UNDERGRUNDEN SOM GEOTERMISK RESSOURCE

Størrelse: px
Starte visningen fra side:

Download "UNDERGRUNDEN SOM GEOTERMISK RESSOURCE"

Transkript

1 UNDERGRUNDEN SOM GEOTERMISK RESSOURCE Specialkonsulent Thomas Vangkilde-Pedersen Seniorrådgiver, geolog Anders Mathiesen Statsgeolog Lars Henrik Nielsen De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS) Undergrunden som termisk ressource Møde 25. maj 2011

2

3 RESUME Danmarks undergrund indeholder meget store geotermiske ressourcer i form af både dyb geotermi og overfladenær geotermi eller jordvarme. Ved dyb geotermi udnyttes meget varmt vand fra store dybder, mens jordvarmeanlæg benytter slanger i jorden eller grundvand til at optage varmen fra de øverste jordlag i kombination med varmepumpeteknologi. Den aktuelle udnyttelse af de geotermiske ressourcer er relativt begrænset, og det er vigtigt med kortlægning af mulighederne samt identifikation af mulige barrierer som skal overvindes, hvis det fulde potentiale for geotermi som vedvarende energikilde skal udnyttes. INDLEDNING Danmarks undergrund indeholder meget store geotermiske ressourcer, som kan udnyttes i det meste af landet, hvor der findes et varme- eller kølebehov. Den geotermiske ressource kan deles op i dyb geotermi og overfladenær geotermi: Dyb geotermi udnytter høje temperaturer på stor dybde (f.eks C svarende til 1-3 kilometers dybde) og varmen hidrører fra radioaktivt henfald af grundstofferne uran, thorium og kalium i jordens indre. Overfladenær geotermi, eller jordvarme, udnytter lavere, mere normale, temperaturer (f.eks C svarende til meters dybde) og varmen hidrører primært fra solindstråling og kun i meget lille grad fra varmefluxen fra jordens indre. Vi har de sidste mere end 30 år gjort brug af begge geotermiske ressourcer. For den dybe ressource i meget begrænset omfang målt i antal anlæg, og for den overfladenære i større men stadig begrænset omfang i form af jordvarmeanlæg i kombination med varmepumper. Det øgede fokus på CO 2 udledning og klimaforandringer samt afhængigheden af en (måske) begrænset ressource af fossile brændsler har imidlertid styrket interessen for geotermi som en vedvarende energikilde, der kan bidrage til opnåelse af Danmarks energipolitiske målsætninger om reduktion af CO 2 udslip og øget forsyningssikkerhed. DYB GEOTERMI Varme fra jordens indre i form af geotermisk energi udnyttes mange steder i Europa. I Danmark stiger temperaturen ca. 30 grader pr. kilometer ned gennem vores undergrund, og den geotermiske energi kan udnyttes ved at pumpe varmt vand fra undergrunden op til overfladen gennem en produktionsboring og ekstrahere varmen ved varmeveksling. Varmen kan derefter ledes via det almindelige fjernvarmenet til forbrugerne. Det afkølede vand returneres derefter til reservoiret gennem en injektionsboring, se Figur 1. De to væsentligste forhold, som har betydning for muligheden for at udnytte den geotermiske energi, er temperaturen og de vandledende egenskaber. Undergrunden skal således indeholde sandstensreservoirer af god kvalitet, dvs. med en tilstrækkelig tykkelse, temperatur og porøsitet til at der er en ressource af varmt vand til stede samt med tilstrækkelig god permeabilitet (væskegennemtrængelighed) til, at det er muligt at producere og injicere vand i henholdsvis produktionsboringen og injektionsboringen. Hvor temperaturen stiger med dybden, falder både porøsiteten og permeabiliteten generelt med dybden på grund af trykket fra de overliggende aflejringer og kemiske udfældningsprocesser, der delvist udfylder porerne. Det betyder, at det primært er dybdeintervallet m, som har den største interesse.

4 Figur 1. For at udnytte den geotermiske varme, skal man bore to dybe huller på et sted, hvor de geologiske forhold er optimale i form af porøse sandstenslag. Fra det ene hul pumpes varmt vand fra sandstenslaget op til overfladen, hvor man trækker varmen ud af vandet. Varmen overføres herefter ved hjælp af en varmeveksler til forbrugerne via fjernvarmenettet. For at sikre at trykket i sandstenslaget bevares uændret, pumpes det afkølede vand tilbage i sandstenslagene, ofte fra samme lokalitet på overfladen, men via en afbøjet injektionsboring som ender et par km fra produktionsområdet. Et geotermisk anlæg i forbindelse med et kraftvarmeværk er typisk ikke i drift om sommeren, da overskudsvarmen i denne periode er stor nok til at opfylde fjernvarmebehovet. Overskudsvarme kan derfor evt. lagres i det porøse sandstenslag som vist i figuren til venstre. Rentabel geotermisk varmeproduktion kræver desuden, at det er muligt at afsætte den producerede varme, f.eks. til et nærliggende fjernvarmenet. Endvidere forudsættes det, at det geotermiske vand holdes i et lukket kredsløb fra produktionsboringen, gennem varmeveksler, og tilbage igen gennem injektionsboringen til reservoiret. Kredsløbet skal være lukket, da vandet fra undergrunden ofte er saltholdigt, og kan - hvis salt udfældes - begrænse mulighederne for at producere vandet fra reservoiret, idet permeabiliteten reduceres. Kortlægning af ressourcen De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS) har igennem mange år drevet forskning og rådgivning i forbindelse med vurderingen af de dybe geotermiske ressourcer i Danmark i tæt samarbejde med private firmaer og offentlige institutioner. Den første landsdækkende analyse af den dybe geotermiske ressource blev igangsat af GEUS i slutningen af halvfjerdserne /1/. Siden da har GEUS i 1998 opdateret vurderingen af ressourcen i samarbejde med DONG Energy og Energistyrelsen /2/, og senest i 2009 bistået Energistyrelsen i udarbejdelsen af en redegørelse vedrørende det geotermiske potentiale i Danmark /3/. Endvidere har GEUS bidraget til udarbejdelsen af et geotermisk atlas, der præsenterer de geotermiske ressourcer i en række EU-lande /4/ og senere bidraget til en opdatering af dette /5/.

5 GEUS' forskning og rådgivning består i dag hovedsageligt i at udvikle geologiske modeller af undergrunden, der beskriver og forudsiger, hvor der findes geologiske lag i undergrunden med varmt vand i tilstrækkelige mængder, som kan pumpes fra de underjordiske lag og op til overfladen. Kortlægningen af undergrunden er baseret på dybe boringer og seismiske undersøgelser. Ved seismiske undersøgelser sender man trykbølger ned igennem jorden. De kastes tilbage fra de geologiske lag, og ved at opsamle de reflekterede signaler kan man kortlægge dybden til undergrundens lag og tykkelsen af lagene. Tidligere brugte man dynamit til at skabe trykbølgerne, men nu bruger man på land hovedsagelig tunge køretøjer, som kan sende vibrationer ned i undergrunden, mens man til søs bruger luftkanoner som affyres under højt tryk. På baggrund af den geologiske viden er en række reservoirer med sandstenslag identificeret. Det er alle sandstenslag som tilhører formationer fra de geologiske perioder Trias, Jura og Kridt: Frederikshavn Formationen: Jura/Kridt alder, siltsten og finkornet sandsten med lag af lersten. Haldager Sand Formationen: Jura alder, fin til grovkornet sandsten med lag af silt- og lersten. Gassum Formationen: Trias/Jura alder, fin til mellemkornet sandsten og lokal grovkornet sandsten. Skagerrak Formationen: Trias alder, grov og dårlig sorteret sandsten med lag af lersten. Bunter Sandsten Formation: Trias alder, fin til mellemkornet og lokal grovkornet sandsten. I Figur 2 er vist et kort over det regionale geotermiske potentiale i Danmark baseret på GEUS' mangeårige arbejde. Kortet viser, at det er sandsynligt, at der findes potentielle sandstensreservoirer i hovedparten af landet og nærkystområderne. Desuden findes der flere områder, hvor to eller flere af de potentielle reservoirer kan have et geotermisk potentiale. Simple overslagsberegninger viser, at Danmarks undergrund har meget store geotermiske ressourcer, og at geotermisk energi vil kunne bidrage til varmeforsyningen i adskillige hundrede år. Hovedstadsområdets Geotermiske Samarbejde (HGS) offentliggjorde i begyndelsen af 2009 en ny vurdering, som viser, at de geotermiske reserver i det østlige Sjælland kan dække % af fjernvarmeproduktionen i hovedstadsområdet i flere tusind år. Eksisterende og planlagte anlæg og mulige barrierer Der er hidtil etableret 2 dybe geotermiske anlæg i Danmark. I 1984 blev der etableret et anlæg ved Thisted som har været i drift siden. En borekampagne i forbindelse med projektet viste imidlertid, at reservoirkvaliteten aftager markant med dybden, og interessen for projekter, hvor det varme vand var planlagt til at skulle hentes fra store dybder, kølnedes noget. Siden har ny teknologi betydet, at varmen fra relativt lave temperaturer kan udnyttes mere effektivt, så man ikke længere er så afhængig af meget varmt vand fra dybe, lav-porøse og lav-permeable reservoirer. I 2005 blev der således etableret endnu et anlæg ved Amagerværket i København, og senest er der udført undersøgelser for planlagte anlæg ved Sønderborg og Viborg.

6 Figur 2 Kort over Danmark som viser det regionale geotermiske potentiale for mulige sandstensrige reservoirer. Kortet er baseret på en begravelsesdybde for reservoirerne på m og på at reservoirtykkelsen er større end 25 m. De hvide områder indikerer at reservoiret ikke er til stede (Ringkøbing-Fyn Højeryggen), ligger for grundt (< 1000 m; nordligste Jylland) eller er begravet for dybt (> 3000 m; centrale del af Det Danske Bassin). Bemærk fordelingen af de dybe boringer, samt placeringen af de to geotermiske anlæg ved Thisted og på Margretheholm nær København.

7 En væsentlig barriere for udnyttelse af den store danske geotermiske ressource er de geologiske risici. Det er derfor et mål for GEUS løbende forskningsaktiviteter at reducere risiciene ved at øge vores viden om undergrundens opbygning og beskaffenhed, og derved muliggøre etablering af mere pålidelige og detaljerede geologiske prognoser. Usikkerheden i prognoserne er dels relateret til de komplicerede geologiske forhold i undergrunden, og dels til utilstrækkelige og ujævnt fordelt data, hvilket medfører, at de regionale geologiske modeller for de potentielle geotermiske reservoirer ofte er usikre, når det kommer til konkrete vurderinger af lokale geotermiske prospekter. Eksempelvis er der mange områder, hvor det nuværende datagrundlag er for mangelfuldt til, at de lokale variationer i reservoirernes udbredelse, kontinuitet, tykkelse, kvalitet og temperatur kan kortlægges og forudsiges med en stor sikkerhed og detaljeringsgrad. En præcis vurdering af det geotermiske potentiale af lokale prospekter eller byer forudsætter blandt andet, at det lokale aflejringsmiljø for reservoiret vurderes i tilstrækkelig detaljegrad og sættes i relation til den lokale indsynkningshistorie, samt at den diagenetiske udvikling af reservoiret vurderes og eventuelt undersøges på basis af tilgængelige lokale data og prøvemateriale. Seismiske data bør tolkes med henblik på vurdering af reservoirets dybde og kontinuitet samt identifikation af eventuelle forkastninger. Data fra nærliggende boringer vurderes ved hjælp af kvantitativ computer-baseret logtolkning og eventuel bassin- og reservoirmodellering. Data fra prøvepumpetest i forbindelse med den første prøveboring vil derfor give værdifulde informationer om reservoirets ydeevne. Herunder opremses kort en række barrierer for udnyttelsen af geotermisk energi i Danmark: Fossile brændstoffer er billige, effektive og meget fleksible. Generelt har vi varme nok, idet varme er et biprodukt ved el-produktionen fra olie, gas, kul eller andre brændsler, og denne varme bruges via fjernvarmenettet. Geotermisk efterforskning inklusiv nye seismiske data, 2 boringer og rådgivning koster minimum 50 mio. kr. Skitse til modning af beslutningsprocessen vedr. et områdes geotermiske potentiale Alle geotermiske prospekter er forbundet med en vis risiko; GEUS vurderer generelt, at chancen for succes ligger mellem 0 og 90 % afhængig af områdets undergrund. De indledende undersøgelser tjener formålet at indskrænke dette udfaldsrum; GEUS anbefaler derfor følgende mulige arbejdsgang for at minimere efterforskningsrisikoen og trinvis øge beslutningsgrundlaget for fortsættelse eller opgivelse: Opstilling af en foreløbig geologisk model baseret på lokale data (i den udstrækning sådanne findes) kombineret med GEUS regionale geologiske modeller. Hvis der findes ikke-frigivne seismiske eller boringsdata i eller nær lokalområdet, kan licensansøgeren overveje at søge adgang til disse data da de kan styrke sikkerheden af den geologiske model. Hvis den foreløbige geologiske model forudsiger, at der findes reservoirer med et begrænset potentiale i lokalområdet, bør en foreløbig simulering af reservoirets mulige vandproduktion foretages for at få et så præcist udtryk for den mængde af varmt vand, der kan udnyttes, som muligt.

8 Hvis det beregnede potentiale er tilstrækkeligt til geotermisk udnyttelse, vil næste trin være at indsamle en tilstrækkelig mængde nye seismiske data, så en detaljeret seismisk kortlægning af lokalområdet kan foretages, bl.a. for at sikre at prospektet ikke gennemskæres af større forkastninger. Efter tolkning og kortlægning af de nye data opstilles en ny revideret geologisk model baseret på integration af de nye og tidligere data; på denne baggrund opstilles en ny og mere sikker prognose. Hvis prognosen for den valgte lokalitet er tilfredsstillende med hensyn til tilstedeværelse af et eller flere reservoirer med gode sandstenslag med geotermisk potentiale og tilstrækkelig afstand til forkastninger m.m., vil næste trin være at opstille en egentlig boreprognose for en efterforskningsboring. I forbindelse med udførelsen af efterforskningsboringen gennemføres der grundige pumpetests i de potentielle sandstenslag for at få afklaret, om undergrunden er velegnet til geotermisk varmeproduktion. Herefter vurderes resultaterne af boringen med fokus på beskaffenheden og dybdeforholdene af undergrundens lag; resultaterne evalueres, og forventningerne til det geotermiske potentiale justeres. Hvis prøvepumpningen af boringen i de potentielle sandstenslag er positiv, kan det være med til at afklare, hvor store mængder varmt vand der kan produceres, og om et geotermisk anlæg kan etableres. De nye data integreres med de eksisterende data, og den regionale geologiske model for undergrundens opbygning opdateres baseret på de nye boringsinformationer, hvorved modellen styrkes, og sikkerheden i fremtidige vurderinger af efterforskningsrisici øges. OVERFLADENÆR GEOTERMI (JORDVARME) Hvor den dybe geotermi udnytter varmen fra jordens indre gennem oppumpning af varmt vand fra kilometer-dybe boringer, udnytter den overfladenære geotermi den oplagrede varme i de øverste jordlag baseret på en kombination af varmepumper og slanger i jorden til at optage varmen, eller varmepumper som optager varmen direkte fra oppumpet grundvand. Det hele foregår ved relativt lave temperaturer, typisk 8-11 C, og jordvarmeanlæg kan, hvis de er designet rigtigt, benyttes til både varme og køling. Ved udnyttelse af jordvarme produceres typisk 3-5 gange så meget energi som der tilføres i form af elektricitet til varmepumpen og en britisk undersøgelse /6/ viser således at CO 2 - udledningen ved opvarmning baseret på jordvarme typisk er det halve i forhold til opvarmning med f.eks. naturgasfyr. Varmepotentialet i de øverste få hundrede meter af jorden stammer primært fra solindstråling og i mindre grad fra den geotermiske varmeflux fra jordens indre, se også Figur 3. En anden essentiel forskel er at anlæg til udnyttelse af den dybe geotermiske energi typisk er af

9 en størrelse, hvor flere tusinde husstande forsynes med varme, og mest hensigtsmæssigt udnyttes i kombination med eksisterende fjernvarme-infrastruktur. I modsætning hertil er jordvarmeanlæg typisk designet til forsyning af alt fra en enkelt husstand til større enkeltbygninger/bygningskomplekser. Hvor enfamiliehusstande kun har behov for opvarmning, er det med varmepumpeteknologi muligt at dække behovet for både opvarmning og afkøling i f.eks. større kontorbygninger. Jordvarme har således et stort potentiale både i forbindelse med f.eks. skrotning af gamle oliefyr i private centralvarmeanlæg, og i forbindelse med opvarmning/afkøling af større bygninger. Figur 3. Figuren illustrer fordelingen af solindstråling og varmeflux fra jordens indre, årstidsvariationer i temperaturen i de øverste m af jorden og den generelle temperaturgradient (fra David Banks, 2008 /6/).

10 Det er relevant at skelne mellem 3 forskellige typer jordvarmeanlæg, se Figur 4: A) Lukkede systemer med horisontale slanger ca. 1 m under terræn. B) Lukkede systemer med vertikale slanger monteret i jordvarmeboringer. C) Åbne systemer med en produktionsboring og en injektionsboring. I de lukkede systemer cirkuleres en frostsikret væske i slanger. Væsken optager varme fra jorden som afgives i en varmepumpe, og den afkølede væske ledes atter gennem slangerne og optager på ny varme fra jorden. A) B) C) Figur 4...llustration af forskellige typer jordvarmeanlæg. A) Lukket system med horisontale slanger ca. 1 m under terræn. B) Lukket system med vertikale slanger i jordvarmeboringer. C) Åbent system med boringer til produktion og injektion (fra Burkhard Sanner, 2011 /7/). Anlæg med horisontale slanger kræver relativt meget areal og genetablering efter installation. De horisontale anlæg er desuden påvirket af årstidsvariationer med lave temperaturer i jorden i vinterhalvåret og høje temperaturer om sommeren, se Figur 3. De lave temperaturer om vinteren giver selvfølgelig en dårligere driftsøkonomi, men til gengæld opvarmes jordvolumet relativt hurtigt i løbet af sommeren. Anlæg med vertikale slanger installeret i jordvarmeboringer kræver stort set ingen plads og meget lidt genetablering, men kan være lidt dyrere i anlægsomkostninger. Til gengæld har de typisk en bedre udnyttelsesgrad i kraft af højere og ikke mindst konstant temperatur i jorden året igennem, Figur 4. Man skal dog være opmærksom på energibalancen i systemet,da gen-opvarmningen af jordvolumet foregår væsentligt langsommere, når man er under den dybde, som er påvirket af årstidsvariationerne (typisk m). Systemet kan optimeres ved tilførsel af varme i sommerperioden, enten i forbindelse med køling i bygninger eller f.eks. via solfangerpaneler. I større målestok har jordvarmeboringer imidlertid også et stort potentiale for lagring af energi, som produceres på tidspunkter, hvor behovet er lille, eller hvor der er overproduktion, som det typisk er tilfældet med f.eks. kraftvarmeværker i sommerperioden, vindmøller og solvarmepaneler.

11 I de åbne systemer afkøles oppumpet grundvand i varmepumpen og ledes tilbage i jorden i en injektionsboring. Der er relativt strenge krav om minimal påvirkning af de lokale hydrogeologiske forhold og temperaturer i grundvandssystemet, og der kan forekomme interessekonflikter med drikkevandsindvinding og mellem naboanlæg. Eksisterende anlæg, vigtige parametre og mulige barrierer Udnyttelse af jordvarme i Danmark har indtil nu hovedsageligt været baseret på lukkede anlæg med horisontale slanger, men lukkede anlæg med vertikale slanger i jordvarme-boringer begynder at blive mere udbredt og i f.eks. Tyskland og især Sverige er antallet af denne type anlæg meget højt. Antallet af jordvarmeanlæg baseret på åbne systemer i Danmark er relativt begrænset, og de fleste har været designet til køling. Der eksisterer ikke nogen formel registrering af jordvarmeanlæg i Danmark, men det samlede antal blev i 2008 skønnet til at være omkring /8/. Tilsvarende var der jordvarmeanlæg i Sverige i 2004, og 80 % af disse skønnedes at være lukkede systemer med vertikale slanger i boringer /9/. Jordens termiske egenskaber har betydning for, hvor meget energi der kan indvindes i et lukket vertikalt jordvarmesystem. Det drejer sig om parametre som varmeledningsevne, termisk diffusivitet, specifik varmekapacitet, varmestrøm, temperaturgradient og overfladetemperatur m.m. Desuden har det betydning, hvilke materialer der er brugt til slanger og forsegling. Udover jordlag og materialers termiske egenskaber, betyder flowhastigheden og viskositeten af væsken i jordkredsløbet også noget for, hvor megen varme der optages i slangerne. Varmeledningsevnen i de øvre jordlag er generelt bedre under grundvandsspejlet end over, fordi vandet i jorden forbedrer kontakten mellem de enkelte korn (luft har en meget ringe varmeledningsevne). Herudover kan interaktion med det omgivende grundvandssystem være både en fordel og en ulempe i forbindelse med lukkede systemer i jordvarmeboringer. Generelt vil grundvandsstrømning i et område have en positiv effekt, hvis jordvarmeboringer anvendes udelukkende til enten opvarmning eller afkøling, fordi der tilføres energi fra andre områder til det aktuelle jordvolumen. Tilsvarende vil grundvandsstrømning generelt have en negativ effekt ved alternerende drift (opvarmning om vinteren og afkøling om sommeren) eller ved lagring af overskudsvarme, fordi grundvandsstrømningen i et vist omfang vil fjerne den tilførte energi fra jordvolumet. Selvom vore nabolande har stor erfaring i etablering af vertikale lukkede systemer, mangler vi i høj grad viden om og erfaring med denne type anlæg under danske geologiske forhold. I Sverige etableres næsten alle jordvarmeboringer i krystallint grundfjeld, som er nemmere at bore i og har markant bedre varmeledningsegenskaber end bløde sedimenter. I den tyske VDI norm for termisk udnyttelse af undergrunden findes der eksempler på forskellige jord- og bjergarters varmeledningsevne og varmekapacitet, men det er kun i Nordtyskland, at de overfladenære geologiske forhold er sammenlignelige med vores, og vi mangler både undersøgelser og viden om danske jordarters termiske egenskaber. Samtidig er der behov for mere viden om design af anlæg i forhold til energibehov og en effektiv og stabil drift med balance i energiudnyttelsen. Energistyrelsen har i en undersøgelse i 2010 /10/ identificeret en række barrierer for udbredelsen af jordvarmeanlæg i Danmark:

12 Tilbagebetalingstiden på etablering af anlæg Manglende gennemsigtighed i markedet Generel mangel på viden og erfaring Manglende uddannelse af designere og installatører Nyt forsknings- og udviklingsprojekt Et nyt forsknings- og udviklingsprojekt sætter fra 1. marts 2011 og 3 år frem fokus på jordvarmeboringer. Projektets titel er GeoEnergi, Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice. Formålet med projektet er at bane vejen for større udbredelse af varmepumpesystemer baseret på jordvarmeboringer gennem tilvejebringelse af viden, værktøjer og best practice for planlægning og design af installationer. Projektets aktiviteter er struktureret i 8 work packages og omfatter: Indsamling og analyse af eksisterende information og erfaring samt identifikation af nøgleparametre for planlægning, design og installation af varmepumpesystemer baseret på jordvarmeboringer. Et omfattende kortlægnings- og måleprogram af overfladetemperaturer, temperaturgradienter og termiske egenskaber af forskellige jordarter og materialer. Optimering af systemdesign i forhold til miljø og økonomi, baseret på eksisterende installationer og test sites, inklusiv borearbejde og udstøbning af boringer, automatisering af systemer, analyser af energibalance, energilagring (opvarmning og afkøling) samt modellering af varme- og grundvandsstrømning. Opbygning af en database med resultater fra indsamling af eksisterende informationer, måleprogrammer og kortlægningsarbejde. Oplysnings- og informationsaktiviteter, inklusiv brugerflade til database, kursusmateriale til uddannelse og efteruddannelse, workshops og seminarer, tekniske vejledninger og forslag til udbygning af administrationsgrundlag. Projektet støttes af Energistyrelsens Energiteknologisk Udviklings- og Demonstrationsprogram (EUDP), ledes af GEUS og udføres sammen med 8 partnere: VIA University College, Horsens; Geologisk Institut, Aarhus Universitet; Den Jydske Håndværkerskole; Dansk Miljøog Energistyring A/S; Geodrilling A/S; Brædstrup Fjernvarme AMBA; DONG Energy Power A/S; Robert Bosch A/S, IVT Naturvarme. KONKLUSION Den danske undergrund har et stort potentiale som geotermisk ressource til såvel opvarmning som køleformål. For både dyb geotermi og jordvarme er der tale om vedvarende energikilder, som kan bidrage væsentligt til den globale klimaudfordring. For den dybe geotermi er det helt essentielt at minimere den geologiske og økonomiske risiko gennem grundige forundersøgelser. For jordvarme mangler vi stadig viden og praktisk erfaring for at kunne udnytte ressourcen optimalt, ligesom der kan være områder, hvor en vedtagen varmeplan eller lokalplan spænder ben for etablering af f.eks. jordvarmeboringer.

13 En øget elproduktion fra vindkraft vil give plads til både mere dyb geotermi og jordvarme i forhold til den eksisterende overskudsproduktion af varme på kraftvarmeværkerne, ligesom jordvarmeboringer kan benyttes som energilager i kombination med både solfangeranlæg og overskudsvarmen fra kraftværkerne i sommerperioden. Med den stærkt øgede fokus på klima- og energiområdet tyder meget på, at vi i Danmark vil kunne nå op på, at en væsentlig del af vores energi til opvarmning (og afkøling) kommer fra jorden, og aktiviteten bliver næppe mindre nu, hvor Regeringen har vedtaget, at private oliefyr skal udfases allerede fra næste år. REFERENCER /1/ Kortlægning af potentielle geotermiske reservoirer i Danmark. Michelsen, O., Danmarks Geologiske Undersøgelse Serie B Nr. 5. /2/ Geotermi i Danmark: Geologi og ressourcer. Sørensen, K., Nielsen, L.H., Mathiesen, A. & Springer, N., 1998: GEUS Rapport 1998/123. /3/ Vurdering af det geotermiske potentiale i Danmark. Mathiesen, A., Kristensen, L., Bidstrup, T. & Nielsen, L.H., GEUS Rapport 2009/59. /4/ Atlas of Geothermal Resources in the European Community, Austria and Switzerland. Haenel, R. & Staroste, E. (eds), Verlag Th Schäfer, Hannover Germany. /5/ Atlas of Geothermal Resources in Europe. Publication No. EUR Hurter, S. & Haenel, R. (eds), Office for Oficial Publications of the European Communities, Luxemburg. /6/ An Introduction to Thermogeology: Ground Source Heating and Cooling. Banks, D., Blackwell, Oxford. /7/ Overview of shallow geothermal systems. In: Geotrainet training manual for designers of shallow geothermal systems. ISBN No Sanner, B., Geotrainet Project IEE/07/581/SI /8/ Jordvarmeanlæg Teknologier og risiko for jord- og grundvandsforurening. Miljøprojekt Nr.1238 udarbejdet af COWI, Willumsen, B., Miljøstyrelsen. /9/ Geothermal (Ground-Source) Heat Pumps. A world overview. Lund, J., Sanner, B., Rybach, L., Curtis, R. & Hellström, G., GHC Bulletin. /10/ Varmepumper i helårshuse. Barrierer og erfaringer blandt danske husejere. Analyse udarbejdet for Energistyrelsen af Publikum Kommunikation og invirke. ISBN www: , Energistyrelsen.

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice De Nationale Geologiske Undersøgelser for Danmark og Grønland Klima-, Energi- og Bygningsministeriet

Læs mere

JORDEN SOM VARMEKILDE D

JORDEN SOM VARMEKILDE D JORDEN SOM VARMEKILDE D anmarks undergrund indeholder meget store geotermiske ressourcer i form af både dyb geotermi og overfladenær geotermi eller jordvarme. Ved dyb geotermi udnyttes meget varmt vand

Læs mere

Undergrunden som geotermisk ressource

Undergrunden som geotermisk ressource Undergrunden som geotermisk ressource EnviNa TM 14 Grundvandsbaseret Geoenergi Afdelingsleder Thomas Vangkilde-Pedersen Seniorrådgiver, geolog Anders Mathiesen Afdelingsleder Lars Henrik Nielsen De Nationale

Læs mere

UNDERGRUNDEN SOM TERMISK RESSOURCE 1-14 Specialkonsulent Thomas Vangkilde-Pedersen, GEUS

UNDERGRUNDEN SOM TERMISK RESSOURCE 1-14 Specialkonsulent Thomas Vangkilde-Pedersen, GEUS Indholdsfortegnelse Side UNDERGRUNDEN SOM TERMISK RESSOURCE 1-14 Specialkonsulent Thomas Vangkilde-Pedersen, GEUS INTRODUKTION TIL JORDVARME OG 15-26 VARMEPUMPENS VELSIGNELSER Geolog Inga Sørensen, VIA

Læs mere

Varmelagring i dybe formationer ved Aalborg

Varmelagring i dybe formationer ved Aalborg Temadag om geotermi og varmelagring Dansk Fjervarme, møde i Kolding den 20. november 2018 Varmelagring i dybe formationer ved Aalborg En undersøgelse af de geologiske muligheder for varmelagring i undergrunden

Læs mere

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Følgegruppemøde 19-03-2012, GEUS, Århus De Nationale Geologiske Undersøgelser for Danmark og Grønland

Læs mere

Skal vi satse på geotermisk varme? Med udsigt til at skaffe varme til den halve pris og en mere bæredygtig varmeproduktion

Skal vi satse på geotermisk varme? Med udsigt til at skaffe varme til den halve pris og en mere bæredygtig varmeproduktion Skal vi satse på geotermisk varme? Med udsigt til at skaffe varme til den halve pris og en mere bæredygtig varmeproduktion Giv din mening til kende på Tønder Fjernvarmes generalforsamling den 7. september

Læs mere

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Resume Projektets formål er at tilvejebringe og formidle viden og værktøjer som kan bane vejen for en

Læs mere

4000 C magma. Fjernvarme fra geotermianlæg

4000 C magma. Fjernvarme fra geotermianlæg Fjernvarme fra geotermianlæg Geotermianlæg producerer varme fra jordens indre ved at pumpe varmt vand op fra undergrunden og overføre varmen til fjernvarmenet med varmevekslere og varmepumper. Vind og

Læs mere

Geotermi på Sjælland: muligheder og barrierer

Geotermi på Sjælland: muligheder og barrierer Geotermi på Sjælland: muligheder og barrierer Paul Thorn Niels Schrøder Ole Stecher Institut for Miljø, Samfund og Rumlig Forandring Roskilde Universitet Boks 260 4000 Roskilde pthorn@ruc.dk Introduktion:

Læs mere

GEOTHERM. Projekt støttet af Innovationsfonden. Følgegruppemøde. 16. april Anders Mathiesen

GEOTHERM. Projekt støttet af Innovationsfonden. Følgegruppemøde. 16. april Anders Mathiesen Projekt støttet af Innovationsfonden Følgegruppemøde 16. april 2018 Anders Mathiesen De Nationale Geologiske Undersøgelser for Danmark og Grønland Energi-, Forsynings- og Klimaministeriet GEOTHERM (Projektperiode:

Læs mere

Jordvarmeboringer - fremtidens energikilde? Lotte Thøgersen VIA University College

Jordvarmeboringer - fremtidens energikilde? Lotte Thøgersen VIA University College Jordvarmeboringer - fremtidens energikilde? Lotte Thøgersen VIA University College 1 De fossile brændsler forsvinder De fossile brændstoffer kul, olie og naturgas er en trussel mod klimaet men mængden

Læs mere

Oplæg til Workshop. Geotermi. det nye erhvervseventyr. Hvis varmt vand var næsten gratis..

Oplæg til Workshop. Geotermi. det nye erhvervseventyr. Hvis varmt vand var næsten gratis.. Oplæg til Workshop Geotermi det nye erhvervseventyr Hvis varmt vand var næsten gratis.. Hvad handler det om? I undergrunden under Salling findes store mængder varmt vand i 2 km s dybde geotermisk varme.

Læs mere

Geotermisk energi er der en fremtid?

Geotermisk energi er der en fremtid? Energipolitisk åbningsdebat Årets energikonference 2017 Geotermisk energi er der en fremtid? De Nationale Geologiske Undersøgelser for Danmark og Grønland Energi-, Forsynings- og Klimaministeriet Statsgeolog

Læs mere

4000 C magma. Fjernvarme fra geotermianlæg

4000 C magma. Fjernvarme fra geotermianlæg Fjernvarme fra geotermianlæg Geotermianlæg producerer varme fra jordens indre ved at pumpe varmt vand op fra undergrunden og overføre varmen til fjernvarmenet med varmevekslere og varmepumper. Vind og

Læs mere

Geotermisk energi Energien under vores fødder NOAHs Forlag

Geotermisk energi Energien under vores fødder NOAHs Forlag Geotermisk energi Energien under vores fødder Vores undergrund rummer energi nok til at dække en stor del af vores opvarmningsbehov. Men hidtil har denne energikilde ligget næsten ubenyttet hen. På trods

Læs mere

HGS. Geotermisk Demonstrationsanlæg. Varmepumpebygning. Geotermivandskreds med boringer. Varmepumpe bygning. Kastrup Luftfoto

HGS. Geotermisk Demonstrationsanlæg. Varmepumpebygning. Geotermivandskreds med boringer. Varmepumpe bygning. Kastrup Luftfoto HGS Geotermisk Demonstrationsanlæg Geotermivandskreds med boringer Geotermivandskreds med boringer Varmepumpebygning Varmepumpe bygning Kastrup Luftfoto HGS - Princip for geotermisk indvinding Drivvarme

Læs mere

Fremtidens fjernvarme

Fremtidens fjernvarme Klima-, Energi- og Bygningsudvalget 2014-15 KEB Alm.del Bilag 89 Offentligt Fremtidens fjernvarme Et koncept for et skalérbart fjernvarmenet, der ved hjælp af lodrette jordvarmeboringer og varmepumper,

Læs mere

Termiske egenskaber i jord og grundvand. Forskningschef Lotte Thøgersen og Ph.D studerende Tillie Madsen Forskergruppen Energi og Miljø

Termiske egenskaber i jord og grundvand. Forskningschef Lotte Thøgersen og Ph.D studerende Tillie Madsen Forskergruppen Energi og Miljø Termiske egenskaber i jord og grundvand Forskningschef Lotte Thøgersen og Ph.D studerende Tillie Madsen Forskergruppen Energi og Miljø Verdens energiudfordring Kilde: Vores Energi, Regeringen, november

Læs mere

PLAN FOR UDBUD AF GEOTERMI DECEMBER 2012

PLAN FOR UDBUD AF GEOTERMI DECEMBER 2012 PLAN FOR UDBUD AF GEOTERMI DECEMBER 2012 PLAN FOR UDBUD AF GEOTERMI DECEMBER 2012 1 Indholdsfortegnelse 1. GEOTERMI I DANMARK 2 1.1. ENERGISTRATEGI 2 1.2. POTENTIALER 2 1.3. MARKED 4 2. VILKÅR FOR UDBUD

Læs mere

GeoEnergi projektet opgaver der berører sagsbehandlingen

GeoEnergi projektet opgaver der berører sagsbehandlingen GeoEnergi projektet opgaver der berører sagsbehandlingen Disposition Introduktion til projektet Status for etablering af jordvarmeboringer i Danmark Geologi og jordvarmeboringer Hvordan kan en jordvarmeboring

Læs mere

Geotermi - varme fra jordens indre. Status og muligheder i Danmark

Geotermi - varme fra jordens indre. Status og muligheder i Danmark Geotermi - varme fra jordens indre Status og muligheder i Danmark Oktober 2009 Geotermi varme fra jordens indre Status og muligheder i Danmark Oktober 2009 Denne redegørelse om status og muligheder for

Læs mere

Arbejder med energi, funderet I jordvarmeboringer. Eksterne partnere I form af virksomheder og myndigheder Andre VIA afdelinger Studerende

Arbejder med energi, funderet I jordvarmeboringer. Eksterne partnere I form af virksomheder og myndigheder Andre VIA afdelinger Studerende Breakfast Club lyn-introduktion til Energi-gruppen Hvem er vi? 1 chef 3 undervisere (og endnu en undervejs) 1 projektmedarbejder 1 Erhvervs-PhD studerende Lidt løs hjælp I form af tidligere og nuværende

Læs mere

GEOTHERM. Reservoir egenskaber. Diagenese og geokemisk modellering

GEOTHERM. Reservoir egenskaber. Diagenese og geokemisk modellering GEOTHERM Reservoir egenskaber Diagenese og geokemisk modellering De Nationale Geologiske Undersøgelser for Danmark og Grønland Energi-, Forsynings- og Klimaministeriet I samarbejde med BRGM, LU, GFZ Thisted

Læs mere

NYVURDERING AF GEOTERMISK ENERGI Har geotermien en fremtid i Danmark?

NYVURDERING AF GEOTERMISK ENERGI Har geotermien en fremtid i Danmark? NYVURDERING AF GEOTERMISK ENERGI Har geotermien en fremtid i Danmark? Kai Sørensen, Anders Mathiesen, Ole V. Vejbæk og Niels Springer Temperaturen stiger med ca 30º C pr. km ned gennem den danske undergrund.

Læs mere

Kortlægning af mulighederne for geologisk varmelagring

Kortlægning af mulighederne for geologisk varmelagring VIA University College Kortlægning af mulighederne for geologisk varmelagring AP2: Tekniske og miljømæssige muligheder og risici Søren Erbs Poulsen, Docent Brædstrup Fjernvarme Indhold Undergrunden som

Læs mere

Geotermi i Danmark, 12. maj 2016. Web-GIS portal. Geotermisk screening. Status på de aktive værker

Geotermi i Danmark, 12. maj 2016. Web-GIS portal. Geotermisk screening. Status på de aktive værker Geotermi i Danmark, 12. maj 2016 Web-GIS portal Geotermisk screening Status på de aktive værker De Nationale Geologiske Undersøgelser for Danmark og Grønland Energi-, Forsynings- og Klimaministeriet Velkommen

Læs mere

Geotermi i Farum Information om seismiske undersøgelser Forventet tidsrum: 1. maj 30. juli 2013 (ret til ændringer forbeholdes)

Geotermi i Farum Information om seismiske undersøgelser Forventet tidsrum: 1. maj 30. juli 2013 (ret til ændringer forbeholdes) Geotermi i Farum Information om seismiske undersøgelser Forventet tidsrum: 1. maj 30. juli 2013 (ret til ændringer forbeholdes) Farum Fjernvarme fik i 2012 koncession l undersøgelse og indvinding af geotermisk

Læs mere

Jordlag, Forekomst af skifergas i Danmark og globalt

Jordlag, Forekomst af skifergas i Danmark og globalt Jordlag, Forekomst af skifergas i Danmark og globalt Niels H. Schovsbo Reservoir geolog De Nationale Geologiske Undersøgelser for Danmark og Grønland Klima-,Energi- og Bygningsministeriet (Foredrag lavet

Læs mere

Hvorfor lagre varme der er varme i undergrunden

Hvorfor lagre varme der er varme i undergrunden Allan Mahler am@geotermi.dk Specialist og tekniksansvarlig Præsentation ved kursus i Ingeniørforeningen: Varmeproduktion og varmelagring ved geotermi, 30-31 januar 2012 Gengivelse er tilladt med kildeangivelse:

Læs mere

Varmelagring i dybe formationer ved Aalborg - Numerisk modellering

Varmelagring i dybe formationer ved Aalborg - Numerisk modellering Varmelagring i dybe formationer ved Aalborg - Numerisk modellering med bidrag fra Charlotte Guldager, Marton Major og Søren Erbs Poulsen 1 Indhold Princip med lighedspunkter til dyb geotermi Case Aalborg

Læs mere

CO2-neutrale sygehuse med ATES

CO2-neutrale sygehuse med ATES CO2-neutrale sygehuse med ATES Civilingeniør Stig Niemi Sørensen www.enopsol.dk Indledning Det er i dag muligt at producere helt fossil- og CO 2-fri køling og opvarmning til de danske sygehuse og vel at

Læs mere

Introduktion til lukkede jordvarmeboringer

Introduktion til lukkede jordvarmeboringer Introduktion til lukkede jordvarmeboringer Virkemåde Udbredelse Geologi Risiko Krav Tilsyn Claus Ditlefsen Temadag om jordvarmeboringer 25-06-2015 Udfordring For at imødegå global opvarmning og stigende

Læs mere

Temadag 1. februar 2012

Temadag 1. februar 2012 Temadag 1. februar 2012 Energianlæg - en trussel for grundvandet? 05-02-2012 1 Karsten Juul Geolog Siden 1991: Vandforsyning Siden 1997: Grundvandskortlægning Siden 2008: Energianlæg baseret på grundvand

Læs mere

Overfladetemperaturer og temperaturgradienter i jorden

Overfladetemperaturer og temperaturgradienter i jorden Overfladetemperaturer og temperaturgradienter i jorden Ingelise Møller (GEUS) Niels Balling og Thue S. Bording (AU), Giulio Vignoli og Per Rasmussen (GEUS) Energianlæg baseret på jordvarmeboringer - udvikling

Læs mere

Svar på 14 spørgsmål fra Enhedslisten om geotermi

Svar på 14 spørgsmål fra Enhedslisten om geotermi N O T AT 22. december 2011 J.nr. 3401/1001-3680 Ref. Svar på 14 spørgsmål fra Enhedslisten om geotermi Spørgsmål 1: Hvad er potentialet for udnyttelse af geotermisk energi i Danmark og hvor stor en del

Læs mere

Geothermal energy from sedimentary reservoirs Removing obstacles for large scale utilization GEOTHERM

Geothermal energy from sedimentary reservoirs Removing obstacles for large scale utilization GEOTHERM Geothermal energy from sedimentary reservoirs Removing obstacles for large scale utilization GEOTHERM 2. Advisory Board / Følgegruppe møde 23. maj 2019 Lars Henrik Nielsen De Nationale Geologiske Undersøgelser

Læs mere

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice

Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energianlæg baseret på jordvarmeboringer - udvikling af markedsfremmende værktøjer og best practice Energiteknologisk Udviklings- og Demonstrations Program (EUDP) Område: Energieffektivisering Program:

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen Præsentation Geotermi i Danmark 12 maj 216 Overblik 28 udvalgte

Læs mere

Bilag 1. Nabovarmeprojekt i Solrød Geologisk Undersøgelse. Paul Thorn (RUC).

Bilag 1. Nabovarmeprojekt i Solrød Geologisk Undersøgelse. Paul Thorn (RUC). Opstartsrapport ForskEl projekt nr. 10688 Oktober 2011 Nabovarme med varmepumpe i Solrød Kommune - Bilag 1 Bilag 1. Nabovarmeprojekt i Solrød Geologisk Undersøgelse. Paul Thorn (RUC). Som en del af det

Læs mere

Skifergas i Danmark en geologisk analyse

Skifergas i Danmark en geologisk analyse Skifergas i Danmark en geologisk analyse Niels H. Schovsbo Reservoir geolog De Nationale Geologiske Undersøgelser for Danmark og Grønland Klima-,Energi- og Bygningsministeriet Måske Måske ikke Artikel

Læs mere

Præsenteret af Søren Andersen, GeoDrilling

Præsenteret af Søren Andersen, GeoDrilling Præsenteret af Søren Andersen, GeoDrilling Termisk Smart Grid Et system med individuel OG kollektiv forsyning Baseret på kendt teknologi: varmepumper og geotermisk energi Individuelle varmepumper i bygningerne,

Læs mere

Geothermal energy from sedimentary reservoirs Removing obstacles for large scale utilization GEOTHERM

Geothermal energy from sedimentary reservoirs Removing obstacles for large scale utilization GEOTHERM Geothermal energy from sedimentary reservoirs Removing obstacles for large scale utilization GEOTHERM Advisory Board / Følgegruppe møde 16. april 2018 Lars Henrik Nielsen De Nationale Geologiske Undersøgelser

Læs mere

2 VIDENSDELING AKTIVITETER I 2012/2013. Møder, seminarer, kurser og konferencer

2 VIDENSDELING AKTIVITETER I 2012/2013. Møder, seminarer, kurser og konferencer 2 VIDENSDELING AKTIVITETER I 2012/2013 2.1 Møder, seminarer, kurser og konferencer I det andet år af GeoEnergi projektet blev der afholdt en række møder og seminarer om jordvarmeboringer i regi af projektet,

Læs mere

Drejebog om geotermi. Etablering og drift af geotermiske anlæg til. fjernvarmeforsyning

Drejebog om geotermi. Etablering og drift af geotermiske anlæg til. fjernvarmeforsyning Drejebog om geotermi Etablering og drift af geotermiske anlæg til fjernvarmeforsyning Energistyrelsen 2013 Drejebog om geotermi FORORD Denne drejebog om etablering og drift af geotermiske anlæg til produktion

Læs mere

Varmepumpefabrikantforeningen

Varmepumpefabrikantforeningen Varmepumpefabrikantforeningen Foreningens formål er at samle fabrikanter af varmepumpeanlæg med henblik på at koordinere de enkelte fabrikanters branchemæssige og merkantile interesse, for herigennem at

Læs mere

Notat om den fremtidige el-, gas- og fjernvarmeforsyning

Notat om den fremtidige el-, gas- og fjernvarmeforsyning Notat om den fremtidige el-, gas- og fjernvarmeforsyning Anders Michael Odgaard Nordjylland Tel. +45 9682 0407 Mobil +45 2094 3525 amo@planenergi.dk Vedrørende Til brug for udarbejdelse af Energiperspektivplan

Læs mere

Varmekilder til varmepumper

Varmekilder til varmepumper Varmekilder til varmepumper v/ Projektingeniør Kim Søgaard Clausen Dansk Fjernvarmes Projektselskab (DFP) Temadag om store varmepumper i fjernvarmen Kolding - d. 29. januar 2018 Om DFP DFP er et A.m.b.a

Læs mere

Ansøgning om 1 prøveboring og midlertidig udledning

Ansøgning om 1 prøveboring og midlertidig udledning Lyngby-Taarbæk Kommune Lyngby Rådhus Lyngby Torv 17 2800 Kgs. Lyngby 2013-06-13 Ansøgning om 1 prøveboring og midlertidig udledning af vand. GEO ønsker at undersøge muligheden for at erstatte den eksisterende

Læs mere

GRØN FJERNVARME I NETTET OG I RADIATOREN

GRØN FJERNVARME I NETTET OG I RADIATOREN GRØN FJERNVARME I NETTET OG I RADIATOREN Charlotte Søndergren, Planlægningschef, HOFOR 1. oktober 2019 chs@hofor.dk. Mobil: 27952724 HOFOR Danmarks største forsyningsvirksomhed inden for vores kerneområder

Læs mere

Varmepumpe i ydre Nordhavn med grundvand som varmekilde

Varmepumpe i ydre Nordhavn med grundvand som varmekilde Orienterings-notat: Plan - Fjernvarme Direkte tlf. 5120 8210 E-mail nphe@hofor.dk Varmepumpe i ydre Nordhavn med grundvand som varmekilde Dato: 04.11.2015 Afsendere: Niels Præstegaard Hendriksen (projektleder,

Læs mere

Skifergasi Danmark. Og i Furesø Kommune? Af Nick Svendsen

Skifergasi Danmark. Og i Furesø Kommune? Af Nick Svendsen Skifergasi Danmark Og i Furesø Kommune? Af Nick Svendsen Hvad er skiffer gas? Kulbrintedannelsenbehøver fire komponenter: 1. Moderbjergart 2. Reservoir 3. Forsegling 4. Fælde Moderbjergart? En moderbjergartindeholder

Læs mere

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen

Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen Landsdækkende screening af geotermi i 28 fjernvarmeområder Beregning af geotermianlæg og muligheder for indpasning i fjernvarmeforsyningen Præsentation 28 juni 216 Overblik 28 udvalgte fjernvarmeområder

Læs mere

PERSPEKTIVER OG BARRIERER FOR GEOTERMI I HOVEDSTADEN

PERSPEKTIVER OG BARRIERER FOR GEOTERMI I HOVEDSTADEN PERSPEKTIVER OG BARRIERER FOR GEOTERMI I HOVEDSTADEN GEOTHERM Følgegruppemøde 16. april 2018 Catarina Marcus-Møller, HOFOR cmmo@hofor.dk Tlf.: 27952760 www.hofor.dk AGENDA 1. Hovedstadens Geotermiske Samarbejde

Læs mere

REGEOCITIES Workshop Rapport om status for overfladenær geotermi i Danmark. Thomas Vangkilde-Pedersen Aarhus 09-04-2013

REGEOCITIES Workshop Rapport om status for overfladenær geotermi i Danmark. Thomas Vangkilde-Pedersen Aarhus 09-04-2013 REGEOCITIES Workshop Rapport om status for overfladenær geotermi i Danmark Thomas Vangkilde-Pedersen GEUS Aarhus 09-04-2013 Definition af overfladenær geotermi Geotermi forbindes normalt med dybe anlæg:

Læs mere

Modellering af strømning og varmeoptag

Modellering af strømning og varmeoptag Afsluttende workshop 13-11-2014, GEUS, Århus Modellering af strømning og varmeoptag Anker Lajer Højberg og Per Rasmussen De Nationale Geologiske Undersøgelser for Danmark og Grønland Klima- og Energiministeriet

Læs mere

Lagring af vedvarende energi

Lagring af vedvarende energi Lagring af vedvarende energi Lagring af vedvarende energi Et skridt på vejen mod en CO2-neutral Øresundsregion er at undersøge, hvilke løsninger til lagring af vedvarende energi, der kan tilpasses fremtidens

Læs mere

Drejebog om geotermi. Etablering og drift af geotermiske anlæg til. fjernvarmeforsyning

Drejebog om geotermi. Etablering og drift af geotermiske anlæg til. fjernvarmeforsyning Etablering og drift af geotermiske anlæg til fjernvarmeforsyning Projektdeltagere Dansk Fjernvarmes Geotermiselskab (projektleder) Merkurvej 7 6000 Kolding Kontakt: Søren Berg Lorenzen sbl@geotermi.dk

Læs mere

2. årlige geotermikonference

2. årlige geotermikonference 2. årlige geotermikonference Christiansborg, København 19. februar 2018 Perspektiver for geotermi i hovedstadsområdet - hvilke barrierer er der? Lars Gullev Formand for HGS CEO, VEKS Agenda Hovedstadens

Læs mere

D3 Oversigt over geologiske forhold af betydning ved etablering af jordvarmeboringer i Danmark

D3 Oversigt over geologiske forhold af betydning ved etablering af jordvarmeboringer i Danmark Work Package 1 The work will include an overview of the shallow geology in Denmark (0-300 m) Database and geology GEUS D3 Oversigt over geologiske forhold af betydning ved etablering af jordvarmeboringer

Læs mere

Varmepumper i et energipolitisk perspektiv. Troels Hartung Energistyrelsen trh@ens.dk

Varmepumper i et energipolitisk perspektiv. Troels Hartung Energistyrelsen trh@ens.dk Varmepumper i et energipolitisk perspektiv Troels Hartung Energistyrelsen trh@ens.dk Dagsorden: Den energipolitiske aftale 2012 Stop for installation af olie- og naturgasfyr Den energipolitiske aftale

Læs mere

Jordvarmeboringer - problemstillinger og perspektiver

Jordvarmeboringer - problemstillinger og perspektiver Artikel i Jordvarmeboringer - problemstillinger og perspektiver I mange år er behovet for opvarmning af huse i Danmark blevet klaret ved hjælp af jordens ressourcer af kul, olie og naturgas. Efterhånden

Læs mere

Følsomhedsstudie ved modellering af varmetransport

Følsomhedsstudie ved modellering af varmetransport ATV temadag jordvarme, vintermøde 9. marts 2015, Vingsted Følsomhedsstudie ved modellering af varmetransport Anker Lajer Højberg og Per Rasmussen De Nationale Geologiske Undersøgelser for Danmark og Grønland

Læs mere

Numeriske modeller for energiudnyttelsen

Numeriske modeller for energiudnyttelsen Numeriske modeller for energiudnyttelsen Bidrag fra Marton Major og Søren Erbs Poulsen 1 Konceptet med to boringerproduktion og reinjektion 2 Konceptet Ved kombineret geotermisk produktion og reinjektion

Læs mere

Design af jordvarmeanlæg med og uden lagring

Design af jordvarmeanlæg med og uden lagring Gør tanke til handling VIA University College Design af jordvarmeanlæg med og uden lagring Inga Sørensen, Senior lektor, geolog VIA Byggeri, Energi & Miljø Center for forskning & udvikling Udnyttelse af

Læs mere

FJERNVARME. Hvad er det?

FJERNVARME. Hvad er det? 1 FJERNVARME Hvad er det? 2 Fjernvarmens tre led Fjernvarmekunde Ledningsnet Produktionsanlæg 3 Fjernvarme er nem varme derhjemme Radiator Varmvandsbeholder Varmeveksler Vand fra vandværket FJERNVARME

Læs mere

Fremme af varmepumper i Danmark

Fremme af varmepumper i Danmark Fremme af varmepumper i Danmark Energipolitisk fokus og skrotningsordningen Mikkel Sørensen Energipolitisk fokus I juni 2005 fremlagde regeringen Energistrategi 2025. I en baggrundsrapport blev varmepumper

Læs mere

VISIONER OG ØNSKER FOR DEN FREMTIDIGE FORVALTNING AF ANLÆG FOR GRUNDVANDSBASERET KØLING, OPVARMNING OG ATES

VISIONER OG ØNSKER FOR DEN FREMTIDIGE FORVALTNING AF ANLÆG FOR GRUNDVANDSBASERET KØLING, OPVARMNING OG ATES VISIONER OG ØNSKER FOR DEN FREMTIDIGE FORVALTNING AF ANLÆG FOR GRUNDVANDSBASERET KØLING, OPVARMNING OG ATES Civilingeniør, ph.d. Stig Niemi Sørensen, Enopsol ApS Undergrunden som termisk ressource Møde

Læs mere

Landsbyvarme med ATES.

Landsbyvarme med ATES. Landsbyvarme med ATES. Civilingeniør Stig Niemi Sørensen www.enopsol.dk Indledning Det er i dag muligt at producere helt fossil- og CO 2-fri varme til de danske landsbyer og vel at mærke til konkurrencedygtige

Læs mere

Nordjyllandsværkets rolle i fremtidens bæredygtige Aalborg

Nordjyllandsværkets rolle i fremtidens bæredygtige Aalborg Nordjyllandsværkets rolle i fremtidens bæredygtige Aalborg Rådmand Lasse P. N. Olsen, Miljø- og Energiforvaltningen, E-mail: lo-byraad@aalborg.dk Energiteknisk Gruppe - IDA Nord - 16. september 2015 Hvem

Læs mere

FAKTAARK Ordforklaring. Biomasse hvad er det?

FAKTAARK Ordforklaring. Biomasse hvad er det? FAKTAARK Ordforklaring Biomasse hvad er det? Affaldsforbrænding På et forbrændingsanlæg afbrændes det affald, som du smider ud. Varmen herfra opvarmer fjernvarmevand, der pumpes ud til husene via kilometerlange

Læs mere

Web-baseret værktøj til vurdering af jordens varmeledningsevne. -ved etablering af nye anlæg

Web-baseret værktøj til vurdering af jordens varmeledningsevne. -ved etablering af nye anlæg Web-baseret værktøj til vurdering af jordens varmeledningsevne -ved etablering af nye anlæg Claus Ditlefsen, Inga Sørensen*, Morten Slot & Martin Hansen De Nationale Geologiske Undersøgelser for Danmark

Læs mere

VARMEPLAN. DANMARK2010 vejen til en CO 2. -neutral varmesektor

VARMEPLAN. DANMARK2010 vejen til en CO 2. -neutral varmesektor VARMEPLAN DANMARK2010 vejen til en CO 2 -neutral varmesektor CO 2 -udslippet fra opvarmningssektoren kan halveres inden 2020, og opvarmningssektoren kan blive stort set CO 2 -neutral allerede omkring 2030

Læs mere

REGION HOVEDSTADEN. Regionsrådsmøde den 14. maj 2013. Sag nr. 7. Emne: Råstofplan 2012. Bilag 8 og 9

REGION HOVEDSTADEN. Regionsrådsmøde den 14. maj 2013. Sag nr. 7. Emne: Råstofplan 2012. Bilag 8 og 9 REGION HOVEDSTADEN Regionsrådsmøde den 14. maj 2013 Sag nr. 7 Emne: Råstofplan 2012 Bilag 8 og 9 Koncern Miljø Til: Regionsrådet Regionsgården Kongens Vænge 2 3400 Hillerød Telefon 38665000 Fax 38665700

Læs mere

Effektiviteten af fjernvarme

Effektiviteten af fjernvarme Effektiviteten af fjernvarme Analyse nr. 7 5. august 2013 Resume Fjernvarme blev historisk etableret for at udnytte overskudsvarme fra elproduktion, hvilket bidrog til at øge den samlede effektivitet i

Læs mere

Thisted Varmeforsyning

Thisted Varmeforsyning - Termisk komfort til enhver tid Kort & godt om a.m.b.a. Ringvej 26 7700 Thisted Tlf. 97 92 66 66 Fax 96 17 71 66 www.thisted-varmeforsyning.dk post@thisted-varmeforsyning.dk CVR nr. 30 99 25 12 Stiftet:

Læs mere

Temadag STORE VARMEPUMPER SAMARBEJDE OM GRUNDVAND TIL VARME. Kim Behnke Vicedirektør Dansk Fjernvarme 6.

Temadag STORE VARMEPUMPER SAMARBEJDE OM GRUNDVAND TIL VARME. Kim Behnke Vicedirektør Dansk Fjernvarme 6. Temadag STORE VARMEPUMPER SAMARBEJDE OM GRUNDVAND TIL VARME Kim Behnke Vicedirektør Dansk Fjernvarme kib@danskfjernvarme.dk 6. december 2018 DANSK FJERNVARME 400 medlemmer 1,7 mio. husstande har fjernvarme

Læs mere

Status på varmepumper - rammevilkår og varmekilder

Status på varmepumper - rammevilkår og varmekilder Status på varmepumper - rammevilkår og varmekilder ERFA-MØDE KRAFTVARME & VARMEPUMPER Kolding, den 29. maj 2018 Projektchef Jørgen Risom, ingeniør M.IDA Dansk Fjernvarmes Projektselskab (DFP) Om DFP DFP

Læs mere

Transforming DONG Energy to a Low Carbon Future

Transforming DONG Energy to a Low Carbon Future Transforming DONG Energy to a Low Carbon Future Varmeplan Hovedstaden Workshop, January 2009 Udfordringen er enorm.. Global generation European generation 34,000 TWh 17,500 TWh 94% 34% 3,300 TWh 4,400

Læs mere

ATES-systemer i decentrale kraftvarmeværker og barmarksværker.

ATES-systemer i decentrale kraftvarmeværker og barmarksværker. ATES-systemer i decentrale kraftvarmeværker og barmarksværker. Civilingeniør Stig Niemi Sørensen www.enopsol.dk Januar 2014 Indledning De decentrale kraftvarmeværker og barmarksværkerne står overfor store

Læs mere

Notat vedr. etablering af jordvarme på Ferren i Blokhus

Notat vedr. etablering af jordvarme på Ferren i Blokhus Notat vedr. etablering af jordvarme på Ferren i Blokhus Typer af jordvarme: Der findes helt overordnet to forskellige typer af anlæg til indvinding af jordvarme horisontale og vertikale anlæg. Betegnelserne

Læs mere

Bæredygtige bygninger og byggeri og virkelighedens udfordringer. Jesper Bo Jensen, ph.d. Fremtidsforsker, forfatter,

Bæredygtige bygninger og byggeri og virkelighedens udfordringer. Jesper Bo Jensen, ph.d. Fremtidsforsker, forfatter, Bæredygtige bygninger og byggeri og virkelighedens udfordringer Jesper Bo Jensen, ph.d. Fremtidsforsker, forfatter, Privat forbrug (Gennemsnitlig stigning 2,6% p.a.) 8000 Mængdeindeks 7000 6000 5000 4000

Læs mere

Varmepumpe. Hvad skal jeg vide, før jeg køber?

Varmepumpe. Hvad skal jeg vide, før jeg køber? Varmepumpe Hvad skal jeg vide, før jeg køber? Hvornår bør du overveje en varmepumpe? En varmepumpe er typisk en god forretning, hvis du opvarmer med olie eller el og bor i et område uden fjernvarme. Varmepumper

Læs mere

Varmepumpers rolle i den vedvarende energiforsyning

Varmepumpers rolle i den vedvarende energiforsyning Varmepumpedagen 2016 9. september 2016, Eigtveds Pakhus, København Varmepumpers rolle i den vedvarende energiforsyning Henrik Lund Professor in Energy Planning Aalborg University Den langsigtede målsætning

Læs mere

Det Energipolitiske Udvalg 2008-09 EPU alm. del Bilag 300 Offentligt

Det Energipolitiske Udvalg 2008-09 EPU alm. del Bilag 300 Offentligt Det Energipolitiske Udvalg 2008-09 EPU alm. del Bilag 300 Offentligt BILAG 1 Hvad er CCS? CCS står for Carbon Capture and Storage CO2 separation og lagring og er en teknik som kan reducere de industrialiserede

Læs mere

Eksempler og anbefalinger vedr. design

Eksempler og anbefalinger vedr. design Gør tanke til handling VIA University College Eksempler og anbefalinger vedr. design Inga Sørensen, Senior lekt or, geolog VIA Byggeri, Energi & Miljø Center for forskning & udvikling Lukkede jordvarmeboringer

Læs mere

Varmepumper. Frigør Danmark fra fossile brændsler. Dansk Energi februar 2011

Varmepumper. Frigør Danmark fra fossile brændsler. Dansk Energi februar 2011 Varmepumper Frigør Danmark fra fossile brændsler Dansk Energi februar 2011 Danmark har brug for varmepumper Varmepumper hjælper til at frigøre Danmark fra fossile brændsler og sænke udslippet af CO2. Varmepumpen

Læs mere

Vision for en bæredygtig varmeforsyning med energirenovering i fokus

Vision for en bæredygtig varmeforsyning med energirenovering i fokus DEBATOPLÆG Vision for en bæredygtig varmeforsyning med energirenovering i fokus Plan C: http://www.gate21.dk/projekter/planc/ Svend Svendsen og Maria Harrestrup samt PlanC s forsyningsgruppe Regeringens

Læs mere

Varmepumper i fjernvarmen

Varmepumper i fjernvarmen Varmepumper i fjernvarmen Niels From, PlanEnergi Varmepumper i fjernvarmen Energipolitisk Konference København, den 4. september 2014 Niels From 1 Hvorfor skal vi omstille til VE? Forsyningssikkerhed /

Læs mere

OPTIMERING AF DATAGRUNDLAGET FOR KLIMAMÆSSIG AREALPLANLÆGNING

OPTIMERING AF DATAGRUNDLAGET FOR KLIMAMÆSSIG AREALPLANLÆGNING OPTIMERING AF DATAGRUNDLAGET FOR KLIMAMÆSSIG AREALPLANLÆGNING PETER THOMSEN, CHEF KONSULENT, RAMBØLL CARSTEN VIGEN HANSEN, GEOLOG, SKANDERBORG KOMMUNE DISPOSITION - Baggrund - DualEM - Resultater fra Hørning

Læs mere

2014 monitoreringsrapport

2014 monitoreringsrapport 2014 monitoreringsrapport Sønderborg-områdets samlede udvikling i energiforbrug og CO2-udledning for perioden 2007-2014 1. Konklusion & forudsætninger I 2014 er Sønderborg-områdets CO 2-udledningen reduceret

Læs mere

Strategisk energiplanlægning i Syddanmark

Strategisk energiplanlægning i Syddanmark Strategisk energiplanlægning i Syddanmark Kick-off møde 27. februar 2014 Jørgen Krarup Systemplanlægning 1 Målsætninger 2020: Halvdelen af klassisk elforbrug dækkes af vind. 2030: Kul udfases fra de centrale

Læs mere

LAVE VARMEUDGIFTER MED BEHOVSSTYREDE JORD VARMEPUMPER

LAVE VARMEUDGIFTER MED BEHOVSSTYREDE JORD VARMEPUMPER LAVE VARMEUDGIFTER MED BEHOVSSTYREDE JORD VARMEPUMPER JORDEN GEMMER SOLENS VARME OG VARMEN UDNYTTES MED JORDVARME Når solen skinner om sommeren optages der varme i jorden. Jorden optager ca. halvdelen

Læs mere

Overskudsvarme kan skabe markant fald i CO2- udledning

Overskudsvarme kan skabe markant fald i CO2- udledning Marie Holst, konsulent Mhol@di.dk, +45 3377 3543 MARTS 2018 Overskudsvarme kan skabe markant fald i CO2- udledning Danske virksomheder lukker store mængder varme ud af vinduet, fordi det danske afgiftssystem

Læs mere

Udvinding af skifergas i Danmark

Udvinding af skifergas i Danmark Maj 2013 Udvinding af skifergas i Danmark Indledning: Vi vil i Danmark i de kommende år skulle tage stilling til, om vi vil udvinde den skifergasressource, der i et eller andet omfang findes i den danske

Læs mere

El-drevne varmepumper, Muligheder og begrænsninger

El-drevne varmepumper, Muligheder og begrænsninger El-drevne varmepumper, Muligheder og begrænsninger IDA Energi, Århus d. 26/2-2014 Bjarke Paaske Center for køle- og varmepumpeteknik Mekaniske varmepumper (el) Politiske mål Danmark og udfasning af oliefyr,

Læs mere

Strategi og politik. for den fremtidige varmeforsyning 2012-2022

Strategi og politik. for den fremtidige varmeforsyning 2012-2022 Strategi og politik for den fremtidige varmeforsyning 2012-2022 Indhold Indholdsfortegnelse Indhold...2 Indledning...3 Kommunens varmeplanlægning...3 Lovgrundlaget for varmeplanlægning...5 Planloven...6

Læs mere

Varmepumpe. Hvad skal jeg vide, før jeg køber?

Varmepumpe. Hvad skal jeg vide, før jeg køber? Varmepumpe Hvad skal jeg vide, før jeg køber? Hvornår bør du overveje en varmepumpe? En varmepumpe er typisk en god forretning, hvis du i dag opvarmer med olie eller el og bor i et område uden fjernvarme.

Læs mere

Energistyrelsens klassifikationssystem for olie- og gasressourcer

Energistyrelsens klassifikationssystem for olie- og gasressourcer Senest revideret juni 2011 Energistyrelsens klassifikationssystem for olie- og gasressourcer Energistyrelsen benytter et klassifikationssystem for kulbrinter til at opgøre Danmarks olie- og gasressourcer,

Læs mere

Vurdering af det geotermiske potentiale i området omkring Rødding-1 boringen vest for Skive by

Vurdering af det geotermiske potentiale i området omkring Rødding-1 boringen vest for Skive by Side 1/15 Til: Skive Geotermi A/S, ved Direktør Lars Yde Fra: GEUS, L.H. Nielsen, C.M. Nielsen, A. Mathiesen, L. Kristensen & J. Therkelsen Kopi til: Jens Jørgen Møller; Flemming G. Christiansen; Journalen

Læs mere