Copy from DBC Webarchive

Relaterede dokumenter
3. Det globale kulstofkredsløb

3. Det globale kulstofkredsløb

1. Er jorden blevet varmere?

9. Er jorden i Arktis en tikkende bombe af drivhusgasser?

1. Er Jorden blevet varmere?

Hvad er drivhusgasser

4. Havisen reduceres. Klimaforandringer i Arktis. Af Peter Bondo Christensen og Lone Als Egebo

4. Havisen reduceres. Klimaforandringer i Arktis. Af Peter Bondo Christensen og Lone Als Egebo

2. Drivhusgasser og drivhuseffekt

8. Arktiske marine økosystemer ændrer sig

2. Drivhusgasser og drivhuseffekt

4. Kulstofkredsløbet (CO 2

Budgettet Drivhusgasbudgettet og 2 graders målet NOAHs Forlag

Undervisningsmateriale til udvalgte artikler fra tidsskriftet Aktuel Naturvidenskab Se mere på

Drivhuseffekten er det fænomen der søger for at jorden har en højere middeltemperatur, end afstanden til solen berettiger til.

Formål: At undersøge nogle egenskaber ved CO 2 (carbondioxid). 6 CO H 2 O C 6 H 12 O O 2

Skoven falmer. Læringsmål. Se på læringsmålene. Hvad kan du lige nu, og hvad vil du gerne kunne efter forløbet?

1. Er Jorden blevet varmere?

Fyldt med energi Ny Prisma Fysik og kemi 8. Skole: Navn: Klasse:

Energioptimering af boliger

Undervisningsmateriale til udvalgte artikler fra tidsskriftet Aktuel Naturvidenskab Se mere på

I dag skal vi. Have det sjovt, og tale om det vi lærte sidst, på en anden måde. CO2/fotosyntese, klima vind og vejr. Hvad lærte vi sidst?

5. Indlandsisen smelter

Drivhuseffekten er det fænomen, der sørger for at jorden har en højere middeltemperatur, end afstanden til solen berettiger til.

FAKTAARK Ordforklaring. Biomasse hvad er det?

Folkeskolens afgangsprøve Maj 2007 Biologi - facitliste

Grundbegreber om naturens økologi

Der er noget i luften Ny Prisma Fysik og kemi 9 - kapitel 6 Skole: Navn: Klasse:

Biogas. Biogasforsøg. Page 1/12

MILJØBIBLIOTEKET Iltsvind

VARME- KILDER Undervisningsmodul 1. Hvordan får vi varme i Gentofte Kommune?

5. Indlandsisen smelter

Gasser. Præsentation: Niveau: 8. klasse. Varighed: 4 lektioner

Klimaændringer & global opvarmning Spørgsmål til teksten

Drivhuseffekten. Hvordan styres Jordens klima?

Jorden venter. Missionen er planlagt. Er du parat?

PÅVISNING AF FOTOSYNTESE & RESPIRATION ELEVER: CASPER, KEVIN & LARS-EMIL. LÆRER: CHRISTIAN KROMANN. Page 1

Energiens vej til mennesket

Egnen virksomhed - Carbon Capture

Klima og. klode. økolariet undervisning. for at mindske udledningen. Navn:

Forord. Klimaets udvikling Obligatoriske projektopgave 15/

Teori Klimatilpasning til fremtidens regnmængder

Livet i jorden skal plejes for at øge frugtbarhed og binding af CO2 samt evnen til at filtrere vand

Biologisk rensning Fjern opløst organisk stof fra vand

Fotosyntese og respiration

UNDERVISNINGSMATERIALE TIL BIOLOGI I GYMNASIET OPDAG HAVET

Turen til Mars I. Opgaven. Sådan gør vi. ScienceLab

Folkeskolens afgangsprøve December 2005 Biologi Facitliste

PRIMÆRPRODUKTION I VADEHAVET

Folkeskolens afgangsprøve Maj 2007 Biologi - facitliste

Stofskiftets afhængighed af temperatur og aktivitet hos vekselvarme dyr

HYDROGRAFI Havets fysiske og kemiske forhold kaldes hydrografi. Hydrografien spiller en stor rolle for den biologiske produktion i havet.

LEKTION 2_ TEKST_ BIOLUMINESCENS. Bioluminescens. Alger der lyser i mørket

Global Opvarmning. Af: Jacob, Lucas & Peter. Vejleder: Thanja

Undervisningsmateriale til udvalgte artikler fra tidsskriftet Aktuel Naturvidenskab Se mere på

Varmere klima giver mere iltsvind

JORDEN: ET KÆMPESTORT DRIVHUS

Baggrundsnotat: "Hvad er grøn gas"

Fotosyntese og respiration

Jordens salte Ny Prisma Fysik og kemi 9 - kapitel 2 Skole: Navn: Klasse:

Fremtidens energi Undervisningsmodul 4. Goddag til fremtiden

9. Øvelse: Demonstration af osmose over en cellemembran

Folkeskolens afgangsprøve August 2007 Biologi Facitliste

Nr Drivhusgasser - og deres betydning for klimaet Fag: Fysik A/B/C Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, september 2009

Klima-, Energi- og Bygningsudvalget KEB alm. del Bilag 336 Offentligt

Opgave 2a.01 Cellers opbygning. Spørgsmålene her kan besvares ved at læse teksten Cellen livets byggesten

Natur og Teknik QUIZ.

Klimaeffekter hvilken rolle kan biomassen spille

Center for Natur & Miljø Esrum Møllegård Klostergade 12, Esrum Græsted

Energiforbrug og klimaforandringer. Lærervejledning

Hvad betyder kulstofbalancen for landbrugets samlede drivhusgasregnskab

Globale og regionale klimaforandringer i nutid og fremtid - årsager og virkninger?

Besvarelse for Havets kulstof optag. Øvelse 1

Biologisk rensning Fjern opløst organisk stof fra vand

Teori. Klimatilpasning til fremtidens regnmængder. Rensedammens opbygning og funktion

AARHUS UNIVERSITY. Landbrugets rolle i klimakampen. Professor Jørgen E. Olesen TATION

Teori Klimatilpasning til fremtidens regnmængder

Eksempel på Naturfagsprøven. Biologi

Velkommen til Nykøbing Sjællands varmeværk

Miljødeklaration 2017 for fjernvarme i Hovedstadsområdet

Energiregnskab og CO 2 -udledning 2015 for Skanderborg Kommune som helhed

Herning HF og VUC 17bic / HP. kort forklare opbygningen af pro- og eukaryote celler og gennemgå forskelle mellem dem.

AARHUS UNIVERSITY. Løsninger på klimakrisen landbrugets rolle. Professor Jørgen E. Olesen TATION

Er det N eller P, der er problemet i Fjordene? Senior biolog Erik Kock Rasmussen DHI vand miljø sundhed

TAG KLIMAUDFORDRINGEN OP. Preben Buhl Forbrugeraften i Lillerød Brugsforening 6. maj 2010

Du skal vælge nogle få forsøg ud, der så vidt muligt, dækker alle de praktiske mål

Klima-, Energi- og Bygningsudvalget KEB Alm.del Bilag 30 Offentligt

Ordliste til Undervisningsforløb CO2:

-kan landbruget lave både mad og energi samtidig? Claus Felby Det Natur- og Biovidenskabelige Fakultet Københavns Universitet

Grundskolen PR15. Undervis med rummet JORDEN UNDER LÅGET. Forstå drivhuseffekten. lærerguide & elevers arbejdsblade


FISKE ANATOMI DTU Aqua, Danmarks Tekniske Universitet

opgaveskyen.dk Vandets kredsløb Navn: Klasse:

Projekt Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald

Udfordringer for dansk klimapolitik frem mod 2030

Miljødeklaration 2016 for fjernvarme i Hovedstadsområdet

2. Skovens sundhedstilstand

Undervisningsplan for fysik/kemi, 9.A 2015/16

Klimakompasset. Standard beregning. Sådan laver du en CO 2. - beregning. (Scope 1 & 2)

LIVSCYKLUSVURDERING (LCA) IMPORT AF AFFALD AFFALDPLUS NÆSTVED

Transkript:

Copy from DBC Webarchive Copy from: Peter Bondo Christensen : Det globale kulstofkredsløb er i ubalance This content has been stored according to an agreement between DBC and the publisher. www.dbc.dk e-mail:dbc@dbc.dk

Det globale kulstofkredsløb er i ubalance Af: Peter Bondo Christensen, seniorforsker, Aarhus Universitet, Lone Als Egebo, Lektor, Hasseris Gymnasium 31. marts 2012 kl. 12:31 Ubalancen i kulstofkredsløbet er voksende, med mere og mere CO2 i atmosfæren og forsuring af havene. Spørgsmålet er om det skyldes naturlige processer eller menneskelig aktivitet. I kulstofkredsløbet bliver kulstof (C) udvekslet mellem atmosfæren, landjorden og oceanerne. Det sker når kemiske forbindelser der indeholder kulstof, f.eks. CO 2, ved hjælp af biologiske og kemiske processer omdannes til nye kulstofholdige stoffer, f.eks. glukose (C 6 H 1 2O 6 ) i planter eller hydrogencarbonat HCO 3 - i havet. Figur 3.1 illustrerer det globale kulstofkredsløb og størrelsen af de forskellige kulstofpuljer på Jorden og udvekslingen mellem puljerne. Drivhusgasserne kuldioxid (CO 2 ) og metan (CH 4 ) er vigtige elementer i det globale kulstofkredsløb. Kuldioxid er (bortset fra vand) den drivhusgas, der bidrager mest til drivhuseffekten, fordi koncentrationen af den er størst, og mængden af den stiger kraftigst i atmosfæren. Se også kapitel 2. Spørgsmålet er om årsagen til det er menneske-skabt. Det kan man få svar på ved at se på kulstoffets fordeling og udveksling mellem Jordens kulstofpuljer. Indholdet af kulstof i atmosfæren ville være konstant, hvis der var balance i udvekslingen mellem Jordens kulstofpuljer. Det er der tilsyneladende ikke hvad går galt? Udveksling af kulstof med atmosfæren Som figur 3.1 viser, er der på globalt plan stor set balance mellem de naturlige processer på landjorden der binder CO 2 fra atmosfæren, og de processer der frigiver CO 2 til atmosfæren. Ca. 121,8 (121,3 + 0,5) gigatons bindes ved fotosyntese, og 121,6 (60 + 60 +1,6) gigatons frigives ved respirationsprocesser. Planter på landjorden laver fotosyntese. Ved den proces optager de CO 2, og ved hjælp af lysenergi fra solen omdanner de det sammen med vand til organisk stof og ilt: 6CO 2 + 6H 2 O + lysenergi? C 6 H 12 O 6 + 6O 2

Vi kalder produktionen af det organiske stof dannet ved fotosyntese for primærproduktion. Planterne bliver til føde for dyr (planteædere) som igen bliver ædt af rovdyr. Alle organismerne udgør tilsammen en fødekæde, som det organisk bundne kulstof strømmer igennem. Det bundne kulstof bliver frigivet igen gennem respirationsprocesser. Det sker ved planternes egen respiration eller gennem respirationen hos de dyr og bakterier, som æder og nedbryder det organiske materiale, som planterne eller de selv har produceret. Respirationen ser således ud: C 6 H 12 O6 + 6O 2? 6CO 2 + 6H 2 O + energi Regnskabet går næsten op, men der bindes 0,2 gigatons mere pr. år ved fotosyntese end der frigives ved respirationsprocesser. Som man kan se midt på figur 3.1, sker der også udveksling af kulstof mellem atmosfæren og oceanerne, idet 92 gigatons bliver fjernet fra atmosfæren og 90 gigatons bliver frigivet til atmosfæren. Her er der tale om fysisk-kemiske processer i oceanerne i kombination med de biologiske processer fotosyntese og respiration. Tilsammen fjerner disse processer netto 2 gigatons kulstof fra atmosfæren, som akkumuleres i oceanerne. Men som man kan se til højre på figur 3.1, er der en ikke ubetydelig proces, der tilfører atmosfæren CO2. Det er den menneskeskabte afbrænding af fossile brændstoffer som kul, olie og naturgas. Denne udledning af CO 2 til atmosfæren er på 5,5 gigatons om året. Det er noget mere end de naturlige processer på landjorden og i oceanerne kan modvirke, og det forklarer hvorfor indholdet af CO 2 i atmosfæren er stadigt stigende, i dette regnestykke med 2,3 (5,5-0,2-2,0) gigatons om året. Prøver fra iskerneboringer viser da også, at atmosfærens indhold af CO 2 ikke har været højere de sidste 20 millioner år af Jordens historie. Processerne i oceanerne Men regnestykket ville se meget værre ud, hvis ikke oceanerne havde en kæmpe evne til at optage kulstof fra atmosfæren. Mange forskere arbejder med at kortlægge, hvordan kulstoffet bliver optaget i havet - og hvor meget kulstof havet kan blive ved med at optage, hvis indholdet af CO 2 i atmosfæren bliver ved med at stige. Man ved at oceanernes pulje af kulstof er ca. 50 gange så stor som atmosfærens kulstofpulje. Det skyldes dels at havet er umådelig stort, og dels at vand pr. volumen enhed kan binde langt mere CO 2 end atmosfærisk luft. Når CO 2 bliver transporteret til oceanerne, taler man populært om at det kan ske ved hjælp af en biologisk pumpe eller en fysisk pumpe. Den biologiske pumpe involverer de levende organismer, mens den fysiske pumpe involverer en række fysiske processer. I oceanerne udveksler de to pumper kulstof

med hinanden ved en række kemiske processer. Man mener, den biologiske pumpe står for ca. 20 % af transporten af CO 2 til oceanerne, mens den fysiske pumpe står for ca. 80 % af transporten. De to pumper er illustreret på figur 3.3. Den biologiske pumpe I oceanerne foregår fotosyntesen i de øverste vandmasser, hvor planteplankton (fritsvævende alger) udgør havets vigtigste primærproducenter. Selv om disse mikroskopiske alger kun udgør ca. 1 % af Jordens samlede plantebiomasse, optager de alligevel næsten halvdelen af den CO 2, der bliver fjernet fra atmosfæren ved fotosyntese. Som på landjorden strømmer den bundne kulstof gennem fødekæderne, og det meste frigives igen ved respiration. En mindre del af kulstoffet synker imidlertid sammen med plante- og dyreceller ud af de øverste vandmasser og ender i dybhavet. Herved fjerner den biologiske pumpe kulstof fra det globale kulstofkredsløb for en tid. Såvel planteplankton som dyreplankton synker af sig selv, selv om de er levende, men også andet organisk materiale synker ned mod dybhavet. Det kan være døde partikler, der er under nedbrydning af bakterier. Det ser næsten ud som snevejr i vandsøjlen og de mange synkende partikler bliver da også kaldt for marin sne, se figur 3.4. I dybhavet eller på dybhavets bund bliver en del af det organisk bundne kulstof omsat og frigivet som CO 2. Men her vil CO 2 -gassen på grund af det høje tryk på store dybder være fanget i flere hundrede år. En anden del af kulstoffet bliver slet ikke omsat, men aflejres på havbunden. Her kan det blive i millioner af år og kan så omdannes til olie og gas. De fossile brændsler, som vi har afbrændt gennem de sidste 150 år i stadig stigende grad, er altså dannet for millioner af år siden ved processer i havbunden. Det forklarer ubalancen i CO 2 udvekslingen mellem atmosfæren og Jordens øvrige kulstofpuljer. Den fysiske pumpe Havets CO 2 -indhold forsøger til stadighed at komme i ligevægt med atmosfærens CO 2 -indhold. Den gasmængde der kan opløses i vandet, afhænger af det tryk gassen har over vandet. Når atmosfærens indhold af CO 2 stiger på grund af afbrænding af fossile brændsler, stiger trykket af den også. Derfor bliver der opløst mere CO 2 i havoverfladen, som vind og strøm derefter fordeler bl.a. til dybere vandlag. Ved polerne presses CO 2 ud af havvandet, når det fryser. CO 2 diffunderer sammen med salte, der også fryser ud af isen, til isens underside. Man siger der sker en tungtvandsdannelse, da vandet med et højt saltindhold har en større densitet end det øvrige havvand. Det tunge vand synker ned i dybhavet - vi kalder det den fysiske pumpe. Læs mere i kapitel 4.

Jo mere tungt vand der dannes ved polerne, jo mere CO 2 transporteres der mod dybhavet. Når isen smelter i foråret, er havvandet derfor undermættet med CO 2, og det trækker CO 2 ned fra atmosfæren. Det gør den fysiske pumpe ganske effektiv. Processen er derfor med til at reducere atmosfærens koncentration af CO 2. Men jo mindre havis der dannes, jo mindre CO 2 vil der blive hevet ud af atmosfæren, og den globale opvarmning er i færd med at reducere mængden af havis ganske voldsomt. Kemiske processer i oceanerne Når CO 2 fra atmosfæren opløses i oceanerne, reagerer hovedparten af det med vand og danner carbonsyre (kulsyre). Den dannede carbonsyre frigiver straks hydroner (brintioner), H+, og danner hydrogencarbonat, HCO 3 -: CO 2 (aq) + H 2 O(l)? H 2 CO 3 (aq)? H+(aq) + HCO 3 -(aq) Der er tale om en ligevægtsreaktion, hvilket vil sige, at ikke alle CO 2 -molekyler bliver omdannet. Men jo flere der omdannes, jo flere hydroner kommer der i vandet, og så bliver det mere surt (ph falder). Det vil altså sige, at når indholdet af CO 2 i atmosfæren stiger, bringer den fysiske pumpe mere CO 2 til oceanerne, som derved bliver mere sure. Primærproducenterne, der jo bruger CO 2 til deres fotosyntese, optager i vand en del af deres kulstof som HCO 3 -. Inde i cellerne omdanner de det så til CO 2, inden det anvendes til fotosyntesen. Fotosyntese modvirker altså isoleret set forsuring af havet, og gør samtidig at der kan optages mere CO 2 fra atmosfæren. I oceanerne findes der også carbonat CO 3 2 -. Det er en ion, der dannes når kalk (calciumcarbonat, CaCO 3) opløses i vandet: CaCO3(s)? Ca 2 +(aq) + CO 3 2 -(aq) Også her er der tale om en ligevægtsreaktion. Kalken findes på havbunden som aflejringer fra marine dyr og planter med kalkskjold eller kalkskelet, fx snegle, koraller og visse mikroskopiske alger. Kalk kan modvirke forsuringen af oceanerne, idet carbonationerne vil reagere med nogle af hydronerne (H+) fra carbonsyre, så der dannes mere hydrogencarbonat: CO 3 2 -(aq) + H+(aq)? HCO3 -(aq) De viste reaktioner, hvor hydrogencarbonat indgår, fungerer som et buffersystem, der til en vis grad modvirker en forsuring af oceanerne. Reaktionernes indbyrdes påvirkning af hinanden gør, at der i oceanerne er en nogenlunde konstant fordeling af mængden mellem CO 2, HCO 3 - og CO 3 2 - på 1 % : 92

% : 7 %. Når indholdet af CO2 i atmosfæren øges, påvirker det altså i høj grad kemiske processer i havet. Der kommer tilsvarende mere CO2 i havvandet, hvilket gør det sværere at danne kalk. Det kan man tydeligt se, når man samler ovennævnte reaktioner til én fælles reaktion: CO2(aq) + H2O(l) + CaCO3(s)? Ca2+(aq) + 2 HCO3-(aq) Det skaber problemer for de organismer, som er afhængige af at kunne danne kalk, og kan således direkte nedsætte biodiversiteten (artsrigdommen) i oceanerne. Ubalancen i kulstofkredsløbet er voksende Ubalancen i det globale kulstofkredsløb skyldes altså tilførsel af CO 2 til atmosfæren. Lige nu tegner forbruget af fossile brændstoffer sig for 85 % af de samlede udledninger til atmosfæren, mens ca. 15 % stammer fra ændret jordanvendelse (fjernelse af skov o.l.). Siden 2000 er emissionerne fra de fossile brændstoffer vokset med 3,4 % om året, og det ligger nu på et niveau som IPPC i deres fremtidsscenarier har kaldt for Worst case scenariet. Vidste du f.eks. at hver dansker udleder 10-12 tons CO 2 per år? Men havde vi ikke haft landjorden og primært oceanerne som et effektivt CO 2 dræn ville CO 2 koncentrationen i dag have været 500 ppm. Den er kun på 385 ppm og vokser for tiden med ca. 2 ppm om året. Vore naturlige dræn - landjorden og havet - har faktisk fjernet godt halvdelen af den CO 2, vi har sendt ud i atmosfæren gennem de sidste 150 år. Men forskerne er bange for at det effektive CO 2 dræn bliver mindre effektivt i de kommende år. På landjorden betyder de højere temperaturer mangel på vand og næringsstoffer. Det gør tilsammen at der bindes mindre CO 2 i planterne. Oceanerne bliver varmere og dermed kan de ikke binde så meget CO 2, da opløseligheden af CO 2 i vand aftager med temperaturen. I det varmere vand nedbrydes det organiske materiale også hurtigere, og CO 2 sendes dermed hurtigere tilbage til atmosfæren. Når overfladevandet bliver varmere, sker der også en kraftigere lagdeling af vandsøjlen, hvor det koldere og næringsrige bundvand holdes væk fra de øverste lag, hvor solens lys sikrer fotosyntese og dermed at planktonalgerne binder CO 2. Havet bliver langsomt surere og surere pga. de øgede kulstofoptag, og det betyder at der dannes færre og færre kalkskeletter, der også binder og fjerner kulstof fra vandet. Forskerne forudser også at klimaforandringerne fører til flere kraftige storme i fremtiden, og at det kan være med til at afgasse CO 2 fra havet og bringe det tilbage til atmosfæren.

Alt tyder på, at forbruget af de fossile brændsler øges i årene fremover. Samtidig frygter vi med rette et stort input af både CO 2 og CH 4, når den permafrosne jord med de store lagre af organisk stof tør (læs mere i kapitel 9). Hvis vores gode naturlige kulstofdræn samtidig begynder at melde pas, vil ubalancen i kulstofkredsløbet for alvor accelerere. Det vil føre til en yderligere opvarmning af Jorden - en ond cirkel som vi gerne skal have brudt. Det er derfor uhyre vigtigt at tilegne sig en adfærd og finde nogle teknologiske løsninger for samfundets og den enkeltes energibehov, der er CO 2 -neutrale og bæredygtige. URL: http://videnskab.dk/gronland-en-tikkende-klimabombe/det-globale-kulstofkredslob-er-i-ubalance Ophavsretten tilhører Videnskab.dk