nasser. 20. april 2011 Pythagoras Sætning Frank Nasser 20. april 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Tabelrapport. Bilag til fagevaluering af matematik B på hhx og stx

Tabelrapport. Bilag til fagevaluering af matematik B på hhx og stx Tabelrapport Bilag til fagevaluering af matematik B på hhx og stx Tabelrapport Bilag til fagevaluering af matematik B på hhx og stx Tabelrapport Danmarks Evalueringsinstitut Citat med kildeangivelse er

Læs mere

Spørgeskemaundersøgelse blandt lærere og censorer

Spørgeskemaundersøgelse blandt lærere og censorer Spørgeskemaundersøgelse blandt lærere og censorer Bilag til evaluering af matematik på stx DANMARKS EVALUERINGSINSTITUT Indledning Dette bilag til EVA s evaluering af matematik på stx indeholder i tabelform

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.

Læs mere

Matematik og skolereformen. Busses Skole 27. Januar 2016

Matematik og skolereformen. Busses Skole 27. Januar 2016 Matematik og skolereformen Busses Skole 27. Januar 2016 De mange spørgsmål Matematiske kompetencer, hvordan kommer de til at være styrende for vores undervisning? Algoritmeudvikling, hvad ved vi? Hvad

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

UCC_KURSUS_261016

UCC_KURSUS_261016 26.10.2016 UCC_KURSUS_261016 UCSJ www.mikaelskaanstroem.dk UCC_KURSUS_261016 09 Intro med diverse Dagens forestilling 25. oktober 2016 It, digitale værktøjer & Fælles Mål Øget anvendelse -> Digitalisering

Læs mere

2 Udfoldning af kompetencebegrebet

2 Udfoldning af kompetencebegrebet Elevplan 2 Udfoldning af kompetencebegrebet Kompetencebegrebet anvendes i dag i mange forskellige sammenhænge og med forskellig betydning. I denne publikation som i bekendtgørelse og vejledning til matematik

Læs mere

Bedømmelsesplan for Matematik C

Bedømmelsesplan for Matematik C Bedømmelsesplan for Matematik C Matematik C Hovedområder: Fagretningen: Uddannelser i fagretningen indeholder: Varighed: Læringselementer: Læringsmiljø: Kontor handel og forretningsservice Detail, Handel,

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Matematikvejlederkonference 27. august Matematikvejlederkonference Odense 2015

Matematikvejlederkonference 27. august Matematikvejlederkonference Odense 2015 Matematikvejlederkonference 27. august Læringskonsulenterne Rasmus Ulsøe Kær Martin Villumsen Rikke Kjærup De tværgående temaer i et matematisk perspektiv Innovation og entreprenørskab It og medier Sproglig

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering MULTI 6 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning og skrivning Eleven kan anvende forskellige strategier til matematisk problemløsning

Læs mere

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement Forslag til årsplan for 9. klasse, matematik Udarbejdet af Susanne Nielson og Pernille Peiter revideret august 2011 af pædagogisk konsulent Rikke Teglskov 33-38 Rumgeometri Kende og anvende forskellige

Læs mere

Kompetencemål i undervisningsfaget Matematik ældste klassetrin

Kompetencemål i undervisningsfaget Matematik ældste klassetrin Kompetencemål i undervisningsfaget Matematik ældste klassetrin Kort bestemmelse af faget Faget matematik er i læreruddannelsen karakteriseret ved et samspil mellem matematiske emner, matematiske arbejds-

Læs mere

Mindmaps og begrebsudvikling i matematik i 6.kl.

Mindmaps og begrebsudvikling i matematik i 6.kl. Mindmaps og begrebsudvikling i matematik i 6.kl. Målsætning: Lærermål: At observere på og udvikle brugen af mindmaps i forbindelse med begrebsudvikling og evaluering af matematiske begreber i matematik

Læs mere