Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2
|
|
|
- Vibeke Laustsen
- 9 år siden
- Visninger:
Transkript
1 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket under dannelse af sum og multiplikation med skalarer. Det kan formuleres på den måde at der for vilkårlige skalarer a 1, a 2 R og vektorer u 1, u 2 U gælder at linearkombinationen a 1 u 1 + a 2 u 2 U. Ved gentagen brug af denne egenskab kan man så vise at vilkårlige linearkombinationer a 1 u 1 + a 2 u a k u k U når alle vektorerne u i U. Opfattet geometrisk er underrummene linier, planer og generaliseringer heraf i højere dimensioner. Det er dog ikke alle linier, planer osv. der er underrum. Underrum går alle gennem 0. Hvis vi fjerner dette krav får vi en klasse af objekter der bedre svarer til dem man beskæftiger sig med i geometrien. Det gør vi med følgende definition. Definition. Et affint underrum A R n er en delmængde der er lukket under dannelse af linearkombinationer af formen a 1 u 1 + a 2 u 2 hvor u 1, u 2 A og a 1 + a 2 = 1. Hvis vi sætter a 2 = t, er a 1 = 1 t. Da er a 1 u 1 + a 2 u 2 = (1 t)u 1 + tu 2. Når t gennemløber R, gennemløber linearkombinationen den rette linie der indeholder u 1 og u 2. Den antager værdierne u 1 og u 2 for t = 0 og t = 1. Geometrisk kan vi derfor forstå et affint rum som en mængde der for hvert par af punkter indeholder hele den rette linie gennem punkterne. Det er mere naturligt at tænke på elementerne i et affint rum som punkter end som vektorer selv om begge muligheder er til stede da vi begrænser os til at betragte affine rum indeholdt i R n. Lad u 1, u 2,, u k A. En linearkombination a 1 u 1 + a 2 u a k u k hvor a 1 + a a k = 1 kaldes en affin kombination. Ligesom for underrum kan vi bevise at Et affint rum A indeholder alle affine kombinationer af punkter i A. Vi vil bevise påstanden ved induktion efter k. For k = 1 er påstanden triviel. For k = 2 er påstanden identisk med definitionen. For k = 3 kan vi, hvis a 1 1, foretage omskrivningen a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3 u 3 ) 1 a 1 1 a 1 Da a 2 + a 3 = a 2+a 3 = 1, er parentesen i A, og dermed er den affine kombination omskrevet som en affin kombination af to led hvoraf den ene vektor selv er en affin kombination af to led. Dermed er det vist at kombinationen er i A. 1 a 2
2 Hvis a 1 = 1, er en af de andre koefficienter 1. Vi kan da lave en tilsvarende omskrivning. Vi betragter nu det generelle induktionstrin. Vi antager at affine kombinationer med højst k 1 led er i A. Hvis a 1 1 omskriver vi hvor a 1 u 1 + a 2 u a k u k = a 1 u 1 + (1 a 1 )w w = a 2 1 a 1 u a k 1 a k u k Da a a k 1 a k = a 2+ +a k = 1, er w A i henhold til induktionsantagelsen. Derfor er a 1 u 1 + (1 a 1 )w A i henhold til definitionen af A. Hvis a 1 = 1 laver vi omskrivningen med udgangspunkt i et af de andre led. Det er muligt idet ikke alle a i kan være 1. Hermed er påstanden bevist for alle værdier af k. Affine rum findes i naturen Affine rum er som oftest bedre egnede end underrum til beskrivelse af forhold i naturen. Det gælder f.eks. det fysiske rum som det beskrives i Newtons fysik. Der er punkter, afstande og vinkler, men man kan ikke på nogen naturlig måde addere to punkter, men man kan godt lave affine kombinationer. Hvis man har to punkter, kan man konstruere den rette linie gennem dem. Hvis man har tre punkter der ikke ligger på en linie, kan man konstruere planen gennem dem. Den består af de affine kombinationer af de tre punkter. Lad P 1, P 2, P 3 være tre punkter. Lad a 1 P 1 +a 2 P 2 +a 3 P 3 være en affin kombination. Hvis 0 a 1, a 2, a 3 1 er punktet i trekanten med hjørnerne P 1, P 2, P 3. For punkter udenfor trekanten er der en af ulighederne som ikke er opfyldt. og i skolen En karakterskala er også et eksempel på et affint rum. Karaktererne er talværdier. De eneste meningsfulde operationer man kan lave på et antal karakterer er forskellige former for gennemsnit. For karakterer K 1, K 2,, K n dannes det sædvanlige gennemsnit som 1 n (K 1 + K K n ) = 1 n K n K n Det er en affin kombination. Nogle gange benyttes vægtede gennemsnit hvorved nogle karakterer vægtes mere end andre. Gennemsnittet er da et udtryk af formen w 1 K w n K n hvor w w n = 1. Man vil normalt kun benytte positive vægte. Når alle koefficienterne i en affin kombination er 0 kalder vi det en konveks kombination. Studiet af rum med konvekse kombinationer leder til en anden gren af geometrien med bl.a. anvendelser i økonomi. 2
3 Sammenhæng mellen affine rum og underrum Lad U R n være et underrum, og lad d være en vektor som ikke behøver at ligge i U. Mængden A = d + U består af alle vektorer der kan skrives som d + u hvor u U. Da er A et affint rum. Det kan vi kontrollere ved at betragte en affin kombination a(d + u) + b(d + v) hvor a + b = 1 og u, v U. Den omskrives til a(d + u) + b(d + v) = (a + b)d + (u + v) = d + (u + v) som ses også at ligge i A. Det viser at A er et affint rum. Geometrisk kan vi tænke på d + U som det affine rum der fremkommer af U ved parallelforskydning med vektoren d. Hvis omvendt A er et affint underrum i R n vil vi finde et underrum U og en vektor d så A = d + U. Vektoren d kan vi vælge som en vilkårlig vektor i A. Når d er valgt, definerer vi U = A d, dvs. som mængden af vektorer af formen u d hvor u A. U er et underrum. Det viser vi ved at betragte en linearkombination a(u d) + b(v d) hvor u, v A. Vi foretager omskrivningen a(u d) + b(v d) = [au + bv + (1 a b)d] d Udtrykket i [] er en affin kombination af vektorerne u, v, d A og er derfor i A. Det følger nu at linearkombinationen er i U. Vi har dermed vist at U er et underrum. Da U = A d er det klart at A = d + U. Ethvert affint underrum fremkommer derfor ved parallelforskydning af et underrum. Underrummet hørende til et affint underrum er entydigt Underrummet U = A d afhænger ikke af valget af vektoren d. Med et andet valg af en vektor d A får vi underrummet U = A d. Det er det samme som U. Lad nemlig u U. Da kan u skrives på formen u = w d hvor w A. Vi kan foretage omskrivningen u = w d = (w d + d) d. Da parentesen er en affin kombination af vektorer i A er den i A. Det viser at u U. Alle vektorer i U er med i U, dvs. U U. På tilsvarende måde vises det at U U. Der må da gælde at U = U. Det følger også at underrummet kan defineres som U = {u v u, v A}. Dimensionen af et affint underrum Da der er et entydigt bestemt underrum U knyttet til et affint underrum A kan vi definere dimensionen af A ved dim(a) = dim(u). Affint rum udspændt af et system af vektorer Sætning: Lad u 1, u 2,, u k R n. Vi antager at underrummet W = sp(u 2 u 1, u 3 u 1,, u k u k 1 ) har dimension r. Der findes da netop ét affint underrum af dimension r som indeholder u 1, u 2,, u k, nemlig W + u 1. 3
4 Bemærkning: Vektoren u 1 optræder her på en anden måde end de øvrige vektorer. Det er uden betydning. Man kunne have valgt en af de andre i stedet. Bevis. Vi noterer først at alle vektorerne u i W + u 1. For i > 1 kan vi skrive u i = (u i u 1 ) + u 1. Det viser at u i W + u 1. For i = 0 skriver vi u 1 = 0 + u 1. Derfor er også u 1 W + u 1. Vi har hermed set at W + u 1 er et affint underrum af dimension r som indeholder alle vektorerne u i. For at vise at der ikke er andre, betragter vi et vilkårligt affint rum af dimension r der indeholder alle vektorerne u i. Det kan skrives på formen X + u 1 hvor X er et underrum af dimension r. Da u i X+u 1 for i > 1, er u i u 1 X. Det medfører at W = sp(u 2 u 1, u 3 u 1,, u k u 1 ) X. Da dim(w) = dim(x) = r, er X = W. Hermed er entydigheden bevist. Den fuldstændige løsning til et lineært ligningssystem Betragt et lineært ligningssystem Ax = b skrevet på matrixform. Lad x 0 være en partikulær løsning til ligningssystemet, og lad N være nulrummet for matricen A. Da er den fuldstændige løsning til ligningssystemet det affine rum x 0 + N. Der gælder et omvendt resultat. Vi skal vise følgende. Sætning: Ethvert affint underrum af dimension k i R n er den fuldstændige løsning til et lineært ligningssystem med n k ligninger og n ubekendte. Hvis det affine underrum skrives på formen W + b 1 hvor W er et underrum og b 1 / W, findes der en (n k) n matrix A, så W = {x R n Ax = 0} og W + b 1 = {x R n Ax = e 1 }. Bevis. Vi vælger en basis w 1, w 2,, w k i W. Da det er forudsat at b 1 / W, er vektorerne w 1, w 2,, w k, b 1 lineært uafhængige. Vi kan derfor udvide til en basis w 1, w 2,, w k, b 1, b 2,, b n k i R n. Vi definerer nu en lineær afbildning T : R n R n k ved at sætte T(w i ) = 0 for i = 1,, k og T(b j ) = e j for j = 1,, n k. Der er jo netop én lineær afbildning med givne værdier på vektorerne i en basis. Billedrummet for T er hele R n k. Rangen af T er derfor n k. Kernen kar derfor dimension n (n k) = k. T er konstrueret så W er indeholdt i kernen. Da kernen og W begge har dimension k er W netop kernen for T. Lad nu A være matricen svarende til T. Da er nulrummet for A netop kernen for T, dvs. W. Hermed er det bevist at W = {x R n Ax = 0}. Da Ab 1 = e 1 er b 1 en partikulær løsning til ligningssystemet Ax = e 1. Den fuldstændige løsning er derfor W + b 1, det givne affine underrum. Hermed er sætningen bevist. 4
5 Abstrakte affine rum Dette afsnit forudsætter kendskab til abstrakte vektorrum. Behandlingen er kun en skitse. Vi betragter et affint rum A, der ikke som ovenfor er født som et affint underrum af R n. F.eks. det fysiske rum i Newtons fysik. Vi kan da lave affine kombinationer, men der er ikke noget 0-punkt hvortil det affine rum kan translateres for at få et underrum. Vi kan konstruere et vektorrum ud fra A på følgende måde. Vi betragter mængden V bestående af alle par (P 0, P 1 ) af punkter i A. Vi skal tænke på (P 0, P 1 ) som en vektor fra P 0 til P 1. Vi skal altså forestille os vektorer strittende ud fra alle punkter i A. V er ikke et vektorrum, men vi vil konstruere et vektorrum U. En vektor u U skal være en delmængde af V. To par (P 0, P 1 ) og (Q 0, Q 1 ) er i samme u hvis (og kun hvis) Q 1 = P 1 P 0 + Q 0. Ligningen giver mening da højresiden er en affin kombination. Vi skal tænke på u som vektoren P 1 P 0 = Q 1 Q 0. Det kan vi dog ikke skrive formelt da P 1 P 0 ikke er en affin kombination. u kan altså opfattes som samlingen af vektorer startende alle mulige steder, men med samme størrelse og retning. Vi vil sige at (P 0, P 1 ) er en repræsentant for vektoren u når (P 0, P 1 ) u. Vi definerer addition af to vektorer u og v ved at vælge repræsentanter (P 0, P 1 ) og (Q 0, Q 1 ) for u og v. Vi lader da være u + v være den vektor der har repræsentanten (P 0, P 1 + Q 1 Q 0 ). 2. koordinaten giver mening da det er en affin kombination. Vi kan endvidere definere produktet ru med en skalar som vektoren med en repræsentanten (P 0, (1 r)p 0 + rp 1 ). Disse definitioner giver anledning til en række spørgsmål fordi der er mange forskellige repræsentanter for den samme vektor. Derfor kræver det en række små beviser at sikre at definitionerne er meningsfulde, og at U herved bliver et vektorrum. Det springer vi over her. Når underrummet U er konstrueret, defineres en addition af en vektor u U med et punkt i P A. Tænk på at vi forskyder P med vektoren u. Hvis (Q 0, Q 1 ) repræsenterer u defineres u + P = P + Q 1 Q 0. (Bemærk at højresiden er en affin kombination). Er repræsentanten specielt valgt så Q 0 = P er u + P = Q 1. Efter disse konstruktioner og definitioner kan vi skrive A = P + U hvor P er et vilkårligt valgt punkt i A. 5
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis
Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.
Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,
DesignMat Uge 11 Lineære afbildninger
DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen
Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
Oversigt [LA] 11, 12, 13
Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar
Lidt alment om vektorrum et papir som grundlag for diskussion
Definition : vektorrum, vektorer Et vektorrum er en mængde af elementer med operationerne sum (+) og numerisk multiplikation (), så følgende regler gælder for alle a, b, c og for alle reelle tal s, t R.
Vektorrum. enote Generalisering af begrebet vektor
enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske
Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning
Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =
OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform
Oversigt [LA] 6, 7, 8
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen
Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion
Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar
Lineær algebra 1. kursusgang
Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra
3.1 Baser og dimension
SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V
Lineære 1. ordens differentialligningssystemer
enote 7 enote 7 Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses Der bruges egenværdier og egenvektorer i løsningsproceduren,
Tidligere Eksamensopgaver MM505 Lineær Algebra
Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................
Lineær Algebra, kursusgang
Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.
Kursusgang 3 Matrixalgebra Repetition
Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem
Kirchberger s sætning om separation af to mængder Maria Larissa Ziino
12 Formidlingsaktivitet Kirchberger s sætning om separation af to mængder Maria Larissa Ziino I denne artikel fremføres to sætninger af henholdsvis den østrigske matematiker Eduard Helly og den tyske matematiker
Lineær Algebra - Beviser
Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner
Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers
Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse
Diagonalisering. Definition (diagonaliserbar)
1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og
DesignMat Uge 11 Vektorrum
DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation
DesignMat Uge 11. Vektorrum
DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en
Lineær Algebra. Lars Hesselholt og Nathalie Wahl
Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,
Lineær algebra: Spænd. Lineær (u)afhængighed
Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
Lineær Algebra, TØ, hold MA3
Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet
Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)
SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige
Lineær Algebra eksamen, noter
Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,
Matematik og FormLineære ligningssystemer
Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix
Lineære Afbildninger. enote 8. 8.1 Om afbildninger
enote 8 enote 8 Lineære Afbildninger Denne enote undersøger afbildninger mellem vektorrum af en bestemt type, nemlig lineære afbildninger Det vises, at kernen og billedrummet for lineære afbildninger er
DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer
DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum
Lineære ligningssystemer og Gauss-elimination
Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation
Teoretiske Øvelsesopgaver:
Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere
Ligningssystemer - nogle konklusioner efter miniprojektet
Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax
Hilbert rum. Chapter 3. 3.1 Indre produkt rum
Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E
DesignMat Uge 5 Systemer af lineære differentialligninger II
DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem
Matematik: Struktur og Form Spænd. Lineær (u)afhængighed
Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 8 Linearkombinationer. Spænd Definition Givet et antal vektorer a1,...,
Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016
Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Egenværdier og egenvektorer
1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.
Matematik for økonomer 3. semester
Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra
2010 Matematik 2A hold 4 : Prøveeksamen juni 2010
1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik
Modulpakke 3: Lineære Ligningssystemer
Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system
Affine transformationer/afbildninger
Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning
Lineære ligningssystemer
enote 6 1 enote 6 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.
Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.
LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer
Module 1: Lineære modeller og lineær algebra
Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Egenværdier og egenvektorer
enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier
Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første
Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet
Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem
Kvadratiske matricer. enote Kvadratiske matricer
enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,
Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017
Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Geometriske vektorer. enote En geometrisk vektor
enote 10 1 enote 10 Geometriske vektorer Formålet med denne note er at give en introduktion til geometriske vektorer i planen og rummet, som sigter mod at introducere en række af de metoder, der gør sig
Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2
Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar
To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra
Lineær Algebra. Lars Hesselholt og Nathalie Wahl
Lineær Algebra Lars Hesselholt og Nathalie Wahl 2. udgave, oktober 207 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan
Komplekse tal. Mikkel Stouby Petersen 27. februar 2013
Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil
Kursusgang 3 Matrixalgebra Repetition
Kursusgang 3 Repetition - [email protected] http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix
Lineære ligningssystemer
enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.
Matematisk induktion
Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag
Affine og konvekse mængder
Kapitel 3 Affine og konvekse mængder 3.1 Affine mænger Definition 3.1 LadXvære et vektorrum. En delmængde A Xer affin hvis λ 1 x 1 +λ 2 x 2 A for alle x 1, x 2 A og λ 1,λ 2 R med λ 1 +λ 2 = 1. (3.1) Udtrykket
Besvarelser til de to blokke opgaver på Ugeseddel 7
Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,
Mat H /05 Note 2 10/11-04 Gerd Grubb
Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med
Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet 6. januar,
DesignMat Egenværdier og Egenvektorer
DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).
MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen
MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible
x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet
Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen
Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen
Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger
Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018
Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.
0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.
Konvekse mængder. Erik Christensen
Konvekse mængder Erik Christensen Indholdsfortegnelse Afsnit 0 ELEMENTÆRE DEFINITIONER OG DET FUNDAMENTALE RESULTAT, 4 Afsnit 1 REPETITION, AFSTANDSMÅLET I Rn OG LINEÆRE AFBILDNINGER, 9 Afsnit 2 AFFINE
Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1
Besvarelse af Eksamensopgaver Juni 5 i Matematik H Opgave De fire vektorer stilles op i en matrix som reduceres: 4 4 4 8 4 4 (a) Der er ledende et-taller så dim U =. Som basis kan f.eks. bruges a a jfr.
To ligninger i to ubekendte
Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus
Oversigt [LA] 6, 7, 8
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen
(Prøve)eksamen i Lineær Algebra
(Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.
