sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb.
|
|
|
- Philip Sørensen
- 9 år siden
- Visninger:
Transkript
1 sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. lemma: Hvis a, b og c er heltal så gcd(a, b) = 1 og a bc da vil a c. lemma: Hvis p er et primtal og p a 1 a 2 a n hvor hvert a j er et heltal da findes et indeks i så p a i. Fra denne sætning kan der vises entydighed af primfaktorering af heltal. def (Invers modulo et heltal): Hvis a og m er heltal og m > 1 da siges at a er en invers modulo m for a hvis aa 1(mod m). sætning: Hvis a og m er indbyrdes primske og m > 1 da har a en invers modulo m. Fra denne sætning kan der derved findes løsninger til ligninger af følgende form ax b(mod m) hvis gcd(a, m) = 1 (Denne slags ligninger kaldes lineære kongurens-ligninger). 1
2 Den kinesiske restklassesætning: Lad m 1,...,m n være indbyrdes primske heltal. Da findes en entydig løsning x (modulo m = m 1 m 2 m n ) til følgende ligningssystem : x a 1 (mod m 1 ) x a 2 (mod m 2 ). x a n (mod m n ). Hvis M i := m m i da følger det at m i og M i er indbyrdes primske da alle faktorerne i M i er indbyrdes primske med m i. Lad s i være en invers til M i modulo m i for i {1,...,n} Det følger da at x = M 1 a 1 s 1 + M 2 a 2 s M n a n s n mod m er en løsning til ligningssystemt fra den kinesiske restklassesætning. 2
3 Anvendelse af den kinesiske restklassesætning til aritmetik med store tal: Lad m 1,...,m n være indbyrdes primske heltal. Fra den kinesiske restklassesætning følger det at ethvert tal a hvor 0 a < m kan repræsenteres entydigt ved (a mod m 1,a mod m 2,..., a mod m n ). Dette benyttes ved følgende eksempel: Lad m 1 = 99, m 2 = 98, m 3 = 97 og m 4 = 95. Tallet kan da repræsenteres ved (33,8,9,89) mens kan repræsenteres ved (32,92,42,16). Det følger nu at kan repræsenteres ved ( mod 99, mod 98, mod 97, mod 95) = (65, 2, 51, 10). Ved at løse det tilsvarende ligningssystemet ses at dette svarer til tallet =
4 sætning (Fermats lille): Hvis p er et primtal og p ikke er en divisor i a, da er a p 1 1(mod p). 4
5 kryptering Simpelt privat key krypteringssystem : (shift cipher). Der skal sendes en besked mellem nogle folk, således andre ikke kan læse beskeden. Ved et private key krypteringssystem benyttes ved kryptering en krypterings-nøgle som kun disse folk kender og til dekrytering benyttes en nøgle som let kan fås fra krypteringsnøglen. p : tegn der ønskes sendt (repræsenteret ved et tal mellem 0 og 25). k : nøglen som i dette tilfælde er et heltal mellem 0 og 25. p krypteres da til det entydige heltal c mellem 0 og 25 så c = (p + k) mod 26. Fra kendskab til k er det let at gendanne p fra c da p = (c k) mod 26. 5
6 Public key kryptering Ide : Der ønskes sendt en besked mellem to personer, således kun modtager kan læse beskeden. Derfor krypteres beskeden inden den sendes med en offentlig nøgle som alle må kende. Det er da meningen at modtageren kender en privat nøgle til at dekryptere med og man ikke kan finde denne private nøgle ud fra de offentlige nøgler. 6
7 eksempel: RSA Ved dette private key krypteringssystem dannes (af modtager) nøgler til kryptering og dekryptering på følgende vis : 1. Lad p og q være to store primtal som er forskellige og lad n = pq. 2. Lad e være et heltal der opfylder at gcd(e, (p 1)(q 1)) = Lad d betegne en invers til e modulo (p 1)(q 1). 4. e og n benyttes da som offentlige nøgler mens d benyttes som den private nøgle. Ideen er da at der kan sendes tal med værdi højst n 1 (Dette skal svare til en del af strengen der ønskes sendt). 7
8 Eksempel på RSA: Der ønskes sendt beskeden HELP. Denne omdannes til talfølgen For at danne nøglen vælges p = 43 og q = 59 hvorved n = = Det ses at e kan vælges til at være 13 da der da gælder at gcd(e, (p 1)(q 1)) = gcd(13, 42 58) = 1. Da 937 er en invers til e modulo (p 1)(q 1) vælges d = 937. ( = = 5(p 1)(q 1) + 1 = ) Da n > 2525 kan vi sende 2 tegn af gangen (britisk alfabet). Derfor skal der først sendes 0704 som svarer til tegnene HE og derefter 1115 som svarer til LP. 8
9 Kryptering og dekryptering ved RSA: Lad M være tallet der skal sendes da krypteres M til C = M e mod n. For at dekryptere C og derved finde M benyttes at M = C d mod n. (Det skal bemærkes at der skal gælde at gcd(m, n) = 1) 9
10 Eksempel på RSA fortsat: 0704 krypteres til og 1115 krypteres til mod 2537 = mod 2537 = Derved bliver den krypterede tekst til 0981 efterfulgt af Til dekryptering findes mod 2537 = 0704 og mod 2537 =
Talteoriopgaver Træningsophold ved Sorø Akademi 2007
Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2
Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så
Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =
Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.
Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske
TALTEORI Følger og den kinesiske restklassesætning.
Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man
Matematikken bag kryptering og signering RSA
Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal
KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi)
KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) 1. Klassiske krypteringsmetoder 1.1 Terminologi klartekst kryptotekst kryptering dekryptering 1.2 Monoalfabetiske kryptosystemer 1.3 Additive
Matematikken bag kryptering og signering NemID RSA Foredrag i UNF
Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Disposition 1 PKI - Public Key Infrastructure Symmetrisk kryptografi Asymmetrisk kryptografi 2 Regning med rester Indbyrdes primiske tal
Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem
Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Johan P. Hansen 18. april 2013 Indhold 1 Indbyrdes primiske hele tal 1 2 Regning med rester 3 3 Kryptering
Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.
Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske
Affine - et krypteringssystem
Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på
t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36
Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er
Camp om Kryptering. Datasikkerhed, RSA kryptering og faktorisering. Rasmus Lauritsen. August 27,
Camp om Kryptering Datasikkerhed, RSA kryptering og faktorisering Rasmus Lauritsen August 27, 2013 http://users-cs.au.dk/rwl/2013/sciencecamp Indhold Datasikkerhed RSA Kryptering Faktorisering Anvendelse
Matematikken bag kryptering og signering RSA
Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal
Køreplan Matematik 1 - FORÅR 2005
Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange
RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard
RSA-kryptosystemet RSA-kryptosystemet Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 007. Billeder: Forside: istock.com/demo10 Erik Vestergaard www.matematikfysik.dk 3 1. Indledning
TALTEORI Wilsons sætning og Euler-Fermats sætning.
Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan
TALTEORI Wilsons sætning og Euler-Fermats sætning.
Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan
Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: [email protected]
Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: [email protected] 1 Besøgstjenesten Jeg vil gerne bruge lidt spalteplads til at reklamere for besøgstjenesten ved Institut for Matematiske Fag
Note om endelige legemer
Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på
Konfidentialitet og kryptografi 31. januar, Jakob I. Pagter
Konfidentialitet og kryptografi 31. januar, 2009 Jakob I. Pagter Oversigt Kryptografi autenticitet vs. fortrolighed ubetinget vs. beregningsmæssig sikkerhed Secret-key fortrolighed Public-key fortrolighed
TALTEORI Wilsons sætning og Euler-Fermats sætning.
Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan
Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.
Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger
Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet
Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 24. august 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede
DM72 Diskret matematik med anvendelser
DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n
Kryptografi Anvendt Matematik
Kryptografi Anvendt Matematik af Marc Skov Madsen PhD-studerende Matematisk Institut, Aarhus Universitet email: [email protected] Kryptografi p.1/23 Kryptografi - Kryptografi er læren om, hvordan en tekst
TALTEORI Primfaktoropløsning og divisorer.
Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne
Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet
Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig
Opgave 1 Regning med rest
Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan
2. Gruppen af primiske restklasser.
Primiske restklasser 2.1 2. Gruppen af primiske restklasser. (2.1) Setup. I det følgende betegner n et naturligt tal større end 1. Den additive gruppe af restklasser modulo n betegnes Z/n, og den multiplikative
Noter om primtal. Erik Olsen
Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et
Projekt 7.9 Euklids algoritme, primtal og primiske tal
Projekter: Kapitel 7 Projekt 79 Euklids algoritme, primtal og primiske tal Projekt 79 Euklids algoritme, primtal og primiske tal Projektet giver et kig ind i metodee i modee talteori Det kan udbygges med
Integer Factorization
Integer Factorization Per Leslie Jensen DIKU 2/12-2005 kl. 10:15 Overblik 1 Faktorisering for dummies Primtal og aritmetikkens fundamentalsætning Lille øvelse 2 Hvorfor er det interessant? RSA 3 Metoder
Kryptologi og RSA. Jonas Lindstrøm Jensen ([email protected])
Kryptologi og RSA Jonas Lindstrøm Jensen ([email protected]) 1 Introduktion Der har formodentlig eksisteret kryptologi lige så længe, som vi har haft et sprog. Ønsket om at kunne sende beskeder, som uvedkommende
RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet
RSA Kryptosystemet Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Kryptering med RSA Her følger først en kort opridsning af RSA kryptosystemet, som vi senere skal bruge til at lave digitale signaturer.
Foredrag i Eulers Venner 30. nov. 2004
BSD-prosper.tex Birch og Swinnerton-Dyer formodningen Johan P. Hansen 26/11/2004 13:34 p. 1/20 Birch og Swinnerton-Dyer formodningen Foredrag i Eulers Venner 30. nov. 2004 Johan P. Hansen [email protected]
RSA-KRYPTERING. Studieretningsprojekt. Blerim Cazimi. Frederiksberg Tekniske Gymnasium. Matematik A. Vejleder: Jonas Kromann Olden
14. DEC 2014 RSA-KRYPTERING Studieretningsprojekt Blerim Cazimi Frederiksberg Tekniske Gymnasium Matematik A Vejleder: Jonas Kromann Olden Informationsteknologi B Vejleder: Kenneth Hebel Indhold Indledning...
Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003
Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, [email protected] Matematisk Institut, Aarhus
Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003
Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, [email protected] Matematisk Institut, Aarhus
Talteori: Euklids algoritmer, modulær aritmetik
Talteori: r, modulær aritmetik Videregående algoritmik Cormen et al. 31.1 31.4 Tirsdag den 6. januar 2009 1 1 2 Restklasseringene modulo n Grupper og undergrupper Modulær division Divisorer De hele tal
Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6
Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter
Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen
Introduktion til Kryptologi Mikkel Kamstrup Erlandsen Indhold 1 Introduktion 2 1.1 Om Kryptologi.......................... 2 1.2 Grundlæggende koncepter.................... 2 1.3 Bogstaver som tal........................
Fortroligt dokument. Matematisk projekt
Fortroligt dokument Matematisk projekt Briefing til Agent 00-DiG Velkommen til Kryptoafdeling 1337, dette er din første opgave. Det lykkedes agenter fra Afdelingen for Virtuel Efterretning (AVE) at opsnappe
Fejlkorligerende køder Fejlkorrigerende koder
Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget
Projekt 0.6 RSA kryptering
Projekt 0.6 RSA kryptering 1. Introduktion. Nøgler til kryptering Alle former for kryptografi prøver at løse følgende problem: En afsender, A ønsker at sende en mdelelse til en modtager, M, såles at den
Fejlkorrigerende koder, secret sharing (og kryptografi)
Fejlkorrigerende koder, secret sharing (og kryptografi) Olav Geil Afdeling for Matematiske Fag Aalborg Universitet Møde for Matematiklærere i Viborg og Ringkøbing amter 7. november, 2006 Oversigt Fejlkorrigerende
Primtal - hvor mange, hvordan og hvorfor?
Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret
TALTEORI Ligninger og det der ligner.
Ligninger og det der ligner, december 006, Kirsten Rosenkilde 1 TALTEORI Ligninger og det der ligner. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter
Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.
Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter
Fejlkorligerende køder Fejlkorrigerende koder
Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget
Ringe og Primfaktorisering
Ringe og Primfaktorisering Michael Knudsen 16. marts 2005 1 Ringe Lad Z betegne mængden af de hele tal, Z = {..., 2, 1,0,1,2,...}. På Z har to regneoperationer, + (plus) og (gange), der til to hele tal
HVOR SIKKER ER ASSYMETRISK KRYPTERING? Nat-Bas Hus 13.2 1 semesters projekt, efterår 2004 Gruppe 12
HVOR SIKKER ER ASSYMETRISK KRYPTERING? Nat-Bas Hus 13.2 1 semesters projekt, efterår 2004 Gruppe 12 Udarbejdet af: Vejleder: Tomas Rasmussen Mads Rosendahl. Abstract Dette projekt har til formål at undersøge
Informationsteori. Hvorledes man bryder en RSA-kode
1 970501HEb Informationsteori Hvorledes man bryder en RSA-kode Vi kender den offentlige nøgle (e n) og vil nu finde den private nøgle (d n), hvorved koden er brudt. Først gættes primfaktoriseringen af
1 Sætninger om hovedidealområder (PID) og faktorielle
1 Sætninger om hovedidealområder (PID) og faktorielle ringe (UFD) 1. Introducér ideal, hovedideal 2. I kommutativt integritetsområde R introduceres primelement, irreducibelt element, association 3. Begrebet
Den digitale signatur
3. Å RG A N G NR. 3 / 2004 Den digitale signatur - anvendt talteori og kryptologi Fra at være noget, der kun angik den militære ledelse og diplomatiet, har kryptologi med brugen af internettet fået direkte
Kursusgang 2: Symmetrisk kryptering (II). 3DES og Rijndael. Kursusgang 2: Symmetrisk kryptering (II). 3DES og Rijndael
Kursusgang 2: Kursusgang 2: Hvorfor er Rijndael valgt som afløser for DES og 3DES? Hvad er de grundlæggende krav til krypteringsalgoritmer? Sammenfatning af DES DES' vigtigste sikkerhedsmæssige egenskaber
Kursusgang 3 Matrixalgebra Repetition
Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem
Kursusgang 3: Autencificering & asymmetrisk kryptering. Krav til autentificering. Kryptering som værktøj ved autentificering.
Krav til autentificering Vi kan acceptere, at modtager (og måske afsender) skal bruge hemmelig nøgle Krav til metode: må ikke kunne brydes på anden måde end ved udtømmende søgning længde af nøgler/hemmeligheder/hashkoder
Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2
Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket
MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen
MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible
Tidligere Eksamensopgaver MM505 Lineær Algebra
Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................
Ligningssystemer - nogle konklusioner efter miniprojektet
Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax
Matricer og lineære ligningssystemer
Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix
Matematiske metoder - Opgavesæt
Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller
Lineær algebra 1. kursusgang
Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra
DM547/MM537. Spørgsmål 2 (3%) Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1. Svar 2.h: x Z: y Z: x + y = 5. Svar 1.
DM547/MM537 Spørgsmål 1 (10%) Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1 Svar 1.b: x Z: y Z: x + y = 5 Svar 1.c: x Z: y Z: x + y = 5 Svar 1.d: x Z: y Z: x 2 + 2y = 0 Svar
Perspektiverende Datalogi 2014 Uge 39 Kryptologi
Perspektiverende Datalogi 2014 Uge 39 Kryptologi Dette dokument beskriver en række opgaver. Diskutter opgaverne i små grupper, under vejledning af jeres instruktor. Tag opgaverne i den rækkefølge de optræder.
Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier
Noter om polynomier, Kirsten Rosenkilde, Marts 2006 1 Polynomier Disse noter giver en kort introduktion til polynomier, og de fleste sætninger nævnes uden bevis. Undervejs er der forholdsvis nemme opgaver,
Ekspertudtalelse om kryptering
Ekspertudtalelse om kryptering Professor Lars R. Knudsen Opsummerering I konsulentkontrakt med rekvisitionsnummer 62010142 mellem Digitaliseringsstyrelsen og undertegnede bedes om bistand til ekspertudtalelse
Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers
Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse
Oversigt [LA] 11, 12, 13
Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar
Hvad er KRYPTERING? Metoder Der findes to forskellige krypteringsmetoder: Symmetrisk og asymmetrisk (offentlig-nøgle) kryptering.
Hvad er KRYPTERING? Kryptering er en matematisk teknik. Hvis et dokument er blevet krypteret, vil dokumentet fremstå som en uforståelig blanding af bogstaver og tegn og uvedkommende kan således ikke læses
DesignMat Uge 5 Systemer af lineære differentialligninger II
DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem
DesignMat Kvadratiske matricer, invers matrix, determinant
DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix
Indhold. 1 Indledning 2 1.1 Baggrund... 2
Indhold 1 Indledning 2 1.1 Baggrund.................................. 2 2 Elliptisk kurve 3 2.1 Gruppeoperationen på E.......................... 4 2.1.1 sjove punkter på E........................ 8 2.2
10. Nogle diofantiske ligninger.
Diofantiske ligninger 10.1 10. Nogle diofantiske ligninger. (10.1). I dette kapitel betragtes nogle diofantiske ligninger, specielt nogle af de ligninger, der kan behandles via kvadratiske talringe. Ligningerne
En algebra opsamling INDLEDNING. Indhold. Jens Kusk Block Jacobsen 13. januar 2008
En algebra osamling Jens Kusk Block Jacobsen 13. januar 2008 INDLEDNING Her har jeg samlet forskellige ting, der relaterer til algebra. Dokumentet er en osamling til Concrete Abstract Algebra (1) af Niels
Kvadratiske matricer. enote Kvadratiske matricer
enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,
Kryptering eller kaos! Af Christel Bach
Kryptering eller kaos! Af Christel Bach Om denne artikel: I artiklen Security of Public Key Cryptosystems based on Chebysjev Polynomials af Bergamo,D Arco, De Santis og Kocarev (BASK) gennemgåes anvendelse
Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?
Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se
brikkerne til regning & matematik tal og algebra preben bernitt
brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt
Undersøgende aktivitet om primtal. Af Petur Birgir Petersen
Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Definition: Et primtal er et naturligt tal større end 1, som kun 1 og tallet selv går op i. Eksempel 1: Tallet 1 ikke et primtal fordi det ikke
DM549. Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1. Svar 2.h: x Z: y Z: x + y = 5. Svar 1.e: x Z: y Z: x + y < x y
DM549 Spørgsmål 1 (8%) Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1 Svar 1.b: x Z: y Z: x + y = 5 Svar 1.c: x Z: y Z: x + y = 5 Svar 1.d: x Z: y Z: x 2 + 2y = 0 Svar 1.e:
Lineær Algebra - Beviser
Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner
Eksamen i Diskret Matematik
Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:
Algebra - Teori og problemløsning
Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.
Paradokser og Opgaver
Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail ([email protected]) eller per almindelig post (se adresse på
Kryptering. Kryptering. Traditionel kryptografi. Statistiske angreb
Kryptering Kryptering Scenarium: Alice ønsker at sende en meddelelse (klartekst) til Bob Kommunikationskanalen er usikker og kan blive aflyttet Hvis Alice og Bob er blevet enige om et skema for kryptering,
