Oversigt [LA] 1, 2, 3, [S] 9.1-3

Størrelse: px
Starte visningen fra side:

Download "Oversigt [LA] 1, 2, 3, [S] 9.1-3"

Transkript

1 Oversigt [LA] 1, 2, 3, [S] Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation Standard vektorer Identitetsmatricen Calculus Uge

2 Taltupler [LA] 1 Koordinatvektorer Definition Det n-dimensionale koordinatvektorrum udgøres af alle n-tupler x = (x 1,...,x i,...,x n ) (x = x) af reelle tal og betegnes R n Calculus Uge

3 Taltupler [LA] 1 Koordinatvektorer Definition Det n-dimensionale koordinatvektorrum udgøres af alle n-tupler x = (x 1,...,x i,...,x n ) (x = x) af reelle tal og betegnes R n Taltuplen x kaldes en (koordinat)vektor med i-te koordinat x i. Calculus Uge

4 Taltupler [LA] 1 Koordinatvektorer Definition Det n-dimensionale koordinatvektorrum udgøres af alle n-tupler x = (x 1,...,x i,...,x n ) (x = x) af reelle tal og betegnes R n Taltuplen x kaldes en (koordinat)vektor med i-te koordinat x i. Vektoren, hvis koordinater alle er 0 kaldes nulvektoren. 0 = (0,...,0) Calculus Uge

5 Planen [LA] 1 Koordinatvektorer Figur y b (a, b) 0 a x Talplanen R 2 Calculus Uge

6 Planen [LA] 1 Koordinatvektorer Figur y b (a, b) 0 a x Talplanen R 2 Calculus Uge

7 Planen [LA] 1 Koordinatvektorer Figur y b (a, b) 0 a x Talplanen R 2 Calculus Uge

8 Rummet Figur [LA] 1 Koordinatvektorer, [S] 9.1 Three-dimensional co... z c 0 (a, b,c) b y a x Talrummet R 3 Calculus Uge

9 Rummet Figur [LA] 1 Koordinatvektorer, [S] 9.1 Three-dimensional co... z c 0 (a, b,c) b y a x Talrummet R 3 Calculus Uge

10 Rummet Figur [LA] 1 Koordinatvektorer, [S] 9.1 Three-dimensional co... z c 0 (a, b,c) b y a x Talrummet R 3 Calculus Uge

11 Addition Definition Sum af vektorer x + y = x 1. + y 1. = [LA] 1 Koordinatvektorer x 1 + y 1. x n y n x n + y n Calculus Uge

12 Addition Definition Sum af vektorer x + y = x 1. + y 1. = [LA] 1 Koordinatvektorer x 1 + y 1. x n y n x n + y n Eksempel = Calculus Uge

13 Skalering [LA] 1 Koordinatvektorer Definition Skalarmultiplikation af skalar (tal) og vektor αx = α x 1. = αx 1. x n αx n Calculus Uge

14 Skalering [LA] 1 Koordinatvektorer Definition Skalarmultiplikation af skalar (tal) og vektor αx = α x 1. = αx 1. x n αx n Eksempel = Calculus Uge

15 Regneregler [LA] 1 Koordinatvektorer Regneregler Calculus Uge

16 Regneregler [LA] 1 Koordinatvektorer Regneregler 1. Kommutativ lov u + v = v + u Calculus Uge

17 Regneregler [LA] 1 Koordinatvektorer Regneregler 1. Kommutativ lov 2. Associativ lov u + v = v + u u + (v + w) = (u + v) + w Calculus Uge

18 Regneregler [LA] 1 Koordinatvektorer Regneregler 1. Kommutativ lov 2. Associativ lov u + v = v + u u + (v + w) = (u + v) + w 3. Distributive love r(u + v) = ru + rv (r + s)u = ru + su Calculus Uge

19 Associativ addition Figur [LA] 1 Koordinatvektorer, [S] 9.2 Vectors a + b + c b + c c b a a + b Associativ lov for vektorer i planen Calculus Uge

20 Associativ addition Figur [LA] 1 Koordinatvektorer, [S] 9.2 Vectors a + b + c b + c c b a a + b Associativ lov for vektorer i planen Calculus Uge

21 Associativ addition Figur [LA] 1 Koordinatvektorer, [S] 9.2 Vectors a + b + c b + c c b a a + b Associativ lov for vektorer i planen Calculus Uge

22 Linearkombination [LA] 1 Koordinatvektorer Definition Et sæt af vektorer u 1,...,u k og koefficienter (skalarer) λ 1,...,λ k giver linearkombinationen λ 1 u λ k u k Calculus Uge

23 Linearkombination [LA] 1 Koordinatvektorer Definition Et sæt af vektorer u 1,...,u k og koefficienter (skalarer) λ 1,...,λ k giver linearkombinationen λ 1 u λ k u k Eksempel = Calculus Uge

24 Linearkombination [LA] 1 Koordinatvektorer Definition Et sæt af vektorer u 1,...,u k og koefficienter (skalarer) λ 1,...,λ k giver linearkombinationen λ 1 u λ k u k Eksempel = Calculus Uge

25 Span [LA] 1 Koordinatvektorer Definition Givet er sæt af vektorer u 1,...,u k i R n. Så er deres span alle linearkombinationer v = λ 1 u λ k u k Calculus Uge

26 Span [LA] 1 Koordinatvektorer Definition Givet er sæt af vektorer u 1,...,u k i R n. Så er deres span alle linearkombinationer v = λ 1 u λ k u k Et span er stabilt overfor dannelse af linearkombination og giver et underrum af R n. Calculus Uge

27 Span [LA] 1 Koordinatvektorer Definition Givet er sæt af vektorer u 1,...,u k i R n. Så er deres span alle linearkombinationer v = λ 1 u λ k u k Et span er stabilt overfor dannelse af linearkombination og giver et underrum af R n. Eksempel Diagonalen i talplanen er et span {(x,y) x = y} = span((1, 1)) R 2 Calculus Uge

28 Vektorrum [LA] 1 Koordinatvektorer, [S] 9.2 Vectors Definition En mængde med struktur som et koordinatvektorrum kaldes et vektorrum og elementerne kaldes vektorer. Vektorer kan adderes og skalarmultipliceres med reelle skalarer. Calculus Uge

29 Vektorrum [LA] 1 Koordinatvektorer, [S] 9.2 Vectors Definition En mængde med struktur som et koordinatvektorrum kaldes et vektorrum og elementerne kaldes vektorer. Vektorer kan adderes og skalarmultipliceres med reelle skalarer. Eksempel Et underrum i R n er et vektorrum. Calculus Uge

30 Vektorrum [LA] 1 Koordinatvektorer, [S] 9.2 Vectors Definition En mængde med struktur som et koordinatvektorrum kaldes et vektorrum og elementerne kaldes vektorer. Vektorer kan adderes og skalarmultipliceres med reelle skalarer. Eksempel Et underrum i R n er et vektorrum. Eksempel Mængden af alle reelle funktioner f : X R er et vektorrum. Calculus Uge

31 Test linearkombination [LA] 1 Koordinatvektorer Test Enhver vektor x R 3 kan skrives som en linearkombination x = λ 1 (1, 1, 1) + λ 2 ( 1, 1, 1). Afkryds: ja nej Calculus Uge

32 Test linearkombination [LA] 1 Koordinatvektorer Test Enhver vektor x R 3 kan skrives som en linearkombination x = λ 1 (1, 1, 1) + λ 2 ( 1, 1, 1). Løsning Afkryds: x = λ 1 (1, 1, 1) + λ 2 ( 1, 1, 1) = (λ 1 λ 2 )(1, 1, 1) som alle har samme 1. og 2. koordinat. ja nej Calculus Uge

33 Test linearkombination [LA] 1 Koordinatvektorer Test Enhver vektor x R 3 kan skrives som en linearkombination x = λ 1 (1, 1, 1) + λ 2 ( 1, 1, 1). Løsning Afkryds: ja nej x = λ 1 (1, 1, 1) + λ 2 ( 1, 1, 1) = (λ 1 λ 2 )(1, 1, 1) som alle har samme 1. og 2. koordinat. Calculus Uge

34 Matrix indgang Definition En m n-matrix er et rektangulært regneark med m-rækker og n-søjler. Calculus Uge

35 Matrix indgang Definition En m n-matrix er et rektangulært regneark med m-rækker og n-søjler. Det skrives (A = A) A = (a ij ) i=1...m,j=1...n a a 1n =. a ij. a m1... a mn Calculus Uge

36 Matrix indgang Definition En m n-matrix er et rektangulært regneark med m-rækker og n-søjler. Det skrives (A = A) ij-te (matrix)indgang A = (a ij ) i=1...m,j=1...n a a 1n =. a ij. a m1... a mn a ij Calculus Uge

37 Matrix indgang Definition En m n-matrix er et rektangulært regneark med m-rækker og n-søjler. Det skrives (A = A) ij-te (matrix)indgang A = (a ij ) i=1...m,j=1...n a a 1n =. a ij. a m1... a mn a ij Matricen 0 = (0) med alle indgange lig 0 kaldes nulmatricen. Calculus Uge

38 Matrix række/søjle Definition En m n-matrix A = (a ij ) i=1...m,j=1...n Calculus Uge

39 Matrix række/søjle Definition En m n-matrix A = (a ij ) i=1...m,j=1...n har i-te række a i = (a i1... a in ) Calculus Uge

40 Matrix række/søjle Definition En m n-matrix A = (a ij ) i=1...m,j=1...n har i-te række a i = (a i1... a in ) og j-te søjle a j = a 1j. a mj Calculus Uge

41 Rækker og søjler Eksempel m = 1 rækkevektor/rækkematrix (a 1... a n ) Calculus Uge

42 Rækker og søjler Eksempel m = 1 rækkevektor/rækkematrix (a 1... a n ) n = 1 søjlevektor/søjlematrix a 1. a m Calculus Uge

43 3x4 matrix Eksempler 3 4-matrix Calculus Uge

44 3x4 matrix Eksempler 3 4-matrix rækkematrix ( ) Calculus Uge

45 3x4 matrix Eksempler 3 4-matrix rækkematrix ( ) søjlematrix Calculus Uge

46 Addition skalering Definition Sum, Skalarmultiplikation To m n-matricer kan adderes til en m n-matrix. En matrix kan skaleres. Calculus Uge

47 Addition skalering Definition Sum, Skalarmultiplikation To m n-matricer kan adderes til en m n-matrix. En matrix kan skaleres. A = (a ij ) i=1...m,j=1...n B = (b ij ) i=1...m,j=1...n A + B = (a ij + b ij ) i=1...m,j=1...n λa = (λa ij ) i=1...m,j=1...n Calculus Uge

48 Addition skalering Definition Sum, Skalarmultiplikation To m n-matricer kan adderes til en m n-matrix. En matrix kan skaleres. A = (a ij ) i=1...m,j=1...n B = (b ij ) i=1...m,j=1...n A + B = (a ij + b ij ) i=1...m,j=1...n λa = (λa ij ) i=1...m,j=1...n Eksempel ( ) ( ) = ( ) = 2 ( ) Calculus Uge

49 Matrix multiplikation Definition (Multiplikation) En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Calculus Uge

50 Matrix multiplikation Definition (Multiplikation) En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. A = (a ij ) i=1...m,j=1...n B = (b jk ) j=1...n,k=1...p AB = (c ik ) i=1...m,k=1...p Calculus Uge

51 Matrix multiplikation Definition (Multiplikation) En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. A = (a ij ) i=1...m,j=1...n B = (b jk ) j=1...n,k=1...p AB = (c ik ) i=1...m,k=1...p c ik = a i1 b 1k + + a in b nk = n j=1 a ij b jk Calculus Uge

52 Gange er nemt Bemærkning I c ik indgår kun den i-te række i første matrix og den k-te søjle i anden matrix. Calculus Uge

53 Gange er nemt Bemærkning I c ik indgår kun den i-te række i første matrix og den k-te søjle i anden matrix. c ik = ) (a i1...a ij...a in b 1k. b jk. b nk Calculus Uge

54 Gange er nemt Bemærkning I c ik indgår kun den i-te række i første matrix og den k-te søjle i anden matrix. c ik = ) (a i1...a ij...a in b 1k. b jk. b nk = a i1 b 1k + + a ij b jk + + a in b nk Calculus Uge

55 Øvelse Eksempel ( ) ( ) Calculus Uge

56 Øvelse Eksempel = ( ) ( ) ( ) [ ] [1 ( 5) + 2 0] [( 1) ] [( 1) ( 5) + 8 0] Calculus Uge

57 Øvelse Eksempel = ( ) ( ) ( ) [ ] [1 ( 5) + 2 0] [( 1) ] [( 1) ( 5) + 8 0] Calculus Uge

58 Øvelse Eksempel = ( ) ( ) ( ) [ ] [1 ( 5) + 2 0] [( 1) ] [( 1) ( 5) + 8 0] = ( ) Calculus Uge

59 Regneark Eksempel Rækkesum a a 1n 1. a ij. a m1... a mn. 1 = a a 1n. a m1 + + a mn Calculus Uge

60 Regneark Eksempel Rækkesum a a 1n 1. a ij. a m1... a mn. 1 = a a 1n. a m1 + + a mn Søjlesum = ( ) a a 1n 1,..., 1. a ij. a m1... a mn ) (a a m1,..., a 1n + + a mn Calculus Uge

61 Vigtigste regneregel Sætning 1 (Associativ lov) Matrix multiplikation er associativ. Givet A en m n-matrix, B en n p-matrix og C en p q-matrix, så er følgende to m q-matricer ens. (AB)C = A(BC) Calculus Uge

62 Vigtigste regneregel Sætning 1 (Associativ lov) Matrix multiplikation er associativ. Givet A en m n-matrix, B en n p-matrix og C en p q-matrix, så er følgende to m q-matricer ens. (AB)C = A(BC) Bevis Fælles il-te indgang d il = j,k a ij b jk c kl Calculus Uge

63 Multiplikation og linearkombination Sætning 2 Givet A en m n-matrix og x en n-søjlematrix, så er produktet y = Ax = a 1 x a n x n den m-søjlematrix, der fremkommer som linearkombinationen af søjlerne i A med koefficienter de n indgange i x. Calculus Uge

64 Multiplikation og linearkombination Sætning 2 Givet A en m n-matrix og x en n-søjlematrix, så er produktet y = Ax = a 1 x a n x n den m-søjlematrix, der fremkommer som linearkombinationen af søjlerne i A med koefficienter de n indgange i x. Bevis Udregn y i = j a ij x j Calculus Uge

65 Nemme regneregler Bemærkning Simple regneregler For matricer af størrelser, så operationerne er definerede gælder Associativ lov Distributive love A + (B + C) = (A + B) + C A(B + C) = AB + AC (A + B)C = AC + BC Calculus Uge

66 Pas på Advarsler Den kommutative lov holder ikke Normalt er AB BA ( ) ( ( ) ( ) ) = = ( ) ( ) Calculus Uge

67 Pas på Advarsler Den kommutative lov holder ikke Normalt er AB BA Nulreglen gœlder ikke ( ) ( ( ) ( ) ) = = ( ) ( ) A 0, B 0, AB = 0 Calculus Uge

68 Test matrix multiplikation Test Hvilket ( matrixprodukt ) ( ) er ( rigtigt? ) 1 x x x (a) =. 3 4 x x 22 ( ) ( ) ( ) (b) = Afkryds det rigtige: (a) (b) Calculus Uge

69 Test matrix multiplikation Test Hvilket ( matrixprodukt ) ( ) er ( rigtigt? ) 1 x x x (a) =. 3 4 x x 22 ( ) ( ) ( ) (b) = Afkryds det rigtige: (a) (b) Løsning ( ) ( ) 1 x x 4 = ( ) [1 1 + x x] [1 2 + x 4]. [ x] [ ] Calculus Uge

70 Test matrix multiplikation Test Hvilket ( matrixprodukt ) ( ) er ( rigtigt? ) 1 x x x (a) =. 3 4 x x 22 ( ) ( ) ( ) (b) = Løsning ( ) ( ) 1 x x 4 = Afkryds det rigtige: ( ) [1 1 + x x] [1 2 + x 4]. [ x] [ ] (a) (b) Calculus Uge

71 Enhedsvektorer [LA] 3 Lineære funktioner Eksempel Den i-te standard enhedsvektor e i er (søjle,række)-vektoren, hvis i-te koordinat er 1 og alle øvrige er 0. Calculus Uge

72 Enhedsvektorer [LA] 3 Lineære funktioner Eksempel Den i-te standard enhedsvektor e i er (søjle,række)-vektoren, hvis i-te koordinat er 1 og alle øvrige er e i = 1. 0 Calculus Uge

73 Enhedsvektorer [LA] 3 Lineære funktioner Eksempel Den i-te standard enhedsvektor e i er (søjle,række)-vektoren, hvis i-te koordinat er 1 og alle øvrige er e i = 1. 0 e i = ( ) 0,..., 1,..., 0 Calculus Uge

74 Span af enhedsvektorer [LA] 3 Lineære funktioner Bemærkning span(e 1,...,e n ) = R n Calculus Uge

75 Span af enhedsvektorer [LA] 3 Lineære funktioner Bemærkning span(e 1,...,e n ) = R n En vektor x R n har fremstillingen x = n i=1 x i e i Calculus Uge

76 Span af enhedsvektorer [LA] 3 Lineære funktioner Bemærkning span(e 1,...,e n ) = R n En vektor x R n har fremstillingen x = n i=1 x i e i Eksempel (1, 2, 3) = 1(1, 0, 0) + 2(0, 1, 0) 3(0, 0, 1) Calculus Uge

77 Multiplikation af enhedsvektorer Eksempel Den i-te standard enhedsvektor e i multiplicerer fra højre som søjle og fra venstre som række. Calculus Uge

78 Multiplikation af enhedsvektorer Eksempel Den i-te standard enhedsvektor e i multiplicerer fra højre som søjle og fra venstre som række. For en m n-matrix A er produktet den j-te søjle i A Ae j = a j Calculus Uge

79 Multiplikation af enhedsvektorer Eksempel Den i-te standard enhedsvektor e i multiplicerer fra højre som søjle og fra venstre som række. For en m n-matrix A er produktet den j-te søjle i A og produktet Ae j = a j den i-te række i A. e i A = a i Calculus Uge

80 Kvadratisk matrix, identitetsmatrix Definition En kvadratisk matrix er en n n-matrix. En diagonalmatrix er en kvadratisk matrix, hvor indgange udenfor diagonalen alle er 0. Calculus Uge

81 Kvadratisk matrix, identitetsmatrix Definition En kvadratisk matrix er en n n-matrix. En diagonalmatrix er en kvadratisk matrix, hvor indgange udenfor diagonalen alle er 0. Identitetsmatricen I n = med 1 i diagonalen og 0 udenfor er en diagonalmatrix. Calculus Uge

82 Multiplikation af identitetsmatrix Sætning 3 Lad A vœre en m n-matrix. Så gœlder I m A = A = AI n "Matrix multiplikation med identitetsmatricen œndrer ikke en matrix." Calculus Uge

83 Multiplikation af identitetsmatrix Sætning 3 Lad A vœre en m n-matrix. Så gœlder I m A = A = AI n "Matrix multiplikation med identitetsmatricen œndrer ikke en matrix." Bevis Den j-te søjle i I n er e j, så den j-te søjle i AI n er den j-te søjle i A. Ae j = a j Calculus Uge

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Oversigt [LA] 10, 11; [S] 9.3

Oversigt [LA] 10, 11; [S] 9.3 Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Matricer og Matrixalgebra

Matricer og Matrixalgebra enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

LINEÆR ALGEBRA DIFFERENTIALLIGNINGER

LINEÆR ALGEBRA DIFFERENTIALLIGNINGER LINEÆR ALGEBRA DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 006 NIELSEN - SALOMONSEN INSTITUT FOR MATEMATISKE FAG AARHUS UNIVERSITET 006 Indhold Forord 5. Vektorer og linearkombinationer 7. Basis og dimension

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

To ligninger i to ubekendte

To ligninger i to ubekendte Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers matrix Matrix potens Lineære ligningssystemer Løsningsmængdens

Læs mere

Ligningssystemer - nogle konklusioner efter miniprojektet

Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax

Læs mere

Note om endelige legemer

Note om endelige legemer Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Lineær Algebra. Differentialligninger

Lineær Algebra. Differentialligninger Lineær Algebra og Differentialligninger til Calculus 1 og 2 Århus 2005 Anders Kock og Holger Andreas Nielsen Indhold 1 Koordinatvektorer........................ 1 2 Matricer..............................

Læs mere

Lidt alment om vektorrum et papir som grundlag for diskussion

Lidt alment om vektorrum et papir som grundlag for diskussion Definition : vektorrum, vektorer Et vektorrum er en mængde af elementer med operationerne sum (+) og numerisk multiplikation (), så følgende regler gælder for alle a, b, c og for alle reelle tal s, t R.

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer

Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 12 Matrixmultiplikation Am n = [aij ], Bn

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Indhold. 5. Vektorrum og matricer Koordinattransformationer

Indhold. 5. Vektorrum og matricer Koordinattransformationer Indhold Lineære afbildninger og matricer Talrummene R n, C n Matricer 8 3 Lineære afbildninger 4 Matrix algebra 8 5 Invers matrix 6 6 Transponeret og adjungeret matrix 9 Række- og søjleoperationer Lineære

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Matematik H1. Lineær Algebra

Matematik H1. Lineær Algebra Matematik H Forelæsningsnoter til Lineær lgebra Niels Vigand Pedersen Udgivet af smus L Schmidt Københavns Universitet Matematisk fdeling ugust ii oplag, juli 4 Forord Gennem en særlig aftale varetages

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus

Læs mere

DesignMat Komplekse tal

DesignMat Komplekse tal DesignMat Komplekse tal Preben Alsholm Uge 7 Forår 010 1 Talmængder 1.1 Talmængder Talmængder N er mængden af naturlige tal, 1,, 3, 4, 5,... Z er mængden af hele tal... 5, 4, 3,, 1, 0, 1,, 3, 4, 5,....

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oversigt [LA] 11, 1, 13 Prikprodukt Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 00, opgave 6 Cauchy-Schwarz ulighed

Læs mere

Vektorer. Ib Michelsen

Vektorer. Ib Michelsen Vektorer Ib Michelsen Ikast 018 Forside: Daniel (og Kristian) demonstrerer "kræfternes parallelogram". Bemærkninger om tegningen og notation: Vektorerne er v, w1 og w. GeoGebra (som tegningen er lavet

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund mail@jesperlund.com http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

DesignMat Uge 11. Vektorrum

DesignMat Uge 11. Vektorrum DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

DesignMat Uge 1 Repetition af forårets stof

DesignMat Uge 1 Repetition af forårets stof DesignMat Uge 1 Repetition af forårets stof Preben Alsholm Efterår 008 01 Lineært ligningssystem Lineært ligningssystem Et lineært ligningssystem: a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + +

Læs mere

Vektorrum. enote Generalisering af begrebet vektor

Vektorrum. enote Generalisering af begrebet vektor enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

Carl Friedrich Gauß ( ), malet af Christian Albrecht Jensen. Lineær algebra. Ib Michelsen

Carl Friedrich Gauß ( ), malet af Christian Albrecht Jensen. Lineær algebra. Ib Michelsen Carl Friedrich Gauß 777 8, malet af Christian Albrecht Jensen Lineær algebra Ikast Ikast Version Hæftet her skal ses som et supplement til Klaus Thomsens forelæsninger på Aarhus Universitet og låner flittigt

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10 Oversigt [LA] 9 Nem vej til rel Nøgleord og begreber Helt simple determinnter Determinnt defineret Effektive regneregler Genkend determinnt nul determinnt nul Produktreglen Inversreglen inversregel og

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Noter til Lineær Algebra

Noter til Lineær Algebra Noter til Lineær Algebra Eksamensnoter til LinAlg Martin Sparre, www.logx.dk, August 2007, Version π8 9450. INDHOLD 2 Indhold 0. Om disse noter.......................... 3 Abstrakte vektorrum 4. Definition

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab)

Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab) Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab) Nikolai Plambech Nielsen, LPK331 Version 10 2 februar 2016 Indhold 1 Introduktion, lineære afbildninger og matricer 3 11 Talrum (R & C) 3 12

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:

Læs mere

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 LinAlg 2013 Q3 Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 1 Lineær algebra Dispositioner - Dispo 0 2013 Contents 1 Løsninger, og MKL, af lineære ligningssystemer 3 2 Vektorrum

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer 1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017 Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Geometriske vektorer. enote En geometrisk vektor

Geometriske vektorer. enote En geometrisk vektor enote 10 1 enote 10 Geometriske vektorer Formålet med denne note er at give en introduktion til geometriske vektorer i planen og rummet, som sigter mod at introducere en række af de metoder, der gør sig

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Lineære Afbildninger. enote 8. 8.1 Om afbildninger

Lineære Afbildninger. enote 8. 8.1 Om afbildninger enote 8 enote 8 Lineære Afbildninger Denne enote undersøger afbildninger mellem vektorrum af en bestemt type, nemlig lineære afbildninger Det vises, at kernen og billedrummet for lineære afbildninger er

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

Frederiksberg HF-kursus Vektorer i planen, Mat B, SSO Kenneth Leerbeck, 2. J. Vektorer. planen

Frederiksberg HF-kursus Vektorer i planen, Mat B, SSO Kenneth Leerbeck, 2. J. Vektorer. planen Vektorer i planen English abstract This report is about the mathematical concept vectors. It explains what a vector is, and how vectors are indicated with coordinates and arrows. It explains calculating

Læs mere

Om første og anden fundamentalform

Om første og anden fundamentalform Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Algebra med Bea Bea Kaae Smit nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende regler 7 3.1 Tal..........................

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl 2. udgave, oktober 207 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan

Læs mere

Undervisningsnotat. Matricer

Undervisningsnotat. Matricer Undervisningsnotat. Matricer januar, C Definition En matrix er en ordnet mængde tal opstillet i m rækker og n søjler. Matricen A kunne være defineret som vist nedenfor. Hvert element i matricen er forsynet

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Vektorrum. Vektorer på en ret linje

Vektorrum. Vektorer på en ret linje Vektorrum Vektorer på en ret linje Som vi tidligere har set adskillige gange, kan punkterne på en uendelig ret linje entydigt identificeres med de reelle tal. (Man taler jo ligefrem om den reelle talakse,

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

Mat10 eksamensspørgsmål

Mat10 eksamensspørgsmål Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002

Læs mere

Oversigt [S] 5.2, 5.4, 12.1

Oversigt [S] 5.2, 5.4, 12.1 Oversigt [S] 5.2, 5.4, 12.1 Nøgleord og begreber Bestemt integral Areal iemann summer Volumen Dobbelt integral Test dobbelt integral iemann dobbeltsummer Nyttige regneregler for integral Test integral

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 23. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere