MIA Matematik i anvendelse (10 ECTS) Kursusplan

Størrelse: px
Starte visningen fra side:

Download "MIA Matematik i anvendelse (10 ECTS) Kursusplan"

Transkript

1 MIA Matematik i anvendelse (10 ECTS) Kursusplan Nat.bas., Roskilde Universitet Forår 2014 Kursusansvarlig: Peter Limkilde Tidspunkt: Mandage kl og onsdage kl Mål og indhold: Fra kursusbeskrivelsen: Kurset Matematik i anvendelse kan sidestilles med matematik B, og giver dermed adgang til RUCs humanistiske og samfundsvidenskabelige overbygningsstudier, hvor matematik på B-niveau er obligatorisk for at starte på overbygningen og hvor matematik med fordel, kan anvendes som kommunikations- og modelleringsværktøj. Målet er en integreret udvikling af de studerendes matematiske symbolbehandlings-, modellerings- og kommunikationskompetence, relationelle forståelse af begreberne variabel, sammenhæng og stokastisk variabel, og kompetence til at anvende de ovennævnte matematiske kompetencer og begreber til at forstå, formulere, analysere og formidle udvalgte matematikholdige problemstillinger fra et eller flere af RUC s overbygningsstudier. Symbolbehandlings-, modellerings- og kommunikationskompetence samt begreberne variabel, sammenhæng og stokastisk variabel. Mål og indhold kan visualiseres således: Udvalgte dele af RUC s overbygningsstudier i matematisk perspektiv Kompetence Stof Variable Sammenhænge Stokastiske variable Symbolbehandlingskompetence Modelleringskompetence Kommunikationskompetence Side 1 af 21

2 Kort og unuanceret handler matematisk symbolbehandlingskompetence om at kunne håndtere matematiske symboler. Mere præcist forstås det her som en eller flere personers indsigtsfulde parathed til både selv at gennemføre og forholde sig kritisk undersøgende til afkodning af symbol- og formelsprog, oversættelse frem og tilbage mellem symbolholdigt matematisk sprog og naturligt sprog, samt behandling af symbolholdige udsagn og udtryk, herunder formler. Kort og unuanceret handler matematisk modelleringskompetence om at kunne håndtere matematikbeskrivelser af noget der i udgangspunktet ikke er matematisk. Mere præcist forstås det her som en eller flere personers indsigtsfulde parathed til både selv at gennemføre og forholde sig kritisk undersøgende til en matematisk modelleringsproces som helhed. Kort og unuanceret handler matematisk kommunikationskompetence om at kunne håndtere kommunikation i, med og om matematik. Mere præcist forstås det her som en eller flere personers indsigtsfulde parathed til både selv at gennemføre og forholde sig kritisk undersøgende til kommunikation i, med og om matematik og/eller anvendelser af matematik. Evaluering og eksamen: Som en integreret del af undervisningsforløbet arbejdes der individuelt eller gruppevis (maksimum fem studerende pr. gruppe) med udarbejdelse af en portefølje bestående af besvarelse af følgende skriftlige opgaver: Miniprojekt-rapporter: Udarbejd en rapport på maksimalt 10 normalsider (2400 anslag) der dokumenterer et forsøg på og refleksioner over at forstå, formulere, analysere og formidle matematikholdige problemstillinger fra et af de overbygningsstudier som kurset peger frem mod, gennem udfoldelse af henholdsvis I: matematisk symbolbehandlingskompetence. II: den produktive side af matematisk modelleringskompetence. III: den kritisk undersøgende side af matematisk modelleringskompetence. Skriftlig test: Besvar skriftligt opgaverne i den test som afvikles på en af kursets sessioner. Begrebskort: Udarbejd et begrebskort som viser tegn på relationel forståelse af de mest centrale dele af kursets indhold. Formålet med afleveringsopgaverne er primært at bidrage til den formative evaluering på kurset, hvilket er baggrunden for at de skal afleveres løbende. De skriftlige opgaver (miniprojekter, test og begrebskort) skal også løbende godkendes som forudsætning for at gå til mundtlig prøve, som tager afsæt i den samlede opgaveportefølje. Bedømmelsen sker på grundlag af en samlet vurdering af hele porteføljen, som gerne i en gennemskrevet version i forhold til de godkendte afleveringsopgaver afleveres individuelt eller gruppevis i ét eksemplar til nat.bas.-sekretariatet senest mandag d. 12. maj 2014 kl Hvis porteføljen vurderes til at dokumentere tilstrækkeligt fagligt niveau bestås kurset på dette grundlag. Studerende, der ikke vurderes at have dokumenteret tilstrækkeligt fagligt niveau i porteføljen, tilbydes en individuel mundtlig prøve, og bedømmelsen sker på grundlag af en samlet vurdering af porteføljen og den mundtlige prøve. Prøven er af maksimalt 20 minutters varighed inklusive votering. Eksaminationen har udgangspunkt i den samlede portefølje. Karakteren gives som bestået/ikke-bestået. 2 af 21

3 Som indledning på eksaminationen vil eksaminanden få mulighed for at uddybe, perspektivere, eksemplificere eller på anden måde kommentere sit skriftlige eksamensgrundlag. Det sker i så fald i form af et op til 5 minutter langt mundtligt oplæg, hvor eksaminator og intern censor kun stiller opklarende spørgsmål. Den resterende del af eksaminationen foregår som en faglig samtale mellem eksaminand, eksaminator og eventuelt intern censor. Bedømmelse sker på grundlag af en samlet vurdering af hele porteføljen og den studerendes individuelle mundtlige præstation ved eksaminationen. Bedømmelsen er en vurdering af i hvilket omfang eksaminandens præstation lever op til målene nævnt i afsnittet Mål og indhold. Der anvendes intern censur og bedømmelsen foregår på baggrund af opfyldelsen af de i kursusbeskrivelsen udmeldte læringsmål. Karakteren gives som bestået/ikke-bestået. Litteratur: Kurset er bygget op omkring større dele af nedenstående publikationer, som det derfor anbefales at man anskaffer sig via bogladen på RUC. Clausen, F., Schomacher, G. & Tolnø, J. (2011b). Gyldendals gymnasiematematik, Grundbog B2, 2. udgave, Gyldendal, København. Højgaard, T. & Limkilde, P. (red.) (2014). Kompendium til kurset MIA matematik i anvendelse, januar RUC s trykkeri. Højgaard, T. & Limkilde, P. (2014). Opgavesamling til kurset MIA matematik i anvendelse, januar RUC s trykkeri. Bogen af Clausen, Schomacher & Tolnø er en lærebog i matematik til gymnasiet. Den vil vi referere til udvalgte dele af undervejs i kurset. Ved at have bogen i sin helhed kan I derudover på eget initiativ (eventuelt efter at have spurgt os til råds) bruge indholdsfortegnelserne og stikordsregistrene til at finde omtale af nogle af de begreber som vi lægger vægt på i undervisningen. Tekster som i litteraturangivelserne til hver enkelt session er forsynet med en * findes i kompendiet. Det er forsynet med fortløbende sidenummerering øverst til højre på hver side, og på forsiden har vi anført hvilke af disse sider hver tekst findes på. Når I på den måde har fundet en tekst skal I være opmærksomme på hvilke sider i selve teksten vi her i undervisningsplanen lægger op til at I arbejder med. Disse sidehenvisninger refererer ikke til den fortløbende sidenummerering i kompendiet, men til sideangivelserne i den enkelte tekst. De tilsvarende sidetal i kompendiet er angivet på kompendiets forside i firkantede parenteser. Tilrettelæggelse: Undervisningen er fordelt på 20 sessioner som falder i tre moduler. Hvert modul har som hovedregel et bestemt matematisk begreb og en bestemt matematisk kompetence som kerneindhold. Arbejdet hermed er tilrettelagt efter følgende skabelon: a) Introduktion til modulets kerneindhold. Opstart af miniprojekt. b) Lærerstyret minikursus om kerneindholdet. c) Færdiggørelse af studenterstyret miniprojekt om anvendelse af kerneindholdet. d) Kollega-evaluering af miniprojekt-rapporter. Overblik over og evaluering af modulet. 3 af 21

4 På de følgende sider findes en grundig beskrivelse af hver session, med *-markering af den litteratur som findes i kompendiet. I overbliksform kan indholdets fordeling over tid beskrives således: Modul I 1 (17. feb.): Introduktion. Overblik over kursets form og indhold. Om symbolbehandlingskompetence. Opstart af miniprojekt I. 2 (19. feb.): Variable. 3 (24. feb.): Ligninger. 4 (26. feb.): Formler. 5 (3. mar.): Miniprojekt I. 6 (5. mar.): Miniprojekt I. 7 (10. mar.): Kollega-evaluering af miniprojekt-rapport I. Faglig afrunding og formativ evaluering af modul I. Modul II 8 (12. mar.): Om konstruktiv modelleringskompetence. Sammenhænge I. Opstart af miniprojekt II. 9. (17. mar.): Sammenhænge II. Kvalitativ analyse af grafer. 10 (19. mar.): Kvalitativ analyse af grafer: Hældningstal. 11 (24. mar.): Miniprojekt II. 12 (26. mar.): Miniprojekt II. 13 (31. mar.): Kollega-evaluering af miniprojekt-rapport II. Faglig afrunding og formativ evaluering af modul II. Modul III 14 (2. apr.): Om modelleringskompetence og kritisk kommunikation. Opstart af miniprojekt III. 15 (7. apr.): Tilfældighed og sandsynlighedsmodeller. 16 (9. apr.): Sandsynlighedsmodeller: Test for uafhængighed (χ 2 -test). 17 (14. apr.): Miniprojekt III. 18 (23. apr.): Miniprojekt III. 19 (28. apr.): Kollega-evaluering af miniprojekt-rapport III. Faglig afrunding af modul III. Skriftlig test. 20 (30. apr.): Aflevering af begrebskort. Repetition af kursets indhold. Evaluering af kurset som helhed. Afsluttende evaluering 12. maj: kl. 12: Sidste frist for aflevering af opgaveportefølje. 10. juni: Mundtlig eksamensdag. 4 af 21

5 Session 1 Dato og klokkeslæt: 17. februar kl Titel: Introduktion. Overblik over kursets form og indhold. Om symbolbehandlingskompetence. Opstart af miniprojekt I. Klarhed over kursets tilrettelæggelse, undervisningsform, evalueringsform og eksamen. Matematisk symbolbehandling som begreb og som kompetence. Opstart af miniprojekt A. *Niss & Jensen (2002), s og Supplerende: Clausen et al. (2011b), s [Bog] *Niss & Jensen (2002), s Læs kursusplanen her og dan jer på denne baggrund så klart et billede som muligt af hvad I kan forvente jer af kurset her og hvad vi undervisere forventer os af jer. Formuler spørgsmål til eventuelle uklarheder omkring kursets tilrettelæggelse, undervisningsform, evalueringsform og eksamen. Læs og bearbejd den anførte litteratur. Orienter dig i opgaverne MIA mhp. fælles bearbejdning på kursusgangen. Forbered dig på at skulle vælge en problemstilling som omdrejningspunkt for det første miniprojekt med sigte på matematisk symbolbehandlingskompetence. Orienter dig i opgaverne MIA 31.x mhp. at få inspiration til dette valg. Hvilke(n) af disse opgave(r) kunne du godt forestille dig at arbejde med, når du sammen med din gruppe skal vælge et udgangspunkt for første miniprojekt? 5 af 21

6 Session 2 Dato og klokkeslæt: 19. februar kl Titel: Variable. Underviser: Peter Limkilde Variabelbegrebet, typer af variable, afhængige og uafhængige variable, skala-typer, sammensatte variable, sammenhæng mellem variable, grafisk repræsentation, variabelkontrol. *Christensen & Limkilde (2007). *Jensen et al. (2006), s Supplerende: *Jensen et al. (2004), s *Jensen et al. (2006), s Læs og bearbejd den anførte litteratur. Hjælp til bearbejdningen: Hvad er forskellen på et tal og en variabel? Overvej hvilke typer variable, du kender fra det fagområde, der har din interesse. Hvem/hvad er afgørende for om en variabel er uafhængig eller afhængig? Besvar så mange som muligt af opgaverne 8-16, 20 og 23 i Jensen et al. (2004) mhp. afklaring af spørgsmål på kursusgangen. Orienter dig i problemstillingen i øvelse 1, 2, 3, 4, 5 og 8A i Christensen og Limkilde (2007) mhp. fælles bearbejdning på kursusgangen. 6 af 21

7 Session 3 Dato og klokkeslæt: 24. februar kl Titel: Ligninger. Undervisere: Peter Limkilde. Ligninger og formler, ligninger og kurver, matematisk sprog om kurver og grafer, variabelsammenhænge. *Clausen et al. (2005b) (side 51-55, 66-71, 80-85). Læs og bearbejd den anførte litteratur. Hjælp til bearbejdningen: 1. En ligning udtrykker, at højre og venstre side af ligningen hver især er lige store talstørrelser. 2. Ligninger benyttes i formler, der udtrykker en sammenhæng og ud fra en sådan ligning kan en ukendt størrelse findes (løsning af ligningen). 3. Endelig benyttes ligninger til (regne)forskrifter for en funktion. Læs eksempel Grundlæggende funktioner og deres navne står på side Grafen for en funktion eller en ligning med to variable x og y, kan tegnes i et koordinatsystem med x som den uafhængige variabel og y (eller f(x)) som den afhængige variabel. Side 68-69, Læs eksempel 60 omhyggeligt. Besvar så mange som muligt af opgaverne: 244, 245, 246, 201, 204, 205, 216, 222, 223, 226, 228, 234, 239, 261 i Clausen et. al. (2005a) mhp. afklaring af spørgsmål på kursusgangen. Orienter dig i opgaverne MIA og 14.3, 14.8 og 14.9 mhp. fælles bearbejdning på kursusgangen. Tag en bærbar PC med, der har installeret regneark fx excel, open office eller numbers. Gratis open-office programmer til windows og Mac kan hentes her: Geogebra er et gratis matematik-tegneprogram der kan hentes på nettet. (Du skriver formlen i input så tegner programmet grafen) 7 af 21

8 Session 4 Dato og klokkeslæt: 26. februar kl Titel: Formler. Formel som begreb. Symbolbehandlingskompetence og formler. Begrebskort med bla. variabel, ligning og formel som begreber. Kort status vedrørende miniprojekt I. *Gregersen et al. (2008), s Læs og bearbejd den anførte litteratur. Besvar så mange som muligt af opgaverne på side 117 i den angivne tekst mhp. afklaring af spørgsmål på kursusgangen. Øv dig i at behandle formler så meget du orker og har brug for ved hjælp af øvelserne på tekstens side Besvar opgaverne MIA mhp. fælles drøftelse på kursusgangen af den rytme i opgaveløsningen som er angivet inden selve opgaverne. Opgaverne MIA 22.x er centrale fordi de både bearbejder forståelsen af formler på en god måde og illustrerer kernen i miniprojekt I, og vi vil derfor bruge størstedelen af kursusgangen på at arbejde videre med et udvalg af disse opgaver. 8 af 21

9 Session 5 og 6 Dato og klokkeslæt: 3. marts kl og 5. marts kl Titel: Miniprojekt I. Arbejde med miniprojekt I. Projektgruppernes eget valg af relevant litteratur. Sørg for sammen med din gruppe at være så langt med miniprojekt I at I kan bruge tiden på sessionerne effektivt, bla. med henblik på at udnytte vores tilstedeværelse som vejledere. (Inden næste session: Udarbejd miniprojekt-rapport I og aflever den elektronisk via bscw.ruc.dk senest torsdag d. 6. marts kl ) 9 af 21

10 Session 7 Dato og klokkeslæt: 10. marts kl Titel: Kollega-evaluering af miniprojekt-rapport I. Faglig afrunding og formativ evaluering af modul I. Gruppevis kollegasparring vedrørende miniprojekt-rapport I. Formativ evaluering af kurset indtil nu. Overblik over kursets første modul. Opstart af arbejdet med begrebskort. Egen og makkergruppens projektrapport, samt litteraturen fra de øvrige sessioner i dette modul med henblik på repetition og overblik. *Højgaard (2012). Supplerende: *Skemp (1978). Udarbejd miniprojekt-rapport I og aflever den elektronisk via bscw.ruc.dk senest torsdag d. 6. marts kl Læs og forbered kritik af makkergruppens projektrapport, med fokus på opfyldelsen af det matematikfaglige mål med projektarbejdet. Makkergrupperne aftales på de forudgående sessioner. Orienter dig med afsæt i Højgaard (2012) om, hvad det vil sige at udarbejde et begrebskort og hvad det er meningen man skal have ud af et sådant arbejde. Det i den forbindelse centrale begreb relationel forståelse introduceres i Skemp (1978). Påbegynd arbejdet ved at lave et begrebskort med begreberne variabel, ligning og formel. 10 af 21

11 Session 8 Dato og klokkeslæt: 12. marts kl Titel: Om konstruktiv modelleringskompetence. Sammenhænge. Opstart af miniprojekt II. Matematisk modellering som begreb og som kompetence. Sammenhænge: Forskellige typer sammenhænge, - forskellige typer repræsentationer af funktioner Opstart af miniprojekt II. *Blomhøj (2006), s *Clausen et al. (2011b), s og [bog] *Jensen et al. (2002), s *Niss & Jensen (2002), s *Antonius et al. (2000), s *Antonius et al. (2001), s *Gregersen et al. (2008), s *Jensen et al. (2006), s Supplerende: *Blomhøj (2006), s Clausen et al. (2011b), s og s [bog] Læs og bearbejd den anførte litteratur. Hjælp til bearbejdningen: A) Modellering: Formuler for dig selv hvad du på baggrund af litteraturen mener kernen i matematisk modellering er. Arbejd et højst 10 minutter med hver af opgaverne MIA , og overvej hvad det svære ved hver opgave består i. Repetér højst 10 minutter besvarelsen af et par af opgaverne MIA 22.x som du arbejdede med på session 4 mhp. Fælles drøftelse på kursusgangen. B) Sammenhænge: Begynd med Gregersen et al. (2008) som er den lettest tilgængelige, derefter Jensen et al. (2006). Bemærk en funktion er en særlig sammenhæng, hvor der er en entydig værdi af den afhængige variabel til hver værdi af den uafhængige variabel. Bemærk at en funktion kan beskrives med ord eller en tabel eller en graf eller en regneforskrift. Besvar så mange som muligt af følgende opgaver mhp. afklaring af spørgsmål på kursusgangen: 001-a)+b); 005 a)+b)+c); i Clausen et al. (2011), s. 7-9 [facit i kompendiet sidst i Clausen et al. (2011)]; øvelse 1-9 i Jensen (2002), s Orienter dig i følgende opgaver mhp. fælles bearbejdning på kursusgangen: MIA ; Ø1, Ø8 og Ø9 i Jensen (2006), s ; øvelse i Clausen (2011) s (facit bag i bogen); Ø1, Ø3 og Ø4 i Jensen (2006), s. 60. C) Overvej hvilken problemstilling du godt kan tænke dig at arbejde med som udgangspunkt for den matematiske modellering i miniprojekt II. Orienter dig eventuelt i opgaverne MIA 32.x mhp. at få inspiration til dette valg. 11 af 21

12 Session 9 Dato og klokkeslæt: 17. marts kl Titel: Sammenhænge II. Kvalitativ analyse af grafer. Analyse (læsning) af grafer. *Jessen et. al (1991), s *Jensen et al. (2002), s *Clausen et. al. (2005b) side og side Clausen et al. (2011b), s. 7-9 og [bog] *Jessen et al. (1991), s Clausen et al. (2011b), s [bog] *Clausen et al. (2011), s Supplerende: *Jessen et al. (1991), s Læs og bearbejd den anførte litteratur. Begynd med Jensen et al. (2002) som er den lettest tilgængelige. Læs dernæst Clausen et al. (2006b). Det væsentlige er forståelse af begreberne: værdimængde definitionsmængde -begyndelsesværdi - skæring med akserne monotoniforhold voksende aftagende - typer af vækst - globalt maksimum/minimum. De tekniske udregninger er ikke så væsentlige, bortset fra beregning af hældning og regneforskrift for en ret linie. Hjælp til bearbejdningen: Bemærk at en funktion kan beskrives med ord eller en tabel eller en graf eller en regneforskrift. Grafer for forskellige udvalgte funktioner bliver rette linjer i koordinatsystemer med en eller flere akser, der har logaritmisk skala. Besvar så mange som muligt af opgaverne 1-21 i *Jensen et. al. (2002), s , mhp. afklaring af spørgsmål på kursusgangen. Orienter dig i opgaverne MIA og i Clausen et. al. (2005a) s mhp. fælles bearbejdning på kursusgangen. Besvar opgaverne MIA mhp. fælles drøftelse på kursusgangen af rytmen i opgaveløsningen. Opgaverne MIA 16.x er centrale fordi de både bearbejder forståelsen af grafer på en god måde og illustrerer et centralt element i miniprojekt II, og vi vil derfor bruge størstedelen af kursusgangen på at arbejde videre med et udvalg af disse opgaver. 12 af 21

13 Session 10 Dato og klokkeslæt: 19. marts kl Titel: Kvalitativ analyse af grafer: Hældningstal. Tangenter, tangentens hældning, f (x), og optimering. Clausen et al. (2011b), s , s s og s [bog] *Clausen et al. (2011), s *Limkilde (2009a). Læs og bearbejd den anførte litteratur. Hjælp til bearbejdningen: En tangent til grafen for en funktion er en linje, der følger grafen og snitter den i et enkelt røringspunkt. Tangenten har som alle skrå linjer et hældningstal. Dette hældningstal kaldes for differentialkvotienten for f(x) i røringspunktet. Bemærk skivemåderne på side 21, der viser måder på hvilke man kan angive denne differentialkvotient som variabel i formler. Husk hele tiden den grafiske betydning dvs. alle de mærkelige formler er altså (bare) formler og regler for hældningstal på de linjer, der hedder tangenter. Når tangentens hældningstal er et positivt tal vil grafen være voksende i et område omkring røringspunktet. Toppunkter optræder, hvor tangenten er vandret dvs. hvor tangentens hældningstal er lig 0. Maksimum og minimum for en funktion findes derfor hvor f (x) = 0. Se i Clausen (2005b), s Besvar så mange som muligt af opgaverne: Hvad er hældningen på grafen i figur 218? Find koordinaterne for de punkter, der har vandret tangent og bestem for hvilke x- værdier graferne vokser og aftager i figur 231, 232, 240, 241, 242, 243 mhp. afklaring af spørgsmål på kursusgangen. Orienter dig i følgende opgaver mhp. fælles bearbejdning på kursusgangen: MIA (s. 15), og 303, 304, 314 (s ) i Clausen (2011). Opg. 238 og 230 i Clausen (2005a) (tegn evt grafen først i Geogebra eller grafregner). Ø4 i Antonius (2001), s. 109 (vink: hvis f(x) = ax 3 +bx 2 +cx+d så er tangenthældningen givet ved f (x) = 3ax 2 +bx+c). 13 af 21

14 Session 11 og 12 Dato og klokkeslæt: 24. marts 21. kl og 26 marts kl Titel: Miniprojekt II. Arbejde med miniprojekt II. Projektgruppernes eget valg af relevant litteratur. Sørg for sammen med din gruppe at være så langt med miniprojekt II at I kan bruge tiden på sessionerne effektivt, bl.a. med henblik på at udnytte vores tilstedeværelse som vejledere. Inden næste session: Udarbejd miniprojekt-rapport II og aflever den elektronisk via bscw.ruc.dk senest torsdag d. 27. marts kl af 21

15 Session 13 Dato og klokkeslæt: 31. marts kl Titel: Kollega-evaluering af miniprojekt-rapport II. Faglig afrunding og formativ evaluering af modul II. Gruppevis kollegasparring vedrørende miniprojekt-rapport II. Formativ evaluering af kurset indtil nu. Overblik over kursets andet modul. Videre arbejde med begrebskort, nu med afsæt i modul I og II set som helhed. Egen og makkergruppens projektrapport, samt litteraturen fra de øvrige sessioner i dette modul med henblik på repetition og overblik. Udarbejd miniprojekt-rapport II og aflever den elektronisk via bscw.ruc.dk senest torsdag d. 27. marts kl Læs og forbered kritik af makkergruppens projektrapport, med fokus på opfyldelsen af det matematikfaglige mål med projektarbejdet. Makkergrupperne aftales på de forudgående sessioner. Nedskriv hvad du opfatter som de mest centrale begreber fra modul II, og arbejd med hvilke begrebsrelationer du opfatter som de væsentligste og hvilke af disse relationer du har vanskeligt ved at formulere som led i begrebskort-arbejdet. 15 af 21

16 Session 14 Dato og klokkeslæt: 2. april kl Titel: Om modelleringskompetence og kritisk kommunikation. Opstart af miniprojekt III. Repetition af betydningen af matematisk modellering som begreb og som kompetence, med fokus på den kritisk undersøgende del af modelleringsprocessen. Opstart af miniprojekt III. Clausen et al. (2011b), s [bog] *Niss & Jensen (2002), s og *Limkilde (2009b og 2009c) Læs og bearbejd den anførte litteratur. Hjælp til bearbejdningen: Hvordan vil du forklare hvad matematisk modellering er til en person som ikke har hørt om det før? Hvad har teksten Limkilde (2009b og 2009c) at gøre med matematisk modellering? Arbejd et kvarters tid med hver af opgaverne MIA , og overvej hvilke dele af den matematiske modelleringsproces disse opgaver handler om. Overvej hvilken problemstilling du godt kan tænke dig at arbejde med som udgangspunkt for den kritisk undersøgende tilgang til matematisk modellering i miniprojekt III. Orientér dig eventuelt i opgaverne MIA 33.x mhp. at få inspiration til dette valg. 16 af 21

17 Session 15 Dato og klokkeslæt: 7. april kl Titel: Tilfældighed og sandsynlighedsmodeller. Sandsynlighed teoretisk og statistisk. Sandsynlighedsmodeller. Begreberne variabel, stokastik og stokastisk variabel. Clausen et al. (2011b), s og s [bog] *Clausen et al. (2011), s Limkilde (2009b). Supplerende: Clausen et al. (2011b), s [bog] Læs og bearbejd den anførte litteratur. Hjælp til bearbejdningen: Hvad er sandsynlighed egentlig for noget? Hvordan kan man med hverdagsord forklare hvad en model er? Hvad er en sandsynlighedsmodel? Hvad er en stokastisk variabel og hvad har det at gøre med sandsynlighedsmodeller? Besvar så mange som muligt af opgaverne MIA og mhp. afklaring af spørgsmål på kursusgangen. Orienter dig i opgaverne MIA 17.4, 17.5, 17.10, 17.12, 17.18, 17.24, 18.4, 18.5 samt opgave 4018 i Clausen et al. (2011) side 75 [facit bagerst i reference Clausen et al. (2011)] mhp. fælles bearbejdning på kursusgangen. 17 af 21

18 Session 16 Dato og klokkeslæt: 9. april kl Titel: Sandsynlighedsmodeller: Test for uafhængighed (χ 2 -test). Sandsynlighedsmodeller: Test for uafhængighed (χ 2 -test). Clausen et al. (2011b), s [bog] *Clausen et al. (2011) s *Malmberg (1995). χ 2 -Tabeller. Supplerende: Clausen et al. (2011b), s [bog] Husk PC med regneark. Læs og bearbejd den anførte litteratur. Hjælp til bearbejdningen: En p-fraktil (i en sandsynlighedsfordeling) er et tal på x-aksen, der har den egenskab at sandsynligheden for at få en værdi der er mindre eller lig tallet er p. Fraktiler kan beregnes eller slås op i tabeller. Besvar så mange som muligt af opgaverne MIA 19.1, 19.2; opgave 4007, 4008 og 4009 i Clausen et al. (2011) s. 72, [facit bag i reference Clausen et al. (2011)], mhp. afklaring af spørgsmål på kursusgangen. OBS: En p-fraktil (i en sandsynlighedsfordeling) er et tal på x-aksen, der har den egenskab, at sandsynligheden for at få en værdi, der er mindre eller lig tallet på x-aksen er lig med p. Fraktiler kan beregnes eller slås op i tabeller. Hypotesetest består i at afgøre om en hypotese (fx uafhængighed mellem køn og hvilket parti man stemmer på) kan forkastes på baggrund af et talmateriale indsamlet i en tilfældigt valgt stikprøve. 1) Man beslutter sig for hvor sjældne hændelser må være, før vi mener, at de ikke er opstået ved et tilfælde. Fx 5%. 2) Ud fra den givne hypotese (fx uafhængighed mellem køn og hvilket parti man stemmer på) beregnes hvor stor en afvigelse (den kritiske værdi), vi kan tillade mellem de teoretisk forventede tal (E) og de faktiske observerede tal (O) i rubrikkerne i en tabel med stikprøvens resultater, 3) Stikprøven indsamles og kommer afvigelsen over den tilladte værdi [fx som her: 95%-fraktilen], vil vi mene, at afvigelsen ikke kan være opstået ved tilfældig variation. Hypotesen kan forkastes. Note: Afvigelsen angives som værdien af en variabel Q, der beregnes efter en formel givet ved i hver rubrik at udregne tallet 2 ( O E),og så lægge tallene for alle rubrikker sammen. Resten (fx beregningen af E og Q og E Q kritisk er regneteknik og opslag i tabeller). Orienter dig i opgaverne MIA mhp. fælles bearbejdning på kursusgangen. 18 af 21

19 Session 17 og 18 Dato og klokkeslæt: 14. april kl og 23. april kl Titel: Miniprojekt III. Arbejde med miniprojekt III. Projektgruppernes eget valg af relevant litteratur. Sørg for sammen med din gruppe at være så langt med miniprojekt III at I kan bruge tiden på sessionerne effektivt, bla. med henblik på at udnytte vores tilstedeværelse som vejledere. Inden næste session: Udarbejd miniprojekt-rapport III og aflever den elektronisk via bscw.ruc.dk senest torsdag d. 24. april kl af 21

20 Session 19 Dato og klokkeslæt: 28. april kl Titel: Kollega-evaluering af miniprojekt-rapport III. Faglig afrunding af modul III. Skriftlig test. Gruppevis kollegasparring vedrørende miniprojekt-rapport III. Overblik over kursets tredje modul. Videre arbejde med begrebskort, nu med afsæt i kurset som helhed. Skriftlig test. Egen og makkergruppens projektrapport, samt litteraturen fra de øvrige sessioner i dette modul med henblik på repetition og overblik. Udarbejd miniprojekt-rapport III og aflever den elektronisk via bscw.ruc.dk senest torsdag d. 24. april kl Læs og forbered kritik af makkergruppens projektrapport, med fokus på opfyldelsen af det matematikfaglige mål med projektarbejdet. Makkergrupperne aftales på de forudgående sessioner. Nedskriv hvad du opfatter som de mest centrale begreber fra modul III, og arbejd med hvilke begrebsrelationer du opfatter som de væsentligste og hvilke af disse relationer du har vanskeligt ved at formulere som led i begrebskort-arbejdet. Besvar/repetér så mange som muligt af opgaverne stillet her i kursusplanen i forbindelse med session 2-4, 9-11 og mhp. forberedelse til testen. Inden næste session: Udarbejd begrebskortet og aflever elektronisk på BSCW senest tirsdag d. 29 april kl eller en papir-udskrift i Peters dueslag i bygning 27.1 senest onsdag den 30. April kl af 21

21 Session 20 Dato og klokkeslæt: 21. november kl Titel: Aflevering af begrebskort. Repetition af kursets indhold. Evaluering af kurset som helhed. Feedback på besvarelserne af testen. Overblik over og repetition af kursets samlede indhold. Kollegasparring vedrørende begrebskort. Klarhed over processen omkring den summative evaluering. Kursusevaluering. Ingen særskilt. Udarbejd begrebskortet og aflever elektronisk på BSCW senest tirsdag d. 29 april kl eller en papir-udskrift i Peters dueslag i bygning 27.1 senest onsdag den 30. April kl Tænk tilbage på besvarelsen af testen. Hvad vil du på den baggrund selv pege på du har godt styr på, og hvad kunne du godt trænge til at arbejde mere med? Hvilke spørgsmål i forlængelse af testen kunne du godt tænke dig at få svar på? Besvar skriftligt de på forhånd via bscw.ruc.dk udleverede spørgsmål som led i den samlede kursusevaluering, og tænk over eventuelle mundtlige kommentarer. Læs afsnittet om evaluering og eksamen på de første sider her i kursusplanen og formuler eventuelt spørgsmål til den summative evaluering, hvis der er ting der fremstår uklart. 21 af 21

Oversigt over gennemførte undervisningsforløb

Oversigt over gennemførte undervisningsforløb Undervisningsbeskrivelse Termin Maj/juni 2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer(e) Hold stx Matematik B Janne Skjøth Winde 2.s mab Oversigt over gennemførte undervisningsforløb

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Afsluttende: Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Favrskov Gymnasium Stx Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2012-2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold Stx Matematik A MT 3.a Matematik Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2013 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik B Mia Hauge Dollerup 2s mab Oversigt over gennemførte undervisningsforløb

Læs mere

Matematik B stx, maj 2010

Matematik B stx, maj 2010 Bilag 36 Matematik B stx, maj 2010 1. Identitet og formål 1.1. Identitet Matematik bygger på abstraktion og logisk tænkning og omfatter en lang række metoder til modellering og problembehandling. Matematik

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2015, skoleåret 14/15 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Vejledning og Vejleder

Vejledning og Vejleder Vejledning for modulet Vejledning og Vejleder Obligatorisk modul 10 ECTS Diplomuddannelse i Uddannelses-, Erhvervs- og Karrierevejledning Efterår 2014-1 - 1. Indledning Vejledning for modulet, bygger på

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Alexander

Læs mere

24. maj 2015. Kære censor i skriftlig fysik

24. maj 2015. Kære censor i skriftlig fysik 24. maj 2015 Kære censor i skriftlig fysik I år afvikles den første skriftlig prøve i fysik den 26. maj, mens den anden prøve først er placeret den 2. juni. Som censor vil du normalt kun få besvarelser

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 10/11 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik C Trille Hertz Quist 1.c mac Oversigt over gennemførte undervisningsforløb

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Studieordning for masteruddannelsen i matematikkens didaktik ved Institut for Læring

Studieordning for masteruddannelsen i matematikkens didaktik ved Institut for Læring Studieordning for masteruddannelsen i matematikkens didaktik ved Institut for Læring Ilisimatusarfik Grønlands Universitet University of Greenland!1 Indholdsfortegnelse 1. Præambel 3 2. Varighed og titel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3 eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 2014 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh121-mat/a-04062012 Mandag den 4. juni 2012 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Oversigt over gennemførte undervisningsforløb. Uddannelse. Basal talbehandling. Lineære funktioner. Eksponentielle funktioner. Beskrivende statistik

Oversigt over gennemførte undervisningsforløb. Uddannelse. Basal talbehandling. Lineære funktioner. Eksponentielle funktioner. Beskrivende statistik Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010 - juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jarl Mølgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2014, skoleåret 13/14 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Handelsskolen Silkeborg Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Frede

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Komrapporten Kompetencer og matematiklæring. Ideer og inspiration til udvikling af matematikundervisningen

Læs mere

Modulbeskrivelse. Modul 14. Bachelorprojekt. Professionsbachelor i sygepleje

Modulbeskrivelse. Modul 14. Bachelorprojekt. Professionsbachelor i sygepleje Sygeplejerskeuddannelsen UCSJ Modulbeskrivelse Modul 14 Bachelorprojekt Professionsbachelor i sygepleje Indholdsfortegnelse Introduktion til modul 14 beskrivelsen... 3 Modul 14 - Bachelorprojekt... 3 Studieaktivitetsmodel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: maj-juni 2011/2012 ZBC Ringsted Hhx Matematik B Jens Jørvad 12hhx21 Oversigt over

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer Hold VUC Skive-Viborg Hfe Matematik C Claus Ryberg

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh11-mat/b-70501 Mandag den 7. maj 01 kl. 9.00-1.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/12 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Matematiklærernes dag 08.11.2010. Modellering

Matematiklærernes dag 08.11.2010. Modellering Matematiklærernes dag 08.11.2010 Modellering 0745 - Modellering Matematiklærernes dag 08.11.2010 Matematisk modellering I kursusbeskrivelsen Når man bruger matematik til at beskrive og forstå virkeligheden

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015, skoleåret 14/15 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC hf enkeltfag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse & Oversigt over projektrapporter

Undervisningsbeskrivelse & Oversigt over projektrapporter Undervisningsbeskrivelse & Oversigt over projektrapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

Modul 5. Tværprofessionel virksomhed. August 2015. Udarbejdet af Fysioterapeutuddannelsen i Holstebro VIA University College

Modul 5. Tværprofessionel virksomhed. August 2015. Udarbejdet af Fysioterapeutuddannelsen i Holstebro VIA University College Modul 5 Tværprofessionel virksomhed August 2015 Udarbejdet af Fysioterapeutuddannelsen i Holstebro VIA University College Fysioterapeutuddannelsen i Holstebro Side 1 af 6 Modulets tema Den monofaglige

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution Vestegnen HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Kirsten

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne.

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne. o Til censor Fagkonsulent Matematik, htx Vedr.: Skriftlig censur i matematik på htx Velkommen som skriftlig censor i matematik på htx. Marit Hvalsøe Schou Oehlenschlægersvej 55 5230 Odense M Tlf: 2565

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh101-mat/a-27052010 Torsdag den 27. maj 2010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 11. Denne

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Specialemodul 15 ECTS. - Den offentlige lederuddannelse. Østjysk Ledelsesakademi Efteråret 2012

Specialemodul 15 ECTS. - Den offentlige lederuddannelse. Østjysk Ledelsesakademi Efteråret 2012 Specialemodul - Den offentlige lederuddannelse Østjysk Ledelsesakademi Efteråret 2012 15 ECTS 1 Indhold Specialemodulet (15 ECTS point)... 3 Indhold og læringsmål modulet... 3 Synopsis... 4 Vejledning...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer Hold hf Matematik C Dorte Christoffersen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse. Fag:matematik Hold:18 Lærer:ym Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hovedvægten er elevernes forståelse for matematiske begreber.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin sommer 15 Institution VUC-vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kofi Mensah 1maC05

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2009 EUC

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Lise A.

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hf2 Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010 Institution Handelsskolen Sjælland Syd, Campus Vordingborg Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere