Stakke, køer og lidt om hægtede lister - kapitel 16 og 17

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Stakke, køer og lidt om hægtede lister - kapitel 16 og 17"

Transkript

1 Datastrukturer & Algoritmer, Datalogi C Forelæsning 2/ Henning Christiansen Stakke, køer og lidt om hægtede lister - kapitel 16 og 17 Fundamentale datastrukturer man får brug for igen og igen Et indblik i Java Collections API Dagens program: Stakke eksempler på anvendelse implementation i Java vha. arrays Køer (nej, ikke sådan nogen, der siger muuuuuuuuuh) eksempler på anvendelse implementation i Java vha. cirkulært array Hægtede lister tungere end arrays men ultimativ fleksibilitet enkelthægtet dobbelthægtet Meget kort om priotitetskøer [specielt interesserede kan læse kap. 21] (1)

2 Datastrukturen en stak: Implementerer først-ind sidst-ud samling af objekter: Mindst følgende metoder [Bogens version, ikke java.util] void push(object x) lægger x på stakken Object topandpop() returnerer og fjerner øverste element på stak. (kaldes andre steder ofte blot pop ) Forståelse af stak ud fra operationerne: push(a); push(b); topandpop() == b; topandpop() == a; Forståelse ud fra model: push(2) push(3) topandpop() push(4) topandpop() topandpop() ==3 ==4 ==2 (2)

3 Velegnet til ting som er indlejret i hinanden: Rekursive metoder implementeres ved stak: metodekald: push plads til parametre og lokale variable returhop: pop, dvs. glemme alt om kald og gå tilbage til gammel tilstand Håndoptimering af rekursive metode: Ofte relevant hvis compiler spilder unødigt meget overhead på rekursive procedurekald: Vedligehold en lokal stak svarende til lokale variable og parametre God opgave: Afskaf rekursionen i quicksort mod at indføre en stak (3)

4 Anvendelse af stak til syntaksgenkendelse af programmeringssprog: Eksempel på grammatik med matchende paranteser (ingen operatorer): <udtryk> ::= ( udtryk ) { udtryk } <udtryk> <udtryk> Følgende er eksempel på udtryk (1 2) {4(5 6) {7} } Algoritme for genkendelse: t = læs_et_tegn(); while(true) { if(er_et_ciffer(t)) ; //skip else if(t== ) ) if(topandpop()!= ( ) fejl; else if(t== } ) if(topandpop()!= { ) fejl; else push(t); if (!flere-tegn-at-læse()) break; t = læs_et_tegn();}; if(stakken-er-tom) det_gik_godt; else det_gik_skidt; NB: kan også implementeres ved rekursion (4)

5 Anvendelse af stak: Enhver compiler benytter en regnestak At udregne 1 + 2*3*(4 + 5): push 1; push 2; push 3; mult; // push( topandpop() * topandpop() ) push 4; push 5; add; // push( topandpop() + topandpop() ) mult; // push( topandpop() * topandpop() ) add; // push( topandpop() + topandpop() ) // resultatet er på stakken I praksis: De øverste dele af stakken opbevares i regneregistre og resten i RAM Push, add, mult osv. findes som maskininstruktioner... men compilere producerer ofte mellemkode som ser ud som overfor (5)

6 Implementation af en generel stak i Java (jvf. bogen s. 514 ff) benytter et array som fordobles ved overløb public class ArrayStack implements Stack { private Object [ ] thearray; private int topofstack; private static final int DEFAULT_CAPACITY = 10; public ArrayStack( ) {thearray = new Object[ DEFAULT_CAPACITY ]; topofstack = -1;} public boolean isempty( ) { return topofstack == -1;} public void makeempty( ) { topofstack = -1; } public void push( Object x ) { if( topofstack + 1 == thearray.length ) doublearray( ); thearray[ ++topofstack ] = x;} public Object top( ) { if( isempty( ) ) throw new UnderflowException( "ArrayStack top" ); return thearray[ topofstack ]; } (6)

7 public void pop( ) // NB: Nonstandard name for this op.; different from java.util { if( isempty( ) ) throw new UnderflowException( "ArrayStack pop" ); topofstack--; } public Object topandpop( ) // NB: As above { if( isempty( ) ) throw new UnderflowException( "ArrayStack topandpop" ); return thearray[ topofstack-- ];} private void doublearray( ) { Object [ ] newarray; newarray = new Object[ thearray.length * 2 ]; for( int i = 0; i < thearray.length; i++ ) newarray[ i ] = thearray[ i ]; thearray = newarray;} } (7)

8 Køer (simple kø; ikke prioritetskø som er noget andet) Implementerer først-ind først-ud samling af objekter: Mindst følgende metoder void enqueue(object x) Object dequeue() stiller x i køen returnerer og fjerne forreste element i køen Forståelse af stak ud fra operationerne: enqueue(a); enqueue(b); dequeue() == a; dequeue() == b; Forståelse ud fra model: enqueue(a) enqueue(b); dequeue() == a dequeue() == b <> <a> <b,a> <b> <> tom forrest=bagest=a forrest=a forrest=bagerst=b forrest:? bagerst=b bagest:? (8)

9 Anvendelser af køer: som hjælpere for andre algoritmer, f.eks. korteste vej, topologisk sortering simulering af fysisk kø simulering af begivenheder over tid, afvikling af printerjobs datanetværk: ophobning af ikke modtagne pakker... (9)

10 Implementation ved cirkulært array: cirkulært hvordan vi tænker på det! public class ArrayQueue implements Queue { public ArrayQueue( ) { thearray = new Object[ DEFAULT_CAPACITY ]; makeempty( );} public void makeempty( ) { currentsize = 0; front = 0; back = -1; } public Object dequeue( ) {... } public void enqueue( Object x ) {...} private Object [ ] thearray; private int currentsize; private int front; private int back; private static final int DEFAULT_CAPACITY = 10;} (10)

11 Cirkulært array (11)

12 Implementation af metoder i Java public class ArrayQueue implements Queue { public ArrayQueue( ) {thearray = new Object[ DEFAULT_CAPACITY ]; makeempty( );} public boolean isempty( ) { return currentsize == 0;} public void makeempty( ) { currentsize = 0; front = 0; back = -1; } public Object dequeue( ) {if( isempty( ) ) throw new UnderflowException( "ArrayQueue dequeue" ); currentsize--; Object returnvalue = thearray[ front ]; front = increment( front ); return returnvalue; } (12)

13 private int increment( int x ) { if( ++x == thearray.length ) x = 0; return x; } public Object getfront( ) { if( isempty( ) ) throw new UnderflowException( "ArrayQueue getfront" ); return thearray[ front ];} public void enqueue( Object x ) { if( currentsize == thearray.length ) doublequeue( ); back = increment( back ); thearray[ back ] = x; currentsize++; } (13)

14 private void doublequeue( ) { Object [ ] newarray; newarray = new Object[ thearray.length * 2 ]; // Copy elements that are logically in the queue for( int i = 0; i < currentsize; i++, front = increment( front ) ) newarray[ i ] = thearray[ front ]; thearray = newarray; front = 0; back = currentsize - 1; } private Object [ ] thearray; private int currentsize; private int front; private int back; } private static final int DEFAULT_CAPACITY = 10; (14)

15 Hægtede lister, den grundlæggende idé: Fleksibel datastruktur, som kan implementere stakke, køer med videre med udvidede metoder Vigtigste egenskab: Der kan indsættes og slettes hvor som helst i listen Eksempel (ikke anbefalet Java-stil,»Pascal-stil«): class ListNode { public Object element; public ListNode next; public void ListNode(Object e, ListNode n) {element=e; next=n;} } At indsætte objekt x vilkårligt sted i listen udpeget ved reference current : current.next = new ListNode(x, current.next); At slette element efter current : current.next = current.next.next; (15)

16 Hægtede lister i Java (Collections API) NB: Bogens version, lidt anderledes end Collections! Kombinerer tre klasser: listeelementer: ListNodes som holder Object er LinkedListIterator (som ikke er en udvidelse af Iterator) o generaliseret position i listen LinkedList: En liste som selvstændigt objekt, o implementation List som er impl. af Collection (16)

17 class ListNode { public ListNode( Object theelement ) {this( theelement, null );} public ListNode( Object theelement, ListNode n ) { element = theelement; next = n;} public Object element; public ListNode next;} public class LinkedList { public LinkedList( ) {header = new ListNode( null );} // methods private ListNode header; } Tom liste: (17)

18 Formål med header-element: For at forenkle impl. af metoder: Den tomme liste ligner en hver anden liste, f.eks. ved indsættelse. Indsættelse... indsætte hvor? LinkedListIterator, krydsning mellem Iterator ~ den generaliserede for-sætning Listeposition for indsættelse og sletning m.v. public class LinkedListIterator { LinkedListIterator( ListNode thenode ) {current = thenode;} public boolean isvalid( ) {return current!= null;} public Object retrieve( ) {return isvalid( )? current.element : null;} public void advance( ) {if(isvalid()) current=current.next;} ListNode current; } public class LinkedList { public LinkedList() {... } public boolean isempty() {... }... public LinkedListIterator zeroth(){return new LinkedListIterator(header);} public LinkedListIterator first(){return new LinkedListIterator(header.next);} public void insert( Object x, LinkedListIterator p ) { if( p!= null && p.current!= null ) p.current.next = new ListNode( x, p.current.next );} (18)

19 Flere metode på LinkedList some refererer til public LinkedListIterator find( Object x ) { ListNode itr = header.next; while( itr!= null &&!itr.element.equals( x ) ) itr = itr.next; return new LinkedListIterator( itr ); } public void remove( Object x ){ LinkedListIterator p = findprevious(x); // ref. to element before x if(p.current.next!= null) p.current.next = p.current.next.next; }} // Bypass deleted node OBS: Check dokumentation for java.util hvis du skal bruge LinkedList (19)

20 Variationer over temaet hægtede lister: Dobbelthægtede lister: Fordel: Vi kan rykke iterator frem og tilbage på konstant tid Omkostning: Fylder en reference mere pr. knude; Indsætte, slette tager ca. 2 x længere tid. (20)

21 Sorterede lister SortedLinkedList extends LinkedList Udvider med metode insert( Comparable x), som (ifølge sagens natur) må tælle sig ca. halvvejs gennem listen Kombinerer listens fleksibilitet med fordelen ved at ting er sorteret; OBS: Binær søgning virker ikke :( Se bogens afsnit 17.5 og dokumentation for Javas Collections API for stort udvalg af metoder. (21)

22 Kort om prioritetskøer (kapitel 21) Til speciel interesserede: Nemmere at forstå, når vi har kigget på træer. En kø hvor elementerne indsættes vilkårligt og tages ud efter prioritet.»elementer«defineret som Comparable, og prioritetet bestemmes efter, hvilke der er»mindst«målt ved compareto void insert(comparable x ) Comparable deletemin( ) Comparable findmin( ) boolean isempty( ) void makeempty( ) int size( ) --> Insert x --> Return and remove smallest item --> Return smallest item --> Return true if empty; else false --> Remove all items --> Return size Ikke understøttet i bogens implementation: void decreasekey( p, v)--> Decrease value in p to v Implementation ved Binary Heap (DK: ofte en hob): Elegant repræsentation af binært træ i et array. (22)

23 Afslutning: Tilsyneladende en stor rodebunke af datastrukturer som ligner hinanden!!! Hjælp, hvad gør vi? Overvej følgende spørgsmål? Hvilken overordnet strategi har vi brug for Stak? sidst-ind-først-ud Kø? Først-ind-først-ud Noget endnu mere fleksibelt, i retning af (dobbelt-hægtet) liste?... eller prioritetskø? Generel i forhold til valg af Collection eller klasser i det hele taget: Hvilke metoder har vi brug for? Hvilke metoder er tidskritiske?... sidder i den inderste løkke og kaldes igen og igen og igen? Hvilke kun en sjælden gang? (23)

Stakke, køer og lidt om hægtede lister

Stakke, køer og lidt om hægtede lister Datastrukturer & Algoritmer, Datalogi C Forelæsning 4/11-2003 Henning Christiansen Stakke, køer og lidt om hægtede lister - kapitel 16 og 17 Hvorfor? Fundamentale datastrukturer man får brug for igen og

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Introduktion til datastrukturer

Introduktion til datastrukturer Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller Philip Bille Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Introduktion til datastrukturer. Philip Bille

Introduktion til datastrukturer. Philip Bille Introduktion til datastrukturer Philip Bille Plan Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller Datastrukturer Datastrukturer Datastruktur: Metode til at organise data så det kan søges

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter Skriftlig eksamen i Datalogi Modul 1 Sommer 1999 Opgavesættet består af 5 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 15% Opgave 2 15% Opgave 3 8% Opgave

Læs mere

Datalogi OB, Efterår 2002 OH er, forelæsning 10/ Klasser og nedarvning

Datalogi OB, Efterår 2002 OH er, forelæsning 10/ Klasser og nedarvning Datalogi OB, Efterår 2002 OH er, forelæsning 10/9-2002 Klasser og nedarvning Hvad er formålet? Typer, generisk kode, typeparameterisering Kritisk kig på, hvordan man gør i Java. Eftermiddagens opgave:

Læs mere

Abstrakte datatyper C#-version

Abstrakte datatyper C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Abstrakte datatyper C#-version Finn Nordbjerg 1/9 Abstrakte Datatyper Denne note introducerer kort begrebet abstrakt datatype

Læs mere

Rekursion og dynamisk programmering

Rekursion og dynamisk programmering Rekursion og dynamisk programmering Datastrukturer & Algoritmer, Dat C Forelæsning 12/10-2004 Henning Christiansen Rekursion: at en procedure kalder sig selv eller et antal metoder kalder hinanden gensidigt.

Læs mere

Hashing og hashtabeller

Hashing og hashtabeller Datastrukturer & Algoritmer, Datalogi C Forelæsning 12/11-2002 Hashing og hashtabeller Teknik til at repræsentere mængder Konstant tid for finde og indsætte men ingen sortering af elementerne Specielt

Læs mere

Grafer og grafalgoritmer

Grafer og grafalgoritmer Algoritmer og Datastrukturer/Datalogi C Forelæsning 15/10-2002 Henning Christiansen Grafer og grafalgoritmer Hvad mener vi med en graf? NEJ! Graf: En matematisk abstraktion over ting som er logisk forbundet

Læs mere

Forelæsning Uge 5 Mandag

Forelæsning Uge 5 Mandag Forelæsning Uge 5 Mandag Algoritmeskabeloner findone, findall, findnoof, findsumof (sidste mandag) findbest Brug af klassen Collections og interfacet Comparable BlueJ s Debugger Nyttig til at inspicere

Læs mere

Løsning af møntproblemet

Løsning af møntproblemet Løsning af møntproblemet Keld Helsgaun RUC, oktober 1999 Antag at tilstandene i problemet (stillingerne) er repræsenteret ved objekter af klassen State. Vi kan da finde en kortest mulig løsning af problemet

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2015 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 3. marts, 2015 Dette projekt udleveres i to dele. Hver del har sin deadline, således

Læs mere

Hashing og hashtabeller

Hashing og hashtabeller Datastrukturer & Algoritmer, Datalogi C Forelæsning 16/11-2004 Hashing og hashtabeller Teknik til at repræsentere mængder Konstant tid for finde og indsætte men ingen sortering af elementerne Specielt

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Finn Nordbjerg 1/9 Indledning I det følgende introduceres et par abstrakte

Læs mere

Software Construction 1. semester (SWC) januar 2014 Spørgsmål 1

Software Construction 1. semester (SWC) januar 2014 Spørgsmål 1 Spørgsmål 1 Grundlæggende objektorienterede begreber o Klasse (class) o Objekt (object) o Metode (method), herunder return type og parametre o Instansvariable (instance variables) & egenskaber (properties),

Læs mere

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer 1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer på disse. Typer af lister: Array Enkelt linket liste Dobbelt linket Cirkulære lister Typer af køer: FILO FIFO

Læs mere

Design by Contract Bertrand Meyer Design and Programming by Contract. Oversigt. Prædikater

Design by Contract Bertrand Meyer Design and Programming by Contract. Oversigt. Prædikater Design by Contract Bertrand Meyer 1986 Design and Programming by Contract Michael R. Hansen & Anne Haxthausen mrh@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark Design

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Programmeringscamp. Implementer funktionerne én for én og test hele tiden.

Programmeringscamp. Implementer funktionerne én for én og test hele tiden. Programmeringscamp De to opgaver træner begge i at lave moduler som tilbyder services der kan bruges af andre, samt i at implementere services efter en abstrakt forskrift. Opgave 1 beder jer om at implementere

Læs mere

Grafer og grafalgoritmer

Grafer og grafalgoritmer Algoritmer og Datastrukturer/Datalogi C Forelæsning 26/10-2004 Henning Christiansen Grafer og grafalgoritmer Hvad mener vi med en graf? NEJ! Graf: En matematisk abstraktion over ting som er logisk forbundet

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 29. februar, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

BRP Sortering og søgning. Hægtede lister

BRP Sortering og søgning. Hægtede lister BRP 18.10.2006 Sortering og søgning. Hægtede lister 1. Opgaver 2. Selection sort (udvælgelsessortering) 3. Kompleksitetsanalyse 4. Merge sort (flettesortering) 5. Binær søgning 6. Hægtede lister 7. Øvelser:

Læs mere

Om binære søgetræer i Java

Om binære søgetræer i Java Om binære søgetræer i Java Mads Rosendahl 7. november 2002 Resumé En fix måde at gemme data på er i en træstruktur. Måden er nyttig hvis man får noget data ind og man gerne vil have at det gemt i en sorteret

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

Software Construction 1 semester (SWC) Spørgsmål 1

Software Construction 1 semester (SWC) Spørgsmål 1 Spørgsmål 1 Objekter #1 Giv en kort præsentation af begrebet objekt, samt hvorledes du erklærer(declare), opretter(create) og bruger objekter Du kan beskrive o Datatyper o Variable / Instans variable /

Læs mere

BRP 6.9.2006 Kursusintroduktion og Java-oversigt

BRP 6.9.2006 Kursusintroduktion og Java-oversigt BRP 6.9.2006 Kursusintroduktion og Java-oversigt 1. Kursusintroduktion 2. Java-oversigt (A): Opgave P4.4 3. Java-oversigt (B): Ny omvendings -opgave 4. Introduktion til næste kursusgang Kursusintroduktion:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 036, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 036. Varighed: timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Forelæsning Uge 4 Torsdag

Forelæsning Uge 4 Torsdag Forelæsning Uge 4 Torsdag Algoritmeskabeloner findone, findall, findnoof, findsumof (sidste mandag) findbest Levetid for variabler og parametre Virkefeltsregler Hvor kan man bruge de forskellige variabler?

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Forelæsning Uge 2 Torsdag

Forelæsning Uge 2 Torsdag Forelæsning Uge 2 Torsdag Java syntax og style guide Sætninger Simple sætninger (assignment, interne og eksterne metodekald) Sammensatte sætninger (blok, selektion, gentagelse) Udtryk og operatorer Brug

Læs mere

Datastrukturer. Datastruktur = data + operationer herpå

Datastrukturer. Datastruktur = data + operationer herpå Prioritetskøer Prioritetskøer? Datastrukturer Datastruktur = data + operationer herpå Datastrukturer Data: Datastruktur = data + operationer herpå Ofte en ID + associeret data. ID kaldes også en nøgle

Læs mere

15 Arrays og Lister samt Stakke og Køer.

15 Arrays og Lister samt Stakke og Køer. 15 Arrays og Lister samt Stakke og Køer. Introduktion til arrays. Algebraisk specifikation af arrays. Arrays i Eiffel. Introduktion til lister og kædede lister. Fælles egenskaber ved stakke og køer. Algebraisk

Læs mere

DATALOGI 0GB. Skriftlig eksamen tirsdag den 6. januar 2004

DATALOGI 0GB. Skriftlig eksamen tirsdag den 6. januar 2004 Københavns Universitet bacheloruddannelsen i datalogi side 1 af 6 DATALOGI 0GB Skriftlig eksamen tirsdag den 6. januar 2004 Dette opgavesæt består af 6 nummererede sider. Eksamensdeltagerne bør straks

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Fundamentale sprogbegreber

Fundamentale sprogbegreber Fundamentale sprogbegreber Sætninger og udtryk Niveauer af programbeskrivelse (statisk versus dynamisk syn) Oversigt Sætninger simple sætninger (assignment, metodekald) sammensatte sætninger (selektion,

Læs mere

Datastrukturer. Datastruktur = data + operationer herpå

Datastrukturer. Datastruktur = data + operationer herpå Prioritetskøer Prioritetskøer? Datastrukturer Datastruktur = data + operationer herpå Datastrukturer Data: Datastruktur = data + operationer herpå Ofte en ID + associeret data. ID kaldes også en nøgle

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer BRP 13.9.2006 Tal. Om computer-repræsentation og -manipulation. Logaritmer 1. Opgaverne til i dag dækker det meste af stoffet 2. Resten af stoffet logaritmer binære træer 3. Øvelse ny programmeringsopgave

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

16 Træer. Noter. Definition af et træ. Definitioner i tilknytning til træer. Repræsentation af træer. Binære træer. Den abstrakte datatype.

16 Træer. Noter. Definition af et træ. Definitioner i tilknytning til træer. Repræsentation af træer. Binære træer. Den abstrakte datatype. 16 Træer. Definition af et træ. Definitioner i tilknytning til træer. Repræsentation af træer. Binære træer. Den abstrakte datatype. Gennemløb af binære træer. Træer i Eiffel. 229 Definition af et træ.

Læs mere

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer

Læs mere

Forelæsning Uge 6 Mandag

Forelæsning Uge 6 Mandag Forelæsning Uge 6 Mandag Tingene i denne forelæsning er ikke eksamenspensum Forelæsningen afrunder kurset, og forklarer nogle af de begreber, som I har mødt under kurset uden at få detaljeret forklaring

Læs mere

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned.

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. 22 Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. Indsættelse i hobe. Sletning af minimalt element i hobe. Repræsentation. 327

Læs mere

dintprog Manual Revision: 1241 August 24, 2010 I Introduktion 3 1 Notation 3 II Begreber 4 2 Grundbegreber om programmering 4

dintprog Manual Revision: 1241 August 24, 2010 I Introduktion 3 1 Notation 3 II Begreber 4 2 Grundbegreber om programmering 4 dintprog Manual Revision: 1241 August 24, 2010 Indhold I Introduktion 3 1 Notation 3 II Begreber 4 2 Grundbegreber om programmering 4 3 Grundbegreber om modellering 4 III Sprogkonstruktioner 5 4 Klasser

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

I denne artikel vil vi bruge en User klasse som vi så vil gruppere på forskellige måder.

I denne artikel vil vi bruge en User klasse som vi så vil gruppere på forskellige måder. Denne guide er oprindeligt udgivet på Eksperten.dk Collections i.net Når du kigger i namespacet System.Collections finder du over 10 forskellige klasser. At vælge den rigtige til netop din applikations

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Forelæsning Uge 2 Torsdag

Forelæsning Uge 2 Torsdag Forelæsning Uge 2 Torsdag Niveauer af programbeskrivelser Statiske / dynamiske beskrivelser Klassevariabler og klassemetoder Variabler og metoder der et tilknyttet klassen (i stedet for at være tilknyttet

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 4

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 4 DM502 Forelæsning 4 Flere kontrolstrukturer for-løkke switch-case Metoder Indhold Arrays og sortering af arrays String-funktioner for-løkke Ofte har man brug for at udføre det samme kode, for en sekvens

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

DM02 Kogt ned. Kokken. Januar 2006

DM02 Kogt ned. Kokken. Januar 2006 DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte

Læs mere

Forelæsning Uge 2 Torsdag

Forelæsning Uge 2 Torsdag Forelæsning Uge 2 Torsdag Niveauer af programbeskrivelser Statiske / dynamiske beskrivelser Klassevariabler og klassemetoder Variabler og metoder der et tilknyttet klassen (i stedet for at være tilknyttet

Læs mere

Forelæsning Uge 4 Mandag

Forelæsning Uge 4 Mandag Forelæsning Uge 4 Mandag Algoritmeskabeloner findone, findall, findnoof, findsumof Primitive typer (forfremmelse og begrænsning) Identitet versus lighed (for objekter, herunder strenge) Opfølgning på Skildpadde

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter Skriftlig eksamen i Datalogi Modul 1 Vinter 1998/99 Opgavesættet består af 5 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 16% Opgave 2 12% Opgave 3 10% Opgave

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Forelæsning Uge 2 Mandag

Forelæsning Uge 2 Mandag Forelæsning Uge 2 Mandag Sætninger Simple sætninger (assignment, interne og eksterne metodekald) Sammensatte sætninger (blok, selektion, gentagelse) Udtryk og operatorer Java syntax og style guide Afleveringsopgave:

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Datalogi C + Datastrukturer og Algoritmer

Datalogi C + Datastrukturer og Algoritmer Datalogi C + Datastrukturer og Algoritmer Velkommen til DatC erne Dagens emne: Hvad er D&A, mål for effektivitet Kursuslærer: Henning Christiansen henning@ruc.dk, http://www.ruc.dk/~henning Hjælpelærer

Læs mere

Forelæsning Uge 4 Mandag

Forelæsning Uge 4 Mandag Forelæsning Uge 4 Mandag Algoritmeskabeloner Kan (ved simple tilretningerne) bruges til at implementere metoder, der gennemsøger en arrayliste (eller anden objektsamling) og finder objekter, der opfylder

Læs mere

OOP e uge kursusgang: Samtidighed (II) Safety = sikkerhed. Safety

OOP e uge kursusgang: Samtidighed (II) Safety = sikkerhed. Safety = sikkerhed I denne sammenhæng: = "trådsikkerhed" " conditions.. stipulate that nothing bad will ever happen" (XP s. 377) Trådsikkerhed betyder sikkerhed mod inkonsistens pga. flertrådning ikke f.eks.

Læs mere

Førsteårsprojekt F2008 Flere grafalgoritmer, og visualisering SØGES

Førsteårsprojekt F2008 Flere grafalgoritmer, og visualisering SØGES Førsteårsprojekt F2008 Flere grafalgoritmer, og visualisering Peter Sestoft 2008-03-11* SØGES 1-2 studerende til Åbent Hus torsdag 10. april kl 1700-1800 Skal kunne fortælle 5-10 minutter om hvad hvordan

Læs mere

Forelæsning Uge 5 Mandag

Forelæsning Uge 5 Mandag Forelæsning Uge 5 Mandag Sortering ved hjælp af klassen Collections Ved hjælp af interfacet Comparable Ved hjælp af interfacet Comparator findbest som sorteringsproblem Køreprøven i uge 7 Form Forberedelse

Læs mere

Tree klassen fra sidste forelæsning

Tree klassen fra sidste forelæsning Programmering 1999 Forelæsning 12, fredag 8. oktober 1999 Oversigt Abstrakte klasser. Grænseflader. Programmering 1999 KVL Side 12-1 Tree klassen fra sidste forelæsning class Tree { int age; // in years

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Kursusarbejde 4 Grundlæggende Programmering

Kursusarbejde 4 Grundlæggende Programmering Kursusarbejde 4 Grundlæggende Programmering Arne Jørgensen, 300473-2919 klasse dm032-1a 19. december 2003 Indhold 1. Kode 2 1.1. Header-filer................................................. 2 1.1.1. Queue.h...............................................

Læs mere

AAU, Programmering i Java Intern skriftlig prøve 18. maj 2007

AAU, Programmering i Java Intern skriftlig prøve 18. maj 2007 AAU, Programmering i Java Intern skriftlig prøve 18. maj 2007 Opgavebesvarelsen skal afleveres som enten en printerudskrift eller som et passende dokument sendt via email til fjj@noea.dk. Besvarelsen skal

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

A Comparative Analysis of Three Different Priority Deques af: Søren Skov & Jesper Holm Olsen

A Comparative Analysis of Three Different Priority Deques af: Søren Skov & Jesper Holm Olsen A Comparative Analysis of Three Different Priority Deques af: Søren Skov & Jesper Holm Olsen Agenda: Hvad er en Priority Deque? Hvad kan det bruges til? De tre datastrukturer: MinMax-heap The Deap (påpeget

Læs mere

Databaseadgang fra Java

Databaseadgang fra Java Databaseadgang fra Java Grundlæggende Programmering med Projekt Peter Sestoft Fredag 2007-11-23 Relationsdatabasesystemer Der er mange databaseservere Microsoft Access del af Microsoft Office MySQL god,

Læs mere

Indledning. Hvorfor det forholder sig sådan har jeg en masse idéer om, men det bliver for meget at komme ind på her. God fornøjelse med læsningen.

Indledning. Hvorfor det forholder sig sådan har jeg en masse idéer om, men det bliver for meget at komme ind på her. God fornøjelse med læsningen. Indledning...2 Variabler...13 Eksempel: 1...13 Eksempel 2:...13 Eksempel 3:...15 Eksempel 4:...16 Metoder...17 Metode (intet ind og intet ud)...17 Metode (tekst ind)...18 Metode (tekst ind og tekst ud)...19

Læs mere

Jacob Christiansen, Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense

Jacob Christiansen, Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense 7 DM -. Obligatoriske Opgave Løsning af ligningssystem vha. fipunktmetoden Jacob Christiansen, 8 moffe@imada.sdu.dk Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense. Opgaven Der skal implementeres

Læs mere

Forelæsning Uge 12 Torsdag

Forelæsning Uge 12 Torsdag Forelæsning Uge 12 Torsdag Protected access Alternativ til public og private Abstrakte klasser og interfaces En abstrakt klasse er en klasse, som man ikke kan lave instanser (objekter) af En abstrakt klasse

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Skriftlig eksamen i Datalogi Modul 1 Sommer 1998 Opgavesættet består af 4 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 24% Opgave 2 35% Opgave 3 15% Opgave 4 26% Alle sædvanlige hjælpemidler

Læs mere

Eksempel: Skat i år 2000

Eksempel: Skat i år 2000 Kursus 02199: Programmering afsnit 2.1-2.7 Anne Haxthausen IMM, DTU 1. Værdier og typer (bl.a. char, boolean, int, double) (afsnit 2.4) 2. Variable og konstanter (afsnit 2.3) 3. Sætninger (bl.a. assignments)

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere