Kryptologi og RSA. Jonas Lindstrøm Jensen

Størrelse: px
Starte visningen fra side:

Download "Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk)"

Transkript

1 Kryptologi og RSA Jonas Lindstrøm Jensen 1 Introduktion Der har formodentlig eksisteret kryptologi lige så længe, som vi har haft et sprog. Ønsket om at kunne sende beskeder, som uvedkommende ikke skal kunne læse, opstår i hvert fald i mange situationer, og forskellige metoder til at opnå dette, har været anvendt op gennem historien. En klassiske metode, der går tilbage til Romerne, går ud på, at man erstatter hvert bogstav med det bogstav, der står fx tre pladser længere henne i alfabetet, og hvis man rammer enden, starter man fordra. Så istedet for ANGRIB sender man beskeden DQJULE. Afsender og modtager skal så inden blive enige om, hvor langt man rykker bogstaverne. Siden er der blevet udviklet mange metoder, og i denne lille note vil vi fokusere på en af de nyeste, nemlig RSA. Metoden er opkaldt efter opfinderne Ron Rivest, Adi Shamir og Leonard Adleman. Vi vil i denne note først præsentere nogle klassiske krypteringsmetoder, derefter forklare den nødvendige talteori for at forstå RSA, og til sidst forklare, hvorledes RSA fungerer. 2 Kryptologi Kryptologi er læren om, hvorledes man kan maskere meddelelser, således at kun rette vedkommende skal kunne læse den. Vi vil her præsentere nogle metoder til, hvorledes det kan gøres. Afsender og modtager bliver enige om en nøgle, der bruges både til at kryptere og dekryptere beskeden, og pointen er naturligvis, at andre helst ikke skal kunne regne nøglen ud, og dermed kunne dekryptere beskeden. 1 Cæsar-kryptering Denne metode omtalte vi i introduktionen. Her krypteres en besked ved at hvert bogstav erstattes med det bogstav, der står n pladser pladser længere henne i alfabetet, hvor man starter forfra, hvis man når slutningen af alfabetet. Hvis n = 3 får vi altså ANGRIB DQJULE Nøglen er her n, og modtageren rykker nu alle bogstaver n pladser tilbage, og får den oprindelige besked. Denne form for kryptering er ret nem at bryde, idet man 1 En mere fuldstændig gennemgang af kryptologi findes i bogen Kryptologi fra viden til videnskab af Peter Landrock og Knud Nissen, (ABACUS,1990). 1

2 jo bare kan prøve de 27 muligheder der er hvis der er 28 bogstaver i alfabetet, og man rykker et bogstav 28 pladser, får man jo det samme bogstav. Kryptering ved substitution Her bliver afsender og modtager enige om, hvilket bogstav hvert bogstav skal ændres til. Hvis vi vælger får vi fx ABCDEFGHIJKLMNOPQRSTUVWXYZÆØÅ QWERTYUIOPÅASDFGHJKLÆØZXCVBNM MØD MIG VED HULEN KLOKKEN FIRE SNR SOU ØTR IÆATD ÅAFÅÅTD YOJT Denne form for kryptering er noget sværere at bryde, idet der jo er = 28! forskellige måder vi kan gøre det på (hvorfor?). Dog har en uvedkommende modtager stadig en god chance for at bryde koden, idet alle bogstaver ikke optræder lige ofte i en tekst. Det mest almindelige bogstav er E, så det bogstav der optræder oftest i den krypterede tekst svarer højst sandsynlig til E, og ved at gætte sig lidt frem, kan man ofte bryde denne form for kryptering alligevel. Viginère-kryptering Der er blevet udviklet adskillige krypteringsmetoder, hvor man forsøger at undgå, at man kan finde E et. En af disse er Viginère-kryptering opkaldt efter Blaise de Vigenère ( ). Her er nøglen et ord, fx ABE. Dette ord skrives gentagne gange over den tekst, man vil kryptere, og hvert bogstav i teksten rykkes så det antal pladser i alfabetet, svarende til den plads bogstavet over har i alfabetet. ABE ABE ABE ABEAB EABEABE ABEA MØD MIG VED HULEN KLOKKEN FIRE NAI NKL WGI IWQFP PMQPLGS GKWF Det er lidt mere kringlet at bryde denne kode, og koder af denne type blev også benyttet under Anden Verdenskrig, fx brugte Tyskernes berømte Enigma-maskine en metode svarende lidt til denne, men dog med en nøgle, der var meget, meget længere, hvilket gjorde det sværere at bryde krypteringen. Det lykkedes at bryde krypteringen, og det fik betydning under krigen. 2 RSA De tre krypteringsmetoder vi har præsenteret ovenfor har det til fælles, at her er nøglen man bruger til at kryptere og dekryptere nøjagtigt den samme. Modsat hvad man skulle tro, er det dog ikke nødvendigt, at nøglerne er ens, og i RSA skal man bruge to forskellige nøgler. Det giver nogle andre anvendelsesmuligheder end med de systemer, vi hidtil har set på. 2 Se The Code Book af Simon Singh for en historisk gennemgang af kryptologi og mere om Enigma-maskinen. 2

3 3 Talteori Det er nødvendigt at kunne lidt talteori for at forstå RSA, så det vil vi præsentere i dette afsnit. Hvis du gerne vil se flere detaljer om talteori, så se Johan P. Hansen og Henrik Spalks bog Algebra og talteori, Gyldendal (2002). Hvis man har to positive hele tal, n og q, kan man dividere n med p. Hvis q går op i n giver det et helt tal og hvis ikke, så er der en rest, der nødvendigvis må være mindre end q (hvorfor?). Hvis to tal n og m giver samme rest ved division med q, så skriver vi n m (mod q) og siger at n og m er kongruent modulo q. Eksempel 1. Lad q = 4. Så giver 7 og 15 begge en rest på 3 ved division med 4, så derfor er 7 15 (mod 4). Man kan også se eksemplet ovenfor sålede: Skriv tallene i en spiral, så der hver gang bruges fire tal til at nå en omgang rundt. To tal er så kongruente, hvis de ligger på samme arm, Vi er i den heldige situation, at kongruens opfører sig næsten lige som det lighedstegn i kender. Fx kan man stadig bevare en kongruens, hvis man lægger det samme tal til på begge sider. Eksempel 2. Vi ved fra ovenstående eksempel at 7 13 (mod 3), men det gælder også at 8 14 (mod 3) 3

4 eller at (mod 3). Man kan desuden erstatte et tal med et vilkårligt andet tal, der giver samme rest ved division med 3, fx er (mod 3). Vi får brug for lidt flere begreber, blandt andet følgende to. Indbyrdes primiske: To tal er indbyrdes primiske, hvis der ikke er andre tal end 1, der går op i begge tal. Eulers φ-funktion: For et tal n angiver φ(n) hvor mange af tallene m = 1, 2,..., n der er indbyrdes primisk med n. Eksempel 3. Det ses at 4 og 9 er indbyrdes primiske, men at 4 og 6 ikke er det, idet 2 går op i begge tal. Hvis n = 9 ser vi, at 1, 2, 4, 5, 7 og 8 er indbyrdes primiske med 9, så φ(9) = 6. Hvis nu p er et primtal 3, så er φ(p) = p 1 idet alle tallene 1, 2,..., p 1 er indbyrdes primiske med p. Det gælder også at hvis p og q er forskellige primtal, så er φ(pq) = (p 1)(q 1). Vi får også brug for Eulers sætning opkaldt efter Leonard Euler ( ). Sætning 4. Lad a og n være indbyrdes primiske. Så er a φ(n) 1 mod n. Eksempel 5. I sidste eksempel så vi, at φ(9) = 6 og at 2 er indbyrdes primisk med 9. Så her er a = 2, n = 9 og φ(n) = 6 og Eulers sætning siger så, at Det er heldigvis sandt idet 2 6 = mod 9. Remark 6 ( ). Hvis du har en TI-89 (eller anden grafregner fra Texas-Intrument) kan du finde resten af division af n med q ved ar bruge kommandoen mod, der findes under Math, ved at skrive mod(n,q). Grafregnere af andre mærker har helt sikkert en tilsvarende funktion. Hvis du ikke kan finde den, kan du gøre således: Udregn først n/q. Hvis det ikke giver et helt tal, husk da det af resultatet der står før kommaet, kald det m. Resten kan nu findes som 3 Husk at p er et primtal hvis kun 1 og p går op i p. 4

5 Hvis vi har n = 219 og q = 7 får vi så vi lader m = 31, og resten er nu 4 RSA n - q*m n/q = *31 = 2 Vi er nu klar til at forklare, hvorledes RSA fungerer. En typisk situation hvor RSA benyttes er, hvis en kunde vil sende information til sin bank, fx i forbindelse med netbank. Husk på at ideen med systemet er, at der skal bruges forskellige nøgler til at kryptere og dekryptere en besked. På den måde kan banken gøre den nøgle, der kan bruges til at kryptere med, fuldstændigt offentlig, hvorimod de holder den anden nøgle hemmelig. Matematisk set foregår det således: Banken vælger to store primtal, p og q, som de holder hemmelige. De offentliggører produktet af de to, m = pq og et tal k der er indbyrdes primisk med φ(m). Så situationen er altså: Offentlig: m, k Hemmelig: p, q, φ(m). En kunde vil gerne sende beskeden B < m, og sender istedet C < m hvor C B k (mod m). Bemærk at vores meddelelse her er et tal, hvor vi tidligere så på en tekst. Det er dog ikke svært at lave en tekst om til tal fx ved at erstatte hvert bogstav med dens plads i alfabetet. Eksempel 7. Banken vælger primtallene 3 og 5 og offentliggører produktet 15. Idet φ(15) = φ(3 5) = (3 1)(5 1) = 8 kan de vælge k = 3. En kunde vil gerne sende beskeden 2 og sender istedet 8 idet (mod 15). Nu skal banken gerne kunne finde frem til den oprindelige besked. Først finder de to positive tal u, v således at 4 ku φ(m)v = 1 og dermed ku = 1 + φ(m)v. Banken kan nu finde den oprindelige besked B ved at udregne C u idet C u = (B k ) u = B ku = B 1+φ(m)v = BB φ(m)v = B(B φ(m) ) v = B 1 v B (mod m) hvor vi i kongruensen til sidst benytter Eulers sætning fra sidste kapitel. 4 Det kan gøres vha. en metode kaldet Euklids algoritme 5

6 Eksempel 8. Banken modtager fra foregående eksempel beskeden 8. Idet φ(15) = 8 skal de nu finde u, v så De kan fx vælge u = 3 og v = 1 så er som jo var den oprindelige besked. 3u 8v = = (mod 15) 5 Sikkerhed I eksemplet ovenfor, vil det være ret nemt at bryde krypteringen, for som i måske bemærkede, så er m og k offentligt kendte, og man kan dekryptere en besked hvis man kender u som findes ved hjælpe af k og φ(m). Tidligere fandt vi φ(m) for nogle små eksempler, og i teorien er det da også muligt at udregne φ(m), bare man kender m. I praksis er m dog et tal på adskillige hundrede cifre, så det vil tage alt for lang tid at prøve med alle divisorere. Den eneste grund til at banken kan udregne φ(m) er, at de kender p og q og de ved at φ(m) = (p 1)(q 1). At gange to kæmpestore tal sammen virker måske uoverskueligt, men det er enormt meget nemmere end at udregne φ(m). En anden måde at angribe systemet på er, hvis man man finde p og q. For små tal, er det ikke så svært, fx kan man i vores eksemepl nemt se, at 15 = 3 5, men ligesom for beregning af φ(m), bliver det et meget tungt stykke arbejde for kæmpestore tal. Efterhånden som computere bliver hurtigere, har det være nødvendigt at øge størrelsen af m, men indtil nogen kommer op med en banebrydende ny måde at finde φ(m), er systemet ganske sikkert. 6 Opgaver Opgave 1. Krypter teksten HEJ MED DIG med Cæsar-kryptering og nøglen n = 2. Opgave 2. Krypter teksten HEJ MED DIG med Viginère-kryptering hvor nøglen er BAD. Opgave 3. Følgende er krypteret vha. substitution altså hvor hvert bogstav erstattes af et bestemt andet bogstav. Hvad er den oprindelige tekst? QWZVSMW NGBØB VZJQFBØB KLGBRBØ ZW VBØBQ CKHLEWBØB XGSRBØ ZJMØBXBW ZN RSØEQ KØHB KM ZJVØB KJVQSJVBVB 6

7 LØKMØZHHBØ QZHWSVSM BØ ZJWZGGBW ZN NKØQPM LÅ ZW NØZJZØØB VZJQFBØJBQ FKVBØ KM ABHHBGSMB KLGUQJSJMBØ RBV ADBGL ZN NZGQFB BHZSGQ KM ADBHHBQSVBØ QWBMBW HZØFZJW (Hint: Det mest brugte bogstav på dansk er E, og det næstmest almindelige er R.) Opgave 4. Hvilken rest får man hvis man deler (i) 7 med 3, (ii) 13 med 7, (iii) 10 med 9? Opgave 5. Hvilke af følgende udsagne er sande? 1. (i) 3 5 (mod 2), 2. (ii) (mod 4), 3. (iii) (mod 5)? Opgave 6. Beregn φ(10), φ(13) og φ(143). Opgave 7. Vælg p = 3 og q = 11 og krypter meddelsen B = 3 med k = 7, og dekrypter derfter beskeden igen. Opgave 8. Som ond hacker har du opsnappet beskeden C = 2. Du ved at m = 55 og at k = 7, da de jo var offentlige. Hvad var den oprindelige besked? 7

8 A Euklids algoritme A.1 Introduktion I afsnittet om RSA skulle vi på et tidspunkt finde u, v således at ku φ(m)v = 1. Husk at vi valgte k således at k og φ(m) er indbyrdes primiske, og faktisk er det altid muligt, hvis x og y er indbyrdes primiske tal, at finde u, v så xu + yv = 1. Det gøres ved hjælpe af Euklids algoritme. Algoritmen finder faktisk det største tal d, der går op i både x og y, og finder hele tal u og v således at xu + yv = d, og hvis x og y er indbyrdes primiske, er dette tal jo netop 1. A.2 Algoritmen Lad os illustrere metoden med et eksempel. Lad x = 42 og y = 15, og lav følgende tabel I feltet nederst til højre skriver vi nu, hvor mange gange 15 går op i 42, i dette tilfælde 2, Vi har her givet tallene farve for at vise, hvorledes de bruges til at udregne tallene i næste række. Tallene i næste række findes på følgende måde = 1, = 2, = 12, og 12 går 1 gang op i 15. Tabellen ser nu således ud Nu rykker vi alle farverne en tak ned, 8

9 og finder tallene i næste række som vi gjorde før = 1, 1 1 ( 2) = 3, = 3, og 3 går 4 gang op i 12. Tabellen ser nu således ud Vi udregner rykker nu farverne en tak, og finder tallene i næste række Tallene i næste række findes som før 1 4 ( 1) = 5, = 14, = 0, da vi nu er nået 0 er algoritmen færdig, og tabellen kommer til at se således ud, Tabellen skal nu aflæses på følgende måde: Det største tal, der går op i både 42 og 15 er d = 3. Lad u = 1 og v = 3 idet = 3. A.3 Opgaver Opgave 9. Gennemfør Euklids algoritme for tallene x = 38 og y = 9. Opgave 10. Gennemfør Euklids algoritme for tallene x = 32 og y = 12. 9

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi)

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) 1. Klassiske krypteringsmetoder 1.1 Terminologi klartekst kryptotekst kryptering dekryptering 1.2 Monoalfabetiske kryptosystemer 1.3 Additive

Læs mere

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Johan P. Hansen 18. april 2013 Indhold 1 Indbyrdes primiske hele tal 1 2 Regning med rester 3 3 Kryptering

Læs mere

Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk

Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk 1 Besøgstjenesten Jeg vil gerne bruge lidt spalteplads til at reklamere for besøgstjenesten ved Institut for Matematiske Fag

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 24. august 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede

Læs mere

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen Introduktion til Kryptologi Mikkel Kamstrup Erlandsen Indhold 1 Introduktion 2 1.1 Om Kryptologi.......................... 2 1.2 Grundlæggende koncepter.................... 2 1.3 Bogstaver som tal........................

Læs mere

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Disposition 1 PKI - Public Key Infrastructure Symmetrisk kryptografi Asymmetrisk kryptografi 2 Regning med rester Indbyrdes primiske tal

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet RSA Kryptosystemet Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Kryptering med RSA Her følger først en kort opridsning af RSA kryptosystemet, som vi senere skal bruge til at lave digitale signaturer.

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard RSA-kryptosystemet RSA-kryptosystemet Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 007. Billeder: Forside: istock.com/demo10 Erik Vestergaard www.matematikfysik.dk 3 1. Indledning

Læs mere

Camp om Kryptering. Datasikkerhed, RSA kryptering og faktorisering. Rasmus Lauritsen. August 27,

Camp om Kryptering. Datasikkerhed, RSA kryptering og faktorisering. Rasmus Lauritsen. August 27, Camp om Kryptering Datasikkerhed, RSA kryptering og faktorisering Rasmus Lauritsen August 27, 2013 http://users-cs.au.dk/rwl/2013/sciencecamp Indhold Datasikkerhed RSA Kryptering Faktorisering Anvendelse

Læs mere

Projekt 7.9 Euklids algoritme, primtal og primiske tal

Projekt 7.9 Euklids algoritme, primtal og primiske tal Projekter: Kapitel 7 Projekt 79 Euklids algoritme, primtal og primiske tal Projekt 79 Euklids algoritme, primtal og primiske tal Projektet giver et kig ind i metodee i modee talteori Det kan udbygges med

Læs mere

Kryptografi Anvendt Matematik

Kryptografi Anvendt Matematik Kryptografi Anvendt Matematik af Marc Skov Madsen PhD-studerende Matematisk Institut, Aarhus Universitet email: marc@imf.au.dk Kryptografi p.1/23 Kryptografi - Kryptografi er læren om, hvordan en tekst

Læs mere

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, matjph@imf.au.dk Matematisk Institut, Aarhus

Læs mere

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, matjph@imf.au.dk Matematisk Institut, Aarhus

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Konfidentialitet og kryptografi 31. januar, Jakob I. Pagter

Konfidentialitet og kryptografi 31. januar, Jakob I. Pagter Konfidentialitet og kryptografi 31. januar, 2009 Jakob I. Pagter Oversigt Kryptografi autenticitet vs. fortrolighed ubetinget vs. beregningsmæssig sikkerhed Secret-key fortrolighed Public-key fortrolighed

Læs mere

Hvad er KRYPTERING? Metoder Der findes to forskellige krypteringsmetoder: Symmetrisk og asymmetrisk (offentlig-nøgle) kryptering.

Hvad er KRYPTERING? Metoder Der findes to forskellige krypteringsmetoder: Symmetrisk og asymmetrisk (offentlig-nøgle) kryptering. Hvad er KRYPTERING? Kryptering er en matematisk teknik. Hvis et dokument er blevet krypteret, vil dokumentet fremstå som en uforståelig blanding af bogstaver og tegn og uvedkommende kan således ikke læses

Læs mere

Køreplan Matematik 1 - FORÅR 2005

Køreplan Matematik 1 - FORÅR 2005 Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Koder og kryptering. Foredrag UNF 4. december 2009 Erik Zenner (Adjunkt, DTU)

Koder og kryptering. Foredrag UNF 4. december 2009 Erik Zenner (Adjunkt, DTU) Koder og kryptering Foredrag UNF 4. december 2009 Erik Zenner (Adjunkt, DTU) I. Indledende bemærkninger Hvad tænker I på, når I hører kryptologi? Hvad tænker jeg på, når jeg siger kryptologi? Den matematiske

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Fortroligt dokument. Matematisk projekt

Fortroligt dokument. Matematisk projekt Fortroligt dokument Matematisk projekt Briefing til Agent 00-DiG Velkommen til Kryptoafdeling 1337, dette er din første opgave. Det lykkedes agenter fra Afdelingen for Virtuel Efterretning (AVE) at opsnappe

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

6. RSA, og andre public key systemer.

6. RSA, og andre public key systemer. RSA 6.1 6. RSA, og andre public key systemer. (6.1). A skal sende en meddelelse til B. Denne situation forekommer naturligvis utallige gange i vores dagligdag: vi kommunikerer, vi signalerer, vi meddeler

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Mircobit Kursus Lektion 2

Mircobit Kursus Lektion 2 Mircobit Kursus Lektion 2 I denne lektie skal vi arbejde videre med lille mini computer kaldt microbit. Du kan finde Simulatoren & Programmet til micobit her: http://microbit.org/ (Du skal her vælge Lets

Læs mere

Projekt 0.6 RSA kryptering

Projekt 0.6 RSA kryptering Projekt 0.6 RSA kryptering 1. Introduktion. Nøgler til kryptering Alle former for kryptografi prøver at løse følgende problem: En afsender, A ønsker at sende en mdelelse til en modtager, M, såles at den

Læs mere

RSA-KRYPTERING. Studieretningsprojekt. Blerim Cazimi. Frederiksberg Tekniske Gymnasium. Matematik A. Vejleder: Jonas Kromann Olden

RSA-KRYPTERING. Studieretningsprojekt. Blerim Cazimi. Frederiksberg Tekniske Gymnasium. Matematik A. Vejleder: Jonas Kromann Olden 14. DEC 2014 RSA-KRYPTERING Studieretningsprojekt Blerim Cazimi Frederiksberg Tekniske Gymnasium Matematik A Vejleder: Jonas Kromann Olden Informationsteknologi B Vejleder: Kenneth Hebel Indhold Indledning...

Læs mere

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb.

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. lemma: Hvis a, b og c er heltal så gcd(a, b) = 1 og a bc da vil a c. lemma: Hvis p er et primtal og p a 1 a 2 a n hvor hvert

Læs mere

Den digitale signatur

Den digitale signatur 3. Å RG A N G NR. 3 / 2004 Den digitale signatur - anvendt talteori og kryptologi Fra at være noget, der kun angik den militære ledelse og diplomatiet, har kryptologi med brugen af internettet fået direkte

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Perspektiverende Datalogi 2014 Uge 39 Kryptologi

Perspektiverende Datalogi 2014 Uge 39 Kryptologi Perspektiverende Datalogi 2014 Uge 39 Kryptologi Dette dokument beskriver en række opgaver. Diskutter opgaverne i små grupper, under vejledning af jeres instruktor. Tag opgaverne i den rækkefølge de optræder.

Læs mere

Klasse 1.4 Michael Jokil 03-05-2010

Klasse 1.4 Michael Jokil 03-05-2010 HTX I ROSKILDE Afsluttende opgave Kommunikation og IT Klasse 1.4 Michael Jokil 03-05-2010 Indholdsfortegnelse Indledning... 3 Formål... 3 Planlægning... 4 Kommunikationsplan... 4 Kanylemodellen... 4 Teknisk

Læs mere

Integer Factorization

Integer Factorization Integer Factorization Per Leslie Jensen DIKU 2/12-2005 kl. 10:15 Overblik 1 Faktorisering for dummies Primtal og aritmetikkens fundamentalsætning Lille øvelse 2 Hvorfor er det interessant? RSA 3 Metoder

Læs mere

Projekt 7.4. Rationale tal brøker og decimaltal

Projekt 7.4. Rationale tal brøker og decimaltal ISBN 98806689 Projekter: Kapitel. Projekt.4. Rationale tal brøker decimaltal Projekt.4. Rationale tal brøker decimaltal Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen,,

Læs mere

Trådløst LAN hvordan sikrer man sig?

Trådløst LAN hvordan sikrer man sig? Trådløst LAN hvordan sikrer man sig? Trådløse acces points er blevet så billige, at enhver der har brug for en nettilsluttet computer et andet sted end ADSL modemmet står, vil vælge denne løsning. Det

Læs mere

Roskilde Universitetscenter, Datalogisk Afdeling Kryptering. Niels Christian Juul. N&P 11: 2001 April 18th

Roskilde Universitetscenter, Datalogisk Afdeling   Kryptering. Niels Christian Juul. N&P 11: 2001 April 18th Roskilde Universitetscenter, Datalogisk Afdeling E-mail: ncjuul@acm.org Kryptering Niels Christian Juul N&P 11: 2001 April 18th Om kryptering, DES, RSA, PGP og SSL Copyright 1998-2001, Niels Christian

Læs mere

Deling - primtal - kryptografi. Johan P. Hansen. 15. september Indledning 2

Deling - primtal - kryptografi. Johan P. Hansen. 15. september Indledning 2 Deling - primtal - kryptografi Johan P. Hansen 15. september 2011 Indhold 1 Indledning 2 2 Primtal og heltalsdeling 3 2.1 Primtalsfaktorisering.............................. 4 2.1.1 Primtalsfaktoriseringens

Læs mere

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet Sikre Beregninger Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Introduktion I denne note skal vi kigge på hvordan man kan regne på data med maksimal sikkerhed, dvs. uden at kigge på de tal

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

2. Gruppen af primiske restklasser.

2. Gruppen af primiske restklasser. Primiske restklasser 2.1 2. Gruppen af primiske restklasser. (2.1) Setup. I det følgende betegner n et naturligt tal større end 1. Den additive gruppe af restklasser modulo n betegnes Z/n, og den multiplikative

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

Bilag Omfang. Besvarelsens omfang forventes at være mellem 15 og 20 sider, hvortil kommer bilag i form af eksperimentelle data, grafer og lignende.

Bilag Omfang. Besvarelsens omfang forventes at være mellem 15 og 20 sider, hvortil kommer bilag i form af eksperimentelle data, grafer og lignende. Hovedfag Matematik A Inddragne fag Fysik B (Astronomi C) Område Astronomisk navigation Opgave Astronomisk navigation og sfærisk geometri Gør rede for grundbegreberne i sfærisk geometri, herunder sfæriske

Læs mere

Forord 3 Strukturen i denne bog 6

Forord 3 Strukturen i denne bog 6 Indhold i Epsilon Forord 3 Strukturen i denne bog 6 Introduktion til del I. De naturlige tal 10 1 Børns talbegreber og regneoperationer omkring de første skoleår 12 Tal og det at tælle 15 Det indledende

Læs mere

DM72 Diskret matematik med anvendelser

DM72 Diskret matematik med anvendelser DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Kryptering kan vinde over kvante-computere

Kryptering kan vinde over kvante-computere Regional kursus i matematik i Aabenraa Institut for Matematik Aarhus Universitet matjph@math.au.dk 15. februar 2016 Oversigt 1 Offentlig-privat nøgle kryptering 2 3 4 Offentlig-privat nøgle kryptering

Læs mere

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Definition: Et primtal er et naturligt tal større end 1, som kun 1 og tallet selv går op i. Eksempel 1: Tallet 1 ikke et primtal fordi det ikke

Læs mere

Assembly Voting ApS. Kompagnistræde 6, København K CVR:

Assembly Voting ApS. Kompagnistræde 6, København K CVR: Assembly Voting ApS Kompagnistræde 6, 2. 1208 København K CVR: 25600665 Afstemningssystem, Systembeskrivelse Assembly Votings systemer og hostingmiljøer er designet til at imødekomme såvel lovkrav som

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Dokumentation af programmering i Python 2.75

Dokumentation af programmering i Python 2.75 Dokumentation af programmering i Python 2.75 Af: Alexander Bergendorff Jeg vil i dette dokument, dokumentere det arbejde jeg har lavet i løbet opstarts forløbet i Programmering C. Jeg vil forsøge, så vidt

Læs mere

Fredag 12. januar David Pisinger

Fredag 12. januar David Pisinger Videregående Algoritmik, DIKU 2006/07 Fredag 2. januar David Pisinger Kryptering Spartanere (500 f.kr.) strimmelrulle viklet omkring cylinder Julius Cæsar: substituering af bogstaver [frekvensanalyse]

Læs mere

Kryptologi 101 (og lidt om PGP)

Kryptologi 101 (og lidt om PGP) Kryptologi 101 (og lidt om PGP) @jchillerup #cryptopartycph, 25. januar 2015 1 / 27 Hvad er kryptologi? define: kryptologi En gren af matematikken, der blandt andet handler om at kommunikere sikkert over

Læs mere

Informationsteori. Hvorledes man bryder en RSA-kode

Informationsteori. Hvorledes man bryder en RSA-kode 1 970501HEb Informationsteori Hvorledes man bryder en RSA-kode Vi kender den offentlige nøgle (e n) og vil nu finde den private nøgle (d n), hvorved koden er brudt. Først gættes primfaktoriseringen af

Læs mere

Polynomiumsbrøker og asymptoter

Polynomiumsbrøker og asymptoter Polynomiumsbrøker og asymptoter Frank Villa 9. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Kryptologi og 2. verdenskrig

Kryptologi og 2. verdenskrig Studieretningsprojekt 2014 Kryptologi og 2. verdenskrig Kryptering under 2. verdenskrig Louise Vesterholm Møller Matematik A & Historie A Birgitte Pedersen & Thomas von Jessen 18-12-2014 G a m m e l H

Læs mere

Sikkerhed i trådløst netværk

Sikkerhed i trådløst netværk Sikkerhed i trådløst netværk Når du opsætter et trådløst netværk betyder det at du kan benytte dit netværk uden at være forbundet med kabler, men det betyder også at andre kan gøre det samme, hvis du ikke

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

3. Om skalamønstrene og den indfoldede orden

3. Om skalamønstrene og den indfoldede orden Dette er den tredje af fem artikler under den fælles overskrift Studier på grundlag af programmet SKALAGENERATOREN (forfatter: Jørgen Erichsen) 3. Om skalamønstrene og den indfoldede orden Lad os begynde

Læs mere

Kryptering. xhafgra ng tøer hyæfryvtg AALBORG UNIVERSITET ELLER

Kryptering. xhafgra ng tøer hyæfryvtg AALBORG UNIVERSITET ELLER Kryptering ELLER xhafgra ng tøer hyæfryvtg P0 Anders Rune Jensen Ole Laursen Jasper Kjersgaard Juhl Martin Qvist 21. september 2001 AALBORG UNIVERSITET Det Teknisk-Naturvidenskabelige Fakultet Aalborg

Læs mere

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe. Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Om begrebet relation

Om begrebet relation Om begrebet relation Henrik Stetkær 11. oktober 2005 Vi vil i denne note diskutere det matematiske begreb en relation, herunder specielt ækvivalensrelationer. 1 Det abstrakte begreb en relation Som ordet

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

S TUDIER ETNINGSP ROJEKT

S TUDIER ETNINGSP ROJEKT SRP 22. december 2011 3.Z Matematik A Historie A S TUDIER ETNINGSP ROJEKT Kryptologi Med Fokus På Enigma Og Dens Brydning Abstract The following study examines cryptography based especially on Enigma,

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005)

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005) Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (005) Indholdsfortegnelse Indholdsfortegnelse... Stamfunktion og integralregning...3 Numerisk integration...3 Areal under

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru.

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru. 1.1 Introduktion: Euklids algoritme er berømt af mange årsager: Det er en af de første effektive algoritmer man kender i matematikhistorien og den er uløseligt forbundet med problemerne omkring de inkommensurable

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen Matematik og dam hvordan matematik kan give overraskende resultater om et velkendt spil Jonas Lindstrøm Jensen (jonas@imf.au.dk) March 200 Indledning Det klassiske spil dam spilles på et almindeligt skakbræt.

Læs mere

RSA og den heri anvendte matematiks historie - et undervisningsforløb til gymnasiet

RSA og den heri anvendte matematiks historie - et undervisningsforløb til gymnasiet - I, OM OG MED MATEMATIK OG FYSIK RSA og den heri anvendte matematiks historie - et undervisningsforløb til gymnasiet Uffe Thomas Jankvist januar 2008 nr. 460-2008 blank Roskilde University, Department

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Februar Vejledning til Danske Vandværkers Sikker mail-løsning

Februar Vejledning til Danske Vandværkers Sikker mail-løsning Februar 2019 Vejledning til Danske Vandværkers Sikker mail-løsning 0 Indhold Formål med denne vejledning 2 Generelt om Sikker mail-løsningen og hvordan den fungerer 2 Tilgå Sikker mail-løsningen via webmail

Læs mere

Pointen med Funktioner

Pointen med Funktioner Pointen med Funktioner Frank Nasser 0. april 0 c 0080. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

Tysklands brug af koder under Anden Verdenskrig, særligt i U-bådskrigen mod England Studieretningsprojekt i matematik (A) og historie (A)

Tysklands brug af koder under Anden Verdenskrig, særligt i U-bådskrigen mod England Studieretningsprojekt i matematik (A) og historie (A) 07.04.2007 Flóvin Tór Nygaard Næs, Kristian Priisholm og Line Thorup Tysklands brug af koder under Anden Verdenskrig, særligt i U-bådskrigen mod England Studieretningsprojekt i matematik (A) og historie

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Matematikkens filosofi filosofisk matematik

Matematikkens filosofi filosofisk matematik K Ø B E N H A V N S U N I V E R S I T E T Det Naturvidenskabelige Fakultet Matematikkens filosofi filosofisk matematik Flemming Topsøe, topsoe@math.ku.dk Institut for Matematiske Fag, Københavns Universitet

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

I denne artikel, vil der blive gennemgået de grundlæggende PHP-funktioner, såsom udskrift til skærmen, tid og dato og if-sætningen.

I denne artikel, vil der blive gennemgået de grundlæggende PHP-funktioner, såsom udskrift til skærmen, tid og dato og if-sætningen. Denne guide er oprindeligt udgivet på Eksperten.dk Grundlæggende PHP I denne artikel, vil der blive gennemgået de grundlæggende PHP-funktioner, såsom udskrift til skærmen, tid og dato og if-sætningen.

Læs mere

MØDEBOOKING SKAF NYE KUNDER VIA TELEFONEN, SOCIALE. Lær at booke møder pr. telefon. Forstå hvordan sociale medier kan benyttes til at få nye kunder.

MØDEBOOKING SKAF NYE KUNDER VIA TELEFONEN, SOCIALE. Lær at booke møder pr. telefon. Forstå hvordan sociale medier kan benyttes til at få nye kunder. MØDEBOOKING SKAF NYE KUNDER VIA TELEFONEN, SOCIALE MEDIER OG E-MAIL Lær at booke møder pr. telefon. Forstå hvordan sociale medier kan benyttes til at få nye kunder. Booster salget i dit firma 2015 Leon

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Fibonacci følgen og Det gyldne snit

Fibonacci følgen og Det gyldne snit Fibonacci følgen og Det gyldne snit af John V. Petersen Indhold Fibonacci... 2 Fibonacci følgen og Binets formel... 3... 4... 6... 6 Bevis for Binets formel... 7 Binets formel fortæller os, at...... 9...

Læs mere

Normale tal. Outline. Hvad er tilfældighed? Uafhængighed. Matematiklærerdag Simon Kristensen. Aarhus Universitet, 24/03/2017

Normale tal. Outline. Hvad er tilfældighed? Uafhængighed. Matematiklærerdag Simon Kristensen. Aarhus Universitet, 24/03/2017 Matematiklærerdag 2017 Institut for Matematik Aarhus Universitet Aarhus Universitet, 24/03/2017 Outline 1 2 3 Hvad er tilfældighed? I statistik, sandsynlighedsteori og ikke mindst i programmering er det

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

It-sikkerhedstekst ST2

It-sikkerhedstekst ST2 It-sikkerhedstekst ST2 Overvejelser om sikring mod, at personoplysninger kommer til uvedkommendes kendskab i forbindelse med Denne tekst må kopieres i sin helhed med kildeangivelse. Dokumentnavn: ST2 Version

Læs mere

Secret sharing - om at dele en hemmelighed Matematiklærerdag 2017

Secret sharing - om at dele en hemmelighed Matematiklærerdag 2017 Matematiklærerdag 2017 Institut for Matematik, Aarhus universitet 24. marts 2017 Resumé Secret sharing henviser til metoder til fordeling af en hemmelighed blandt en gruppe af deltagere, som hver især

Læs mere

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner Regnetest B: Praktisk regning Træn og Test Niveau: 9. klasse Med brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et forskningsprogram

Læs mere

Ringe og Primfaktorisering

Ringe og Primfaktorisering Ringe og Primfaktorisering Michael Knudsen 16. marts 2005 1 Ringe Lad Z betegne mængden af de hele tal, Z = {..., 2, 1,0,1,2,...}. På Z har to regneoperationer, + (plus) og (gange), der til to hele tal

Læs mere

Lineære sammenhænge, residualplot og regression

Lineære sammenhænge, residualplot og regression Lineære sammenhænge, residualplot og regression Opgave 1: Er der en bagvedliggende lineær sammenhæng? I mange sammenhænge indsamler man data som man ønsker at undersøge og afdække eventuelle sammenhænge

Læs mere

(Positions) Talsystemer

(Positions) Talsystemer (Positions) Talsystemer For IT studerende Hernik Kressner Indholdsfortegnelse Indledning...2 Positions talsystem - Generelt...3 For decimalsystemet gælder generelt:...4 Generelt for et posistionstalsystem

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Lektion 1 Grundliggende regning

Lektion 1 Grundliggende regning Lektion 1 Grundliggende regning Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division - brug af regnemaskine... Talsystemets opbygning - afrunding af tal... Store tal og negative tal...

Læs mere