Betonelementbyggeriers statik



Relaterede dokumenter
3 LODRETTE LASTVIRKNINGER 1

BEF-PCSTATIK. PC-Statik Lodret lastnedføring efter EC0+EC1 Version 2.0. Dokumentationsrapport ALECTIA A/S

BEF-PCSTATIK. PC-Statik Lodret lastnedføring efter EC0+EC1. Dokumentationsrapport ALECTIA A/S

Bærende konstruktion Vejledning i beregning af søjle i stål. Fremgangsmåde efter gennemført undervisning med PowerPoint.

Eftervisning af bygningens stabilitet

Statisk dokumentation Iht. SBI anvisning 223

A.1 PROJEKTGRUNDLAG. Vodskovvej 110, Vodskov Ny bolig og maskinhus. Sag nr: Udarbejdet af. Per Bonde

Nyt generaliseret beregningsmodul efter EC2 til vægge, søjler og bjælker. Juni 2012.

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Tullinsgade 6 3.th

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Lysbrovej 13

Bærende konstruktion Vejledning i beregning af søjle i træ. Fremgangsmåde efter gennemført undervisning med PowerPoint.

A1 Projektgrundlag. Projekt: Tilbygning til Randers Lilleskole Sag: Dato:

A.1 PROJEKTGRUNDLAG. Gennem Bakkerne 52, Vodskov Nyt maskinhus og stald. Sag nr: Udarbejdet af. Per Bonde

STATISK DOKUMENTATION

Bilag 6. Vejledning REDEGØRELSE FOR DEN STATISKE DOKUMENTATION

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Ole Jørgensens Gade 14 st. th.

Beregningsopgave 2 om bærende konstruktioner

Redegørelse for den statiske dokumentation

Statikrapport. Projektnavn: Kildeagervænget 182 Klasse: 13BK1C Gruppe nr. 2 Dato:

RENOVERING AF LØGET BY AFDELING 42

TUNGE SKILLEVÆGGE PÅ TRYKFAST ISOLERING BEREGNINGSMODELLER

TUNGE SKILLEVÆGGE PÅ FLERE LAG TRYKFAST ISOLERING. Input Betondæk Her angives tykkelsen på dækket samt den aktuelle karakteristiske trykstyrke.

EN DK NA:2007

DS/EN DK NA:2013

Sag nr.: Matrikel nr.: Udført af: Renovering

Redegørelse for den statiske dokumentation

A. Konstruktionsdokumentation

DS/EN DK NA:2011

Dimensionering af samling

Beregningsprincipper og sikkerhed. Per Goltermann

Sammenligning af normer for betonkonstruktioner 1949 og 2006

Forspændt bjælke. A.1 Anvendelsesgrænsetilstanden. Bilag A. 14. april 2004 Gr.A-104 A. Forspændt bjælke

DS/EN DK NA:2013

Betonkonstruktioner, 4 (Deformationsberegninger og søjler)

Betonkonstruktioner, 3 (Dimensionering af bjælker)

Bygningskonstruktøruddannelsen Gruppe Semester Forprojekt 15bk1dk Statikrapport Afleveringsdato: 08/04/16 Revideret: 20/06/16

Om sikkerheden af højhuse i Rødovre

A1. Projektgrundlag A2.2 Statiske beregninger -konstruktionsafsnit

DS/EN DK NA:2011

Implementering af Eurocode 2 i Danmark

Transportarmerede betonelementvægge. Deformationsforhold og svigttype. 13. marts 2012 ALECTIA A/S

Betonkonstruktioner Lektion 7

Beton- konstruktioner. Beton- konstruktioner. efter DS/EN efter DS/EN Bjarne Chr. Jensen. 2. udgave. Nyt Teknisk Forlag

Statiske beregninger. - metode og dokumentation. af Bjarne Chr. Jensen

DS/EN DK NA:2010

Træspær 2. Valg, opstilling og afstivning 1. udgave Side 2: Nye snelastregler Marts Side 3-6: Rettelser og supplement Juli 2012

11 TVANGSDEFORMATIONER 1

I dette kapitel behandles udvalgte dele af bygningens bærende konstruktioner. Følgende emner behandles

4 HOVEDSTABILITET Generelt 2

Armeringsstål Klasse A eller klasse B? Bjarne Chr. Jensen Side 1. Armeringsstål Klasse A eller klasse B?

EN DK NA:2008

Løsning, Bygningskonstruktion og Arkitektur, opgave 6

STATISKE BEREGNINGER. A164 - Ørkildskolen Øst - Statik solceller Dato: #1_A164_Ørkildskolen Øst_Statik

Eftervisning af trapezplader

Materialer beton og stål. Per Goltermann

Praktisk design. Per Goltermann. Det er ikke pensum men rart at vide senere

Additiv Decke - beregningseksempel. Blivende tyndpladeforskalling til store spænd

A1 Projektgrundlag. Aalborg Universitet. Gruppe P17. Julie Trude Jensen. Christian Lebech Krog. Kristian Kvottrup. Morten Bisgaard Larsen

DS/EN DK NA:2013

STATISK DOKUMENTATION

Statiske beregninger. Børnehaven Troldebo

Lodret belastet muret væg efter EC6

Elementsamlinger med Pfeifer-boxe Beregningseksempler

Statisk projekteringsrapport og statiske beregninger.

Geoteknisk last vs. konstruktionslast, Note 2 (fortsat fra PBHs indlæg)

EN DK NA:2008

Sag: Humlebækgade 35, st. tv., 2200 København N. Statisk Dokumentation Diverse ombygninger trappeåbning i etageadskillelse

Bygningskonstruktion og arkitektur

Betonkonstruktioner, 1 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber

Redegørelse for statisk dokumentation

Stabilitet - Programdokumentation

Styring af revner i beton. Bent Feddersen, Rambøll

DS/EN 1520 DK NA:2011

Eksempel på inddatering i Dæk.

A.1 PROJEKTGRUNDLAG. Villa Hjertegræsbakken 10, 8930 Randers NØ

10.3 E-modul. Af Jens Ole Frederiksen og Gitte Normann Munch-Petersen. Betonhåndbogen, 10 Hærdnende og hærdnet beton

Huldæk. Beregningseksempel og KS af regneark Betonelementkonstruktioner fra byggeriet af Navitas

K.I.I Forudsætning for kvasistatisk respons

A1. Projektgrundlag A2.2 Statiske beregninger -konstruktionsafsnit

Grønlands Selvstyre, Departement for Boliger, Infrastruktur og Trafik (IAAN)

EN DK NA:2007

Design of a concrete element construction - Trianglen

Dansk Konstruktions- og Beton Institut. Udformning og beregning af samlinger mellem betonelementer. 3 Beregning og udformning af støbeskel

BEF Bulletin No 2 August 2013

BEREGNING AF O-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT

Sandergraven. Vejle Bygning 10

Projekteringsprincipper for Betonelementer

Ber egningstabel Juni 2017

DS/EN DK NA:2013

JFJ tonelementbyggeri.

DS/EN 1990/A1 DK NA:2017 Nationalt Anneks til Eurocode 0: Projekteringsgrundlag for bærende konstruktioner Annex A2 Applications for bridges

DS/EN 1990 DK NA:

Programdokumentation - Skivemodel

B. Bestemmelse af laster

DS/EN 1990 DK NA:2013

EUROCODE 2009 HODY. Forskallings- OG. ARMERINGSPLADE FRITSPæNDENDE BETONDæK. Siloetten, silo ombygget til boliger i Løgten, 8541 Skødstrup

Plus Bolig. Maj 2016 BYGN. A, OMBYGNING - UNGDOMSBOLIGER, POUL PAGHS GADE, PLUS BOLIG. Bind A1 Projektgrundlag

Betonkonstruktioner, 6 (Spændbetonkonstruktioner)

Bygningskonstruktion og arkitektur

DS/EN 1990, Projekteringsgrundlag for bærende konstruktioner Nationalt Anneks, 2 udg. 2007

Transkript:

Betonelementbyggeriers statik

Beton element byggeriers statik Redigeret af Jesper Frøbert Jensen

Betonelementbyggeriers statik Redigeret af Jesper Frøbert Jensen 1 udgave, 1 oplag 010 Copyright 010, Polyteknisk Forlag, Lyngby ISBN10 87-50-0995-7 ISBN13 978-87-50-0995-9 Ingen del af denne bog må gengives, lagres i et søgesystem eller transmitteres i nogen form eller med noget middel, grafisk, elektronisk, mekanisk, fotografisk, indspillet på plade eller bånd, overført til databanker eller på anden måde, uden forlagets skriftlige tilladelse. Enhver kopiering fra denne bog må kun ske efter reglerne i lov om ophavsret. Omslag: PHY Grafisk Omslagsfoto: Jens Landorph, PHY Grafisk Tryk: InPrint Printed in Latvia 010 Polyteknisk Forlag Anker Engelunds Vej 1 800 Lyngby Tel.: 77 4 43 8 Fax: 77 4 43 54 e-post: forlag@polyteknisk.dk hjemmeside: www.polyteknisk.dk

Indhold 1 GENERELT 11 1.1 Introduktion 1 1. Teori og beregninger i praksis 14 1.3 Dokumentation for bærende konstruktioner 15 GRUNDLÆGGENDE MATERIALEMODELLER 19.1 Beton 0. Armeringsstål 36.3 Forspændingsstål 37 3 LODRETTE LASTVIRKNINGER 39 3.1 Lodrette laster 40 3. Lastkombinationer 44 3.3 Lodret lastnedføring 47 3.4 Lastspecifikationer 56 3.5 Beregningsprogrammer 68 4 HOVEDSSTABILITET 73 4.1 Generelt 74 4. Vandret lastfordeling 76 4.3 Opstilling af generaliseret model 96 4.4 Beregningsprogram 108 5 SKIVESTATIK 109 5.1 Dækskiver 110 5. Vægskiver 134 5.3 Beregningsprogram 15 6 ARMEREDE BJÆLKER 153 6.1 Brudgrænsetilstande 154 6. Anvendelsesgrænsetilstande 189 6.3 Beregningsprogram 07

7 FORSPÆNDTE ELEMENTER 09 7.1 Principper ved forspændte elementer 10 7. Indledende projektering med forspændte elementer 1 7.3 Tværsnitsanalyse, rektangulært tværsnit 17 7.4 Vilkårligt tværsnit med forspænding 73 7.5 Beregningsprogram 50 8 SØJLE- OG VÆGELEMENTER 53 8.1 Brudgrænsetilstande 54 8. Anvendelsesgrænsetilstande 81 8.3 Beregningsprogrammer 90 8.4 Skæv bøjning 9 9 BRAND 97 9.1 Materialeegenskaber under brand 98 9. Bjælker i brandtilstanden 311 9.3 Beregningsprogram 34 9.4 Søjler og vægge i brandtilstanden 34 9.5 Beregningsprogram 338 10 DETAILSTATIK 339 10.1 Detailberegning ved gitteranalogien 341 10. Forankringer 349 10.3 Særlige anvendelser 358 10.4 Udstøbningssamlinger 37 11 TVANGSDEFORMATIONER 379 11.1 Geometriændringer 380 11. Luftfugtighedens betydning 381 11.3 Temperaturens betydning 38 11.4 Lastens betydning 383 11.5 Anvendelseseksempler 384 1 TOLERANCER 391 1.1 Håndtering af tolerancer 39 1. Anvendelseseksempler 397 INDEX Detaljeret indholdsfortegnelse 405

FORORD Danmark har førerpladsen i Europa, når der tales om anvendelse af betonelementer til nybyggeri. En sådan position er ikke opstået af sig selv, men er et resultat af en samfundsmæssig bevidst satsning på industrialiseret byggeri og en stærk brancheorganisation, Betonelement-Foreningen, der har som målsætning at gøre det ukompliceret at designe og projektere betonelementkonstruktioner. For at sikre at betonelementer også i fremtiden er det naturlige valg af byggemateriale, har Betonelement-Foreningen besluttet at medvirke til, at overgangen fra DS-normerne til EuroCodes ikke alene forløber gnidningsfrit og uden at kompromittere sikkerheden, men også åbner mulighederne for at indhøste og synliggøre de kapacitetsmæssige landvindinger, der ligger i anvendelsen af EuroCodes. Denne bog er et af Betonelement-Foreningens fællesværktøjer. Ud over en opdatering på områder vedrørende hovedstabilitet, skivestatik, detailstatik mv. præsenterer bogen en lang række nyskabelser. Først og fremmest er det lykkedes at skabe praktisk anvendelige beregningsmetoder til brug for dimensionering af bjælker, søjler og vægge på grundlag af EuroCode s generelle, ulineære model for betonens materialeegenskaber. Dette gælder både for den sædvanlige statik og for konstruktioner under brandpåvirkning. Sammenligning med forsøg har vist overordentlig god overensstemmelse mellem forsøgsresultaterne og beregning med anvendelse af de udviklede metoder. Samtidig er det en bærende idé gennem bogen at adskille beregning af lastvirkninger i konstruktionerne fra beregningen af konstruktionernes 7

0 Forord BETONELEMENTBYGGERIERS STATIK bæreevner. Dermed kan praktikeren opnå en væsentlig effektivisering under design og dokumentation af konstruktionerne. Dels fordi relativt få beregninger kan dække større puljer af ensartede konstruktionselementer, dels fordi løbende revisioner af lastvirkninger og geometri under projekteringen kan håndteres uden gentagne bæreevneeftervisninger. I sammenhæng hermed er der udviklet en fast og præcis struktur for bestemmelse af lastvirkninger ned gennem bygningen, så det bliver enkelt og sikkert at specificere netop de lastvirkninger, der skal sammenholdes med konstruktionselementernes beregnede bærevener. For de forspændte konstruktioners vedkommende præsenteres en sammenhængende metodik for design i praksis, og der gennemgås for første gang en komplet teoretisk model til håndtering af forspændte tværsnit med vilkårlig tværsnitsform på basis af de grundlæggende materialemodeller for beton og forspændingsstål. Endelig er bogens teori og beregningseksempler tæt knyttet til en hel buket af digitale beregningsmoduler, der frit kan hentes fra Betonelement-Foreningens hjemmeside til direkte anvendelse i statiske beregninger. Dermed fungerer bogen også som baggrundsdokumentation og vejledning til brugen af alle disse beregningsmoduler. Samlet forventes bogen med de tilhørende beregningsmoduler at føre til væsentlige besparelser i fremtidige betonelementprojekter. Både i form af tidsmæssige besparelser under projekteringen og i form af materialemæssige besparelser, fordi de projekterende hurtigt og sikkert kan finde frem til det optimale design af elementerne. Det er Betonelement-Foreningens håb, at resultaterne hurtigt vil vinde udbredelse i praksis og dermed understøtte udviklingen frem mod mere og mere bæredygtigt byggeri. 8

BETONELEMENTBYGGERIERS STATIK 0 Forord Foreningen ønsker at takke de mange særligt sagkyndige både fra medlemskredsen og udefra for deres inspirerende og udfordrende indslag. Foreningen ønsker i særdeleshed at takke bogens redaktør og hovedforfatter, civilingeniør, lic. techn. Jesper Frøbert Jensen uden hvis utrættelige indsats og dybe indsigt i normer og i betonelementkonstruktioner projektet næppe ville være blevet realiseret. Den samlede forfattergruppe er fra ALECTIA A/S og har ud over redaktøren omfattet: Anna Hvidberg-Hansen, Lars Zenke Hansen og Mikkel Christiansen Betonelement-Foreningen, juni 010 Claus Bering Formand Poul Erik Hjorth Direktør 9

0 Forord BETONELEMENTBYGGERIERS STATIK 10

1 GENERELT 1 GENERELT 1.1 Introduktion 1. Teori og beregninger i praksis 1.3 Dokumentation af bærende konstruktioner 1.3.1 Overordnede statiske beregninger 1.3. Bygningsdelsberegninger

1 Generelt BETONELEMENTBYGGERIERS STATIK 1.1 Introduktion De fælleseuropæiske normer, EuroCodes, er i disse år ved at blive implementeret i praksis. Danmark overgik som et af de første lande i januar 009 til det nye normgrundlag, og Betonelement-Foreningen iværksatte allerede i 007 en række initiativer for at forberede branchen til overgangen. Et af initiativerne handlede om at etablere en række brugervenlige beregningsmoduler til projektering af almindeligt forekommende konstruktioner i etagebyggerier baseret på EuroCodes. Beregningsmodulerne har siden 1. januar 009 været frit tilgængelige for alle på Betonelement-Foreningens hjemmeside, www.bef.dk. I denne sammenhæng har følgende EuroCodes med tilhørende danske nationale annekser naturligt haft særligt fokus: EC0: DS/EN 1990. EuroCode 0: Projekteringsgrundlag for bærende konstruktioner. EC1: DS/EN 1991-1-1. EuroCode 1: Last på bærende konstruktioner Del 1-1: Generelle laster Densiteter, egenlast og nyttelast for bygninger. DS/EN 1991-1-4. Eurocode 1: Last på bygværker Del 1-4: Generelle laster Vindlast. EC: DS/EN 199-1-1. EuroCode : Betonkonstruktioner Del 1-1: Generelle regler samt regler for bygningskonstruktioner. DS/EN 199-1-. EuroCode : Betonkonstruktioner Del 1-: Generelle regler Brandteknisk dimensionering. Betonnormerne, EC, rummer et grundlag for udvikling af nye beregningsmetoder på basis af grundlæggende materialemodeller. Dette gælder både for den sædvanlige statik og for statikken i brandsituationen. Normerne introducerer hermed et godt grundlag for udvikling af IT-baserede beregningsmetoder; men synes åbenbart ikke at finde disse metoder egnet som grundlag for metoder til beregninger under daglig projektering. I stedet introduceres til brug for håndbe- 1

BETONELEMENTBYGGERIERS STATIK Generelt 1 regninger en del tilnærmede beregningsmetoder, der imidlertid rummer en del inkonsekvenser og unøjagtigheder dog generelt på den sikre side. Indledende analyser viste, at man for sædvanlige konstruktionselementer af beton rent faktisk kan komme meget langt ved anvendelse af de grundlæggende materialemodeller. For både bjælker, søjler og vægge kan de nye normers matematiske udtryk for betonens ulineære arbejdslinjer i kold og varm tilstand omsættes direkte til operationelle formler til anvendelse i tværsnitsanalyser. Yderligere viser det sig, at beregningsresultaterne baseret herpå giver særdeles god overensstemmelse med eksisterende forsøgsresultater både i kold tilstand og under brand. Se nærmere i dokumentationsrapporten hørende til beregningsmodulerne for søjler og vægge på www.bef.dk. Med denne lærebog har det været ønsket at demonstrere, hvorledes de grundlæggende materialemodeller i de nye EuroCodes kan anvendes til opstilling af et sæt konsistente beregningsmetoder, der bredt dækker behovet ved sædvanlige betonelementbyggerier. Bogen rummer alle væsentlige aspekter af de statiske beregninger, der almindeligvis skal udføres i forbindelse med gennemførelse af et betonelementprojekt. Se afsnit 1.3. I hvert kapitel præsenteres de teoretiske metoder, der føres frem til direkte anvendelige designformler, og resultaterne demonstreres anvendt på taleksempler. Yderligere er forbindelsen til beregningsmodulerne på www.bef.dk illustreret ved programudskrifter med samme inddata som anvendt i eksemplerne. På den måde fremkommer en klar linje, lige fra de grundlæggende materialemodeller, gennem de teoretiske metoder og designformler, over taleksemplerne og helt frem til beregningsmodulerne. Når der i bogens forskellige afsnit henvises til EC0, EC1 og EC, menes forannævnte EuroCodes med tilhørende danske nationale annekser gældende pr. 1. januar 010. Med bogens udgangspunkt i de grundlæggende materialemodeller 13

1 Generelt BETONELEMENTBYGGERIERS STATIK forventes kommende revisioner af normgrundlaget ikke at få væsentlig betydning for bogens indhold. 1. Teori og beregninger i praksis Designformler kan ikke ændre på, at moderne betonstatik er meget omfattende som følge af de mange forhold, der skal undersøges. De fleste bygningsdele vil derfor fremover hovedsagelig blive dimensioneret under anvendelse af ITværktøjer. Dette fratager dog ikke den projekterende ansvaret for beregningernes rigtighed. Med den foreliggende bog og de tilknyttede beregningsmoduler på www.bef.dk har praktikeren nu flere midler til rådighed for sin kvalitetssikring: Direkte dimensionering og beregningsmæssig eftervisning med brug af beregningsmodulerne på www.bef.dk: Bogens eksempler rummer direkte anvisning på, hvorledes beregningsresultater overkommeligt kan stikprøvekontrolleres ved håndberegning. Nye IT-redskaber: Bogens teoretiske resultater kan sammen med eksemplerne og beregningsmodulerne på www.bef.dk anvendes som grundlag for både udvikling og kontrol af nyt programmel, eller til brug for godkendelseskontrol af nyindkøbte programmer. Praktisk anvendelse af integrerede design- og beregningsprogrammer: Beregningsmodulerne kan anvendes til brug for uafhængige parallelberegninger, hvilket er et væsentligt element i kvalitetssikringen af resultaterne fra komplekse modelberegninger. Med henblik på ovenstående er der ved udviklingen af beregningsmodulerne på www.bef.dk lagt særlig vægt på at resultaterne præsenteres med angivelse af udvalgte delresultater, der netop gør det enkelt at foretage de nødvendige kontroller. 14

BETONELEMENTBYGGERIERS STATIK Generelt 1 1.3 Dokumentation af bærende konstruktioner 1.3.1 Overordnede statiske beregninger Med årene har der i Danmark udviklet sig en praksis for struktureringen af den statiske dokumentation hørende til en byggesag, se SBI-anvisning 3: Dokumentation af bærende konstruktioner, der opdeler den statiske dokumentation i følgende hovedbestanddele: A. Konstruktionsdokumentation: A1. Projektgrundlag A. Statiske beregninger A3. Konstruktionstegninger og modeller A4. Konstruktionsændringer B. Projektdokumentation: B1. Statisk projekteringsrapport B. Statisk kontrolrapport B3. Statisk tilsynsrapport Nærværende bog fokuserer heraf på indholdet af del A. Statiske beregninger, der i praksis opdeles i: A.1. Statiske beregninger Bygværk, hvis formål er at dokumentere bygværkets overordnede sikkerhed og anvendelse, fx udtrykt ved fordeling af laster, snitkræfter og reaktioner. A.. Statiske beregninger Konstruktionsafsnit, hvis formål er at dokumentere de enkelte konstruktionsafsnits sikkerhed og anvendelse, fx udtrykt ved fordeling af snitkræfter samt eftervisning i brud- og anvendelsesgrænsetilstand. De Statiske Beregninger Bygværk varetages af den såkaldt bygværksprojekterende. De detaljerede bygningsdelsberegninger hørende under Statiske beregninger Konstruktionsafsnit udføres ofte af andre parter, dog stadig med den 15

1 Generelt BETONELEMENTBYGGERIERS STATIK bygværksprojekterende som ansvarlig for koordineringen, og de skal altid udføres i nøje overensstemmelse med forudsætningerne fastlagt i A1. Projektgrundlag og A.1 Statiske beregninger Bygværk. 1.3. Bygningsdelsberegninger Ved mange betonelementbyggerier leveres en del af bygningsdelsberegningerne efter aftale af elementleverandøren. Det kan eksempelvis være beregninger vedrørende dæk- eller bjælkeelementer. Et sammenhængende sæt af bygningsdele svarer til et såkaldt Konstruktionsafsnit, jf afsnit 1.3.1. For hvert konstruktionsafsnit skal forudsætningerne stilles klart op, før man går videre med beregningerne. Klart formuleret opgavebeskrivelse, materialeforudsætninger og lastforudsætninger er nødvendig for en sikker kommunikation, hvor flere parter samarbejder, og er helt afgørende for den bygværksprojekterendes mulighed for at varetage koordineringen og den overordnede kvalitetssikring. Projektgrundlag - Konstruktionsafsnit Dette indledende afsnit i de statiske beregninger vedrørende et konstruktionsafsnit bør indeholde en opgavebeskrivelse med entydig henvisning til byggesagen, og en klar afgrænsning af de omfattede bygningsdele. De anvendte materialer specificeres også i dette afsnit med angivelse af deres mekaniske egenskaber. Desuden angives hvilke særlige standarder, beregningsmetoder, beregningsværktøjer osv., der anvendes i beregningerne. Hovedstatik for konstruktionsafsnit Her bestemmes belastningsforudsætningerne for beregningerne af de enkelte konstruktionsdele. Lastforudsætningerne kan være en opstilling af de basale laster, eventuelt suppleret med en oversigt over de grupper af elementer der beregningsmæssigt slås sammen. 16

BETONELEMENTBYGGERIERS STATIK Generelt 1 I mange tilfælde vil det på dette sted være bekvemt kun at oplyse de forudsatte lasters karakteristiske værdi med samtidig angivelse af lastkategori i henhold til EC1. Bestemmelse af de regningsmæssige belastninger knyttes ofte med fordel til de enkelte bygningsdelsberegninger, da den farligste lastkombination normalt varierer fra bygningsdel til bygningsdel. Under lastforudsætninger hører også oplysninger om konsekvensklasse og krav til brandmodstandsevne. Hvor et konstruktionsafsnit omfatter samvirkende bygningsdele fastlægges i dette afsnit hvorledes snitkræfter overføres mellem de enkelte bygningsdele. I den sammenhæng bør også redegøres for størrelsen af tvangslaster fra bevægelser i lejer etc. Eftervisning af ydeevne Dette afsnit opdeles i underafsnit svarende til de konstruktionsdele, der er indgår i konstruktionsafsnittet. For hver konstruktionsdel beskrives virkemåden ved tekst og eventuelt skitser, og det eftervises ved statiske beregninger, at alle krav til sikkerhed og funktion er opfyldt; se SBi-anvisning 3 kap..3 om udarbejdelse og opbygning af af de statiske beregninger samt fremgangsmåde ved eftervisning af ydeevne for konstruktionsdelene. I en række tilfælde vil der på baggrund af resultaterne fra konstruktionsafsnittes hovedstatik kunne foretage en gruppering af statisk set ensartede konstruktionsdele, hvor det for en sådan gruppe er muligt at gennemføre eftervisningen samlet. Dette er almindeligvis enkelt at gøre for simpelt understøttede dæk og bjælker; mens der normalt kræves en særlig systematik for lodret bærende elementer, hvor belastningsforholdene ofte er mere komplekse. Se eksempelvis afsnit 3.4, der anviser, hvordan dette kan gøres systematisk for søjler og vægge. 17

1 Generelt BETONELEMENTBYGGERIERS STATIK 18

GRUNDLÆGGENDE MATERIALE MODELLER GRUNDLÆGGENDE MATERIALEMODELLER.1 Beton.1.1 Middelarbejdslinje.1. Brudgrænsetilstande.1.3 Tværsnitsanalyse generel metode.1.4 Anvendelsesgrænsetilstande.1.5 Krybning og svind.1.6 Eksempel Beregning af slutkrybetal og slutsvind. Armeringsstål.3 Forspændingsstål

Grundlæggende materialemodeller BETONELEMENTBYGGERIERS STATIK.1 Beton Arbejdslinjen er et nyttigt redskab til at karakterisere et materiales egenskaber, der angiver sammenhængen mellem spændinger og tøjninger. For beton er arbejdslinjen imidlertid ikke en entydig størrelse. Den afhænger af betonens styrke, krybning i betonen som følge af langtidsvarende lastpåvirkninger og af temperaturpåvirkninger i tilfælde af brand. For temperaturpåvirkninger i tilfælde af brand henvises til kapitel 9..1.1 Middelarbejdslinje Først ses på betonens middelarbejdslinje for korttidspåvirkninger i kold tilstand. I det generelle tilfælde er givet et analytisk udtryk for sammenhængen mellem betonens trykspænding, σ c, og betonens tryktøjning, ε c : ε ε c c k ε c1 ε c1 σ c = fcm εc εcu ε c 1+ ( k ) ε c1 hvor ε c1 er den tøjning, der svarer til toppunktet på arbejdslinjen f cm er betonens middelcylindertrykstyrke ε cu er betonens brudtøjning, og parameteren k er bestemt ved: k 1,05 E ε cm c1 = hvor E cm er sekantelasticitetsmodulet. f cm Sekantelasticitetsmodulet, E cm, defineres i EC som hældningen af sekanten mellem arbejdslinjens begyndelse og punktet ved 0,4 f cm, hvor f cm er betonens middelcylinderstyrke 0

BETONELEMENTBYGGERIERS STATIK Grundlæggende materialemodeller For betoner med karakteristisk trykstyrke op til og med f ck = 50 MPa anfører EC følgende udtryk for de indgående parametre til fuldstændig fastlæggelse af middelarbejdslinjen som funktion af f ck : fcm = fck + 8MPa E cm 0, 3 [( f ) /10 = 000 cm ] E cm og f cm i MPa ε c1 = 0,0007 f ε cu = 0,0035 0,31 cm Dermed kommer en typisk middelarbejdslinje for betonen til at se ud som vist på figur -1. Det ses, at sammenhængen mellem spændinger og tøjninger ikke er lineær. σ c (MPa) 50 45 40 35 f cm 30 5 0 15 10 5 0 ε c1 0 0,001 0,00 0,003 0,004 ε c Figur -1: Typisk middelarbejdslinje for beton, f ck = 5 MPa 1

Grundlæggende materialemodeller BETONELEMENTBYGGERIERS STATIK.1. Brudgrænsetilstande Ved beregninger i brudgrænsetilstande anvendes formlerne til bestemmelse af arbejdslinjen for betoner med trykstyrke op til og med karakteristisk trykstyrke f ck = 50 MPa på følgende form: ε ε c c k ε c1 ε c1 σ c = fcd εc εcu ε c 1+ ( k ) ε c1 Parameteren k er i brudgrænsetilstanden bestemt ved: k 1,05 Ecd ε = f cd c1 hvor betonens regningsmæssige trykstyrke og sekantelasticitetsmodul i forhold til udtrykket for middelarbejdslinjen findes ved reduktion med partialkoefficienten γ C : f = f / γ cd ck C [ ] 0,3 E = 000 ( f + 8 MPa) /10 / γ cd ck C For arbejdslinjen vist på figur - er regnet med en partialkoefficient på γ C = 1,4. Til brug for tværsnitsdimensionering anviser EC forskellige forenklede udtryk for betonens arbejdslinje. For betonelementer har valget af udtryk for arbejdslinjen i praksis kun betydning ved beregning af momentpåvirkede elementer. I de senere kapitler 6-8 er det vist, at der ikke er særlige problemer med at anvende de generelle udtryk for arbejdslinjen i praktisk dimensionering. Det er derfor til brug i brudgrænsetilstande valgt at se bort fra de forenklede udtryk for arbejdslinjen og i stedet opnå fordelene ved en samlet konsistent model, der har vist sig at føre til resultater i fin overensstemmelse med forsøg.

BETONELEMENTBYGGERIERS STATIK Grundlæggende materialemodeller σ c (MPa) 30 5 0 f cd 15 10 5 ε 0 c1 0 0,001 0,00 0,003 0,004 Figur -: Typisk regningsmæssig arbejdslinje for beton, f ck = 5 MPa ε c Det skal understreges, at udtrykkene i dette afsnit alene gælder for korttidspåvirkninger. Når undersøgelser i brud- og anvendelsesgrænsetilstanden omfatter langtidspåvirkninger, skal der også tages hensyn til betonens krybning, jf. afsnit.1.5..1.3 Tværsnitsanalyse generel metode For bjælker, vægge og søjler, behandlet i kapitlerne 6, 7 og 8, bestemmes armeringens bidrag og ligningerne for statisk ækvivalens opstilles og løses. Som input til disse ligninger skal placeringen og størrelsen af betonspændingernes resultant kendes. Netop disse to størrelser bestemmes i dette afsnit som funktion af tøjningen ε 0 i toppen af tværsnittet samt tøjningen i bunden af tværsnittet, der dog er givet ved andre parametre. For brudgrænsetilstanden antages, at betonens trækstyrke er nul. 3

Grundlæggende materialemodeller BETONELEMENTBYGGERIERS STATIK y ε 0 N c h ε c σ c y x Figur -3: Definitioner, som anvendes ved tværsnitsanalyse Spændingsfordelingen i betontværsnittet bestemmes ud fra arbejdslinjen i brudgrænsetilstanden, jævnfør afsnit.1.. Tværsnittets tøjning varierer lineært, og ved den ene betonkant fås tøjningen ε 0. Spændingsvariationen fås ved at indføre tøjningen ε c som betegner betonens tøjning i et givet punkt i tværsnittet. Nullinjens dybde betegnes x. Hermed kan σ c omskrives til formen angivet nedenfor. Ved omskrivningen benyttes substitutionen t = y/x, hvilket giver ε c = tε 0. σ c c c1 ε c ε k ε c1 ε = ε 1+ ε cd c1 c ( k ) 1+ ( k ) c1 f =... = ε 0 1 kε t tε ε 0 c1 ε 0 tk ε c1 f cd hvor parameteren k er angivet i afsnit.1. for brudgrænsetilstanden. For overskuelighedens skyld indføres følgende konstanter: A ε 0 = og B = ( k) kεc1 ε0 ε c1 4

BETONELEMENTBYGGERIERS STATIK Grundlæggende materialemodeller Herved reduceres udtrykket for betonspændingen til: ε0 1 At ε 0 t σ c = kt fcd = k fcd t ( A B) εc 1 1 Bt εc 1 1 Bt Ud fra ovenstående udtryk er det muligt at bestemme resultanten af betontrykspændingerne ved integration over trykzonen: c 1 N = bx σ dt ζ c hvor b er betontværsnittets bredde, h er tværsnittets højde og 0 ζ = x h x for x h for x > h Indsættes udtrykket for σ c i udtrykket for betonens trykresultant fås: 1 cdζ ε 0 t Nc = bxk f t ( A B) dt... ε c1 1 Bt ( ) 1 ε A B 0 1 B Nc = bxk fcd ζ + ( ζ ) + ( ζ ) + ε 1 B 1 B 1 ln 3 ζ c1 B 1 B På dimensionsløs form kan trykresultanten skrives som: N N c = bxf c cd hvilket giver: ( ) 1 ε A B 1 B = 1 ζ + ( 1 ζ ) + ( 1 ζ ) + ln 1 ζb 0 Nc k 3 B B εc 1 B 5

Grundlæggende materialemodeller BETONELEMENTBYGGERIERS STATIK Herefter kan afstanden y fra resultantens placering til nullinjen bestemmes. Dette gøres ved at bestemme resultantens moment omkring nullinjen: yn = bx tσ dt c 1 ζ c 1 3 ε 0 t yn c = bx k fcd t ( A B) dt... εc1 1 Bt ζ ( ) 1 ε A B 0 3 3 3 1 B yn c = bx k fcd ζ ( ζ ) ( ζ ) ( ζ ) ε 1 B 1 3B 1 6B 1 6ln 4 3 ζ c1 B 1 B Betonresultantens moment om nullinjen kan tilsvarende skrives dimensionsløst: N = c y ' N c bx fcd hvilket giver: ( ) '' 1 ε 3 A B 0 3 3 1 B Nc = k 1 ζ 4 B ( 1 ζ ) 3B ( 1 ζ ) 6B( 1 ζ ) 6ln 3 ε c1 B 1 Bζ Resultantens placering målt fra nullinjen kan herved bestemmes som: yn c bx fcdnc Nc y = = = x Nc bxf N N cd c c.1.4 Anvendelsesgrænsetilstande Ved beregning af spændinger og nedbøjninger i anvendelsestilstanden kan med god tilnærmelse anvendes en lineærelastisk model, hvor der for betonen ved korttidspåvirkninger anvendes følgende elasticitetsmodul for danske betoner: E c, K = 0,7 51000 f ck fck + 13 På figur -4 er den lineære arbejdslinje vist i forhold til den ikke-lineære. 6

BETONELEMENTBYGGERIERS STATIK Grundlæggende materialemodeller σ c (MPa) 50 45 40 35 f cm 30 5 0 15 10 5 0 σ c c = 0,7 E c,k E ε cok c e c ε c1 0 0,001 0,00 0,003 0,004 ε c Figur -4: Den lineære arbejdslinje vist i forhold til en typisk middelarbejdslinje for beton, f ck = 5 MPa Ved beregningerne anvendes ofte transformerede tværsnit, hvor armeringens elasticitetsmodul, E s, benyttes som reference-elasticitetsmodul. For et punkt i betontværsnittet med en given tøjning, ε c, udtrykkes den tilhørende betonspænding typisk på formen: σ = / c ε c Es α K hvor α K = E s / Ec, K For langtidspåvirkninger skal der tages hensyn til effekten af krybning, hvilket kan ske ved at anvende følgende værdi af betonens elasticitetsmodul: E = Ec, K /( 1+ ϕ (, 0)) c, L t Hvor krybetallet, ϕ(,t 0 )=ϕ 0 på tidspunktet t= for en konstant trykspænding, σ c, påført på et tidspunkt udtrykt ved betonens modenhedsalder, t 0, findes som 7

Grundlæggende materialemodeller BETONELEMENTBYGGERIERS STATIK beskrevet i afsnit.1.5. Ved tværsnitsanalysen medfører dette, at der svarende til rene langtidspåvirkninger benyttes: σ = / c ε c Es α L Hvor α L = α ( 1+ ϕ(, t0 )) K For betonelementer kan ofte forudsættes en mindste typisk tværsnitsdimension af størrelsen 00 mm, at betonens alder ved påføring af den permanente last mindst er t 0 =8 døgn, og at den relative luftfugtighed mindst er af størrelsen RH = 50 %. Til praktiske beregninger af spændinger og deformationer i anvendelsesgrænsetilstanden kan derfor normalt tages udgangspunkt i værdierne for α anført i nedenstående tabel. f ck 0 MPa 5 MPa 30 MPa 35 MPa 40 MPa 45 MPa 50 MPa α K 9, 8,5 8,0 7,7 7,4 7, 7,1 α L 35,8 31,1 7,0 3,7 1,3 19,5 18,1 Figur -5: Sædvanlige værdier af α for betonelementer i anvendelsesgrænsetilstande I eksemplet, afsnit.1.6, er vist, hvorledes slutkrybetallet bestemmes for et vilkårligt tværsnit. En given lastvirkning, eksempelvis et moment, M, kan regnes sammensat af en langtidsandel, M L, og en korttidsandel, M K, på følgende form: M = M L + M K Ved beregningerne kan anvendes en effektiv værdi, α eff, bestemt ved vægtning: α eff α L M = L + α K M M K 8

BETONELEMENTBYGGERIERS STATIK Grundlæggende materialemodeller Alternativt kan man først finde spændinger og udbøjninger for den rene langtidsandel, dernæst gentage beregningerne svarende til den rene korttidsandel og sluttelig summere resultaterne. Dette er dog en mere omstændelig metode, der ikke kan forventes at føre til mere præcise resultater end metoden baseret på α eff..1.5 Krybning og svind Når beton belastes til en trykspænding af størrelsen σ c, opstår der straks en tøjning i betonen af størrelsen ε c = ε c (σ c ), som kan aflæses af betonens arbejdslinje gældende for korttidspåvirkninger. Hvis trykspændingen opretholdes gennem længere tid, vil denne tøjning langsomt øges. Dette fænomen betegnes krybning. Med tiden vil tøjningen asymptotisk nærme sig slutværdien, der almindeligvis udtrykkes på formen: ε cc, = (1 + ϕ0) ε c hvor ϕ = ϕ ( t, RH, f, h, ct) 0 0 0 c 0 betegnes slutkrybetallet, der ved normale driftstemperaturer er en funktion af følgende parametre: t 0 RH f c h 0 ct er betonens alder på tidspunktet for påføringen af spændingen σ c er omgivelsernes relative fugtighed er betonstyrken er et teoretisk dimensionsmål, h 0 = A c / u, hvor A c er tværsnitsarealet og u er tværsnittes omkreds er cementtypen For betonelementer vil man med god tilnærmelse kunne regne med, at betonens alder ved tidspunktet for påføringen af de langtidsvirkende spændinger er af størrelsen t 0 = 8 døgn. Sædvanligvis kan for danske betoner desuden normalt regnes med, at der anvendes cementtyper af styrkeklasse N. Med dette ud- 9

Grundlæggende materialemodeller BETONELEMENTBYGGERIERS STATIK gangspunkt kan slutkrybetallet for betonelementer overslagsmæssigt aflæses af figur -6. 3,0,8,6,4,,0 1,8 1,6 1,4 1, 1,0 ϕ 0 ϕ 0 h 0 = 100 mm RH=50% RH=60% RH=70% RH=80% 0 30 40 50 3,0,8 h 0 = 150 mm,6 RH=50%,4 RH=60%, RH=70%,0 RH=80% 1,8 1,6 1,4 1, 1,0 f ck 0 30 40 50 f ck 3,0,8,6,4,,0 1,8 1,6 1,4 1, 1,0 ϕ 0 ϕ 0 h 0 = 50 mm RH=50% RH=60% RH=70% RH=80% 0 30 40 50 f ck 3,0,8,6,4,,0 1,8 1,6 1,4 1, 1,0 h 0 = 500 mm RH=50% RH=60% RH=70% RH=80% 0 30 40 50 f ck Figur -6: Slutkrybetal for sædvanlige danske betoner for belastningsstart ved t 0 = 8 døgn For betonelementer kan effekten af krybningen eksempelvis være, at bjælkers nedbøjninger øges med tiden, eller at søjler og vægges bæreevne med tiden reduceres, fordi udbøjningerne og dermed normalkraftens udbøjningstillæg øges. For forspændte elementer vil krybningen desuden medføre, at elementerne med tiden forkortes som følge af de tilhørende aksiale trykkræfter i elementet, hvilket kan have stor betydning for forholdene ved samlinger mellem elementer. 30

BETONELEMENTBYGGERIERS STATIK Grundlæggende materialemodeller I anvendelsesgrænsetilstanden, skal der foruden krybning også tages hensyn til betonens svind, der dels forårsages af betonens udtørring med tiden, dels af de kemiske processer i forbindelse med betonens hærdning. Svindet har primært betydning for betonbjælker, der er armeret med forskellig træk- og trykarmering. For praktisk anvendelse er det sædvanligvis tilstrækkeligt at kende slutsvindet udtrykt ved svindtøjningen til tiden t= : ε cs, = εcs, ( RH, fc, h0, ct) Svindet er således en funktion af stort set de samme parametre, som indgår ved bestemmelse af krybetallet. Svindtøjningen er en empirisk bestemt størrelse, der overslagsmæssigt kan aflæses af figur -7 for cementklasse N. 0,00060 ε cs, 0,00060 ε cs, h 0 = 100 mm 0,00050 0,00040 0,00030 RH=50% RH=60% RH=70% RH=80% 0,00050 0,00040 0,00030 h 0 = 150 mm RH=50% RH=60% RH=70% RH=80% 0,0000 0,0000 0,00010 0,00010 0,00000 0 30 40 50 f ck 0,00000 0 30 40 50 f ck 0,00060 ε cs, 0,00060 ε cs, h 0 = 50 mm 0,00050 0,00050 h 0 = 500 mm 0,00040 0,00030 0,0000 RH=50% RH=60% RH=70% RH=80% 0,00040 0,00030 0,0000 RH=50% RH=60% RH=70% RH=80% 0,00010 0,00010 0,00000 0 30 40 50 f ck 0,00000 0 30 40 50 f ck Figur -7: Slutsvind for sædvanlige danske betoner 31