Lærervejledning Modellering (3): Funktioner (1):

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Lærervejledning Modellering (3): Funktioner (1):"

Transkript

1 Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer løses med aktiviteten? På gymnasiet oplever eleverne faglige udfordringer i den matematiske modellering, dvs. hvordan kan vi ud fra virkeligheden lave en matematisk model, som efterfølgende kan bruges til at forudsige elementer i virkeligheden. Dette kræver, at eleverne kan skifte mellem de forskellige repræsentationsformer: sprogliggørelse - formulere problemet med ord tabel - systematisk og overskuelig præsentation graf - visuel afbildning formeludtryk - en matematisk model Yderligere oplever eleverne på gymnasiet, at der i højere grad end i grundskolen lægges vægt på præcision i sprogbrug Det at skrive matematiske forklaringer Færdigheds- og vidensmål Opgaven tager udgangspunkt i modelleringskompetencen, lineære sammenhænge og undersøgende arbejde. Fra FFM kan forløbet bl.a. ramme: Modellering (3): Eleven kan vurdere matematiske modeller. Eleven har viden om kriterier til vurdering af matematiske modeller. Funktioner (1): Eleven kan anvende lineære funktioner til at beskrive sammenhænge og forandringer. Eleven har viden om repræsentationer for lineære funktioner. 1

2 Kommunikation (3): Eleven kan kommunikere mundtligt og skriftligt om matematik på forskellige niveauer af faglig præcision. Eleven har viden om afsender og modtagerforhold i faglig kommunikation. Forslag til læringsmål for forløbet: Eleverne skal lære at anvende lineære sammenhænge med repræsentationsskift. Eleverne kan vurdere hinandens modelleringsprocesser i forbindelse med arbejdet med praktiske problemstillinger/undersøgelser. En analyse af arbejdsprocessen Nedenfor side ses en analyse af de forventninger vi har til hvordan elever vil gribe opgaven an. MindMap et kan også findes på nedenstående link MindMap: (bubbl.us kan kopieres over i egen konto og arbejdes videre med) 2

3 Herunder følger en uddybning af hvilke teknikker eleverne skal anvende ved de forskellige trin. nr. aktivitet teknikker 1 Gæt Kvalificeret gæt byggende på forholdsberegninger 2 Sæt elastikker sammen - 3 Måle en elastik aflæse lineal 4 Trial and error, fysisk eksperiment - 5 Indsamle datasæt generere datasæt ved flere målinger 6 Begrænset datasæt generere datasæt ved få målinger 7 Opstille ligning kendskab til lineær sammenhæng og konstanternes betydning. 8 Division dividere den ønskede afstand med en af de observationer eleverne har foretaget 9 Gange op prøve at finde et tal man kan gange en af de fysiske målinger med for at opnå den ønskede afstand 10 Lave tabel Systematisere datasæt i tabel 11 Løse ligning løse 1. grads ligning af typen c=ax+b 12 Analog graf Kunne afsætte punkter i koordinatsystem 13 Digital graf Anvende IT-værktøj til grafftegning 14 Træk ned i regneark Anvende IT-værktøj til at lave flere målepunkter 15 Tilføje ret linje med lineal På øjemål indtegne den bedste rette linje 16 Tilføje tendenslinje Bestemmelse af tendenslinje vha digitalt værktøj 17 Bruge 2 punkter, hældningstal udregne forskel hældningstal ud fra to punkter 18 Beregning af tilvækster udregne forskelle og evt. udregne gennemsnit 19 Grafisk løsning bestemme x på en graf når y er kendt (eller omvendt) 20 Aflæse forskrift Bestemme a og b i lineær sammenhæng ved at se på grafen 3

4 Hvordan gennemføres undervisningen? Eleverne inddeles i grupper med tre elever i hver. Her kan man overveje om eleverne skal inddeles, således at gruppernes medlemmer er på samme faglige niveau. Eleverne præsenteres for det overordnede problem og elevdokumentet udleveres. Herefter arbejder eleverne på skift i grupperne (ca min ad gangen), og der afholdes fælles konference, hvor grupperne (evt. kun nogle af dem) for resten af klassen kort fremlægger de undersøgelser, resultater og beregninger som de er kommet frem til for hinanden. Når eleverne har præsenteret deres arbejde, hjælpes de med at kategorisere de forskellige metoder og bidrag. Følgende spørgsmål kan stilles: Hvad er ens og hvad er forskelligt ved de præsenterede metoder? Er der en af metoderne, der er mere hensigtsmæssig i forhold til andre? Efter første runde forventes at eleverne har identificeret at de kan variere antallet af elastikker og måle højden. Efter anden runde vil vi forventer at nogle elever har lavet sammenhængende målinger mellem antal elastikker og højden. Forløbet afsluttes fælles med, at eleverne tester det antal elastikker de er kommet frem til på den angivne højde, og efterfølgende reflektere over spørgsmålet: Hvad kunne være gjort bedre? Kravene til elevernes skriftlige produkt præsenteres ikke i starten af forløbet, da det vil kunne bruges som disposition eller idebank for i hvilken retning vi som lærere ønsker, at eleverne skal bevæge sig. Nedenfor ses et forslag til de skriftlige krav en aflevering kan indeholde præsentation af problemet præsentation af hvilke undersøgelser der er foretaget præsentation af data analyse af data herunder grafer og beregninger en konklusion, hvor der præsenteres hvad I er nået frem til. Hvis ikke man ønsker en skriftlig aflevering kan forløbet afsluttes mundtligt, evt. som træning forud for den mundtlige prøve, hvor de samme krav, som er beskrevet til den skriftlige opgave præsenteres mundtligt. 4

5 Hvordan kan grupperne hjælpes videre undervejs i processen (eksempler)? Hvilke spørgsmål kan stilles hvis eleverne strander ved nogle teknikker og skal hjælpes videre? Eleverne måler en enkelt elastik (nogle vil derefter kunne lave en ligning, men de når ikke i gennem repræsentationsskift): Har I undersøgt om antallet I gætter på virker i virkeligheden f.eks. på 2 m? (kan lede eleverne videre til at sætte flere elastikker sammen og prøve sig frem). Begrænset datasæt (ved meget få datasæt vil usikkerheden bliver meget stor): Har I prøvet om antallet virker i virkeligheden f.eks. på 2 m? Hvor sikre er I på, at I har en tilstrækkelig mængde data? Trial and error (eleverne prøver sig frem med fysiske eksperimenter og får usystematisk data. Her efter ganger de op eller dividerer ud. Ingen repræsentationsskift.): På hvilken måde kan I systematisere jeres undersøgelser? (spørgsmålet skal gerne lede eleverne på vej hen imod at lave en tabel) Bruge to punkter - stgningsstal (eleverne udvælger to punkter fra deres tabel, finder hældningen og aflæser/ganger op/dividerer ud. De kan ende med to punkter der ikke passer med datapunkterne): Hvilke overvejelser gjorde I, da I valgte netop de to punkter? Hvordan ser det ud når I tegner det? Har I prøvet om antallet virker i virkeligheden f.eks. på 2 m?(spørgsmålet skal give overvejelse over om de punkter man har valgt ud passer med resten af datapunkterne) Trække ned i regneark (Eleverne skriver de første punkter ind i regneark, og trækker ned så regnearket giver et bud på talrækkefølgen. Stor usikkerhed og ingen repræsentationsskift): Har I prøvet om antallet virker i virkeligheden f.eks. på 2 m? Hvordan ser det ud når i tegner det? Beregning af tilvækster (eleverne laver tabel og beregner stigningen ud fra gennemsnit af deres datapunkter, og ganger op/dividerer ud): Hvordan passer jeres beregnede stigning med virkeligheden? Hvis I tegner en graf ud fra jeres beregnede stigning, passer den så med den bedste rette linie ud fra jeres datapunkter? 5

Hvilke overgangsproblemer løses med aktiviteten?

Hvilke overgangsproblemer løses med aktiviteten? Lærervejledning Formål Formålet med opgaven er, at eleverne gennem forløbet får styrket deres kompetencer inden for matematisk modellering samt lineære sammenhænge og proportionalitet. Hvilke overgangsproblemer

Læs mere

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015 FFM Matematik pop-up eftermiddag CFU, UCC 11. Maj 2015 Formål Deltagerne har: Kendskab til Forenklede Fælles Måls opbygning Kendskab til tankegangen bag den målstyrede undervisning i FFM Kendskab til læringsmål

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10. Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Modellering med Lego education kran (9686)

Modellering med Lego education kran (9686) Modellering med Lego education kran (9686) - Et undervisningsforløb i Lego education med udgangspunkt i matematiske emner og kompetencer Af: Ralf Jøker Dohn Henrik Dagsberg Kranen - et modelleringsprojekt

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2013/2014 6. ÅRGANG: MATEMATIK FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

Årsplan Matematrix 3. kl. Kapitel 1: Jubii

Årsplan Matematrix 3. kl. Kapitel 1: Jubii Årsplan Matematrix. kl. A Første halvår Kapitel : Jubii I bogens første kapitel får eleverne mulighed for at repetere det faglige stof, som de arbejdede med i. klasse. Dette er samtidig et redskab for

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema Webinar - Matematik 1. Fælles Mål 2014 2. Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel Alle

Læs mere

SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER

SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER De supplerende aktiviteter er ikke nødvendige for at deltage i Masseeksperimentet, men kan bruges som et supplement til en undervisning, der knytter an til Masseeksperimentet

Læs mere

Faglige delmål og slutmål i faget Matematik. Trin 1

Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Mundtlig gruppeprøve i matematik 2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve Eller kun delvist kan prøve

Læs mere

MatematiKan og Fælles Mål

MatematiKan og Fælles Mål MatematiKan og Fælles Mål MatematiKan er et digitalt værktøj til matematik. Det hører til gruppen af interaktive CAS værktøjer. Denne type digitale værktøjer er kendetegnet ved, at de har en delvis blank

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 14. Denne

Læs mere

Vejledende årsplan for matematik 5.v 2009/10

Vejledende årsplan for matematik 5.v 2009/10 Vejledende årsplan for matematik 5.v 2009/10 Uge Emne Formål Opgaver samt arbejdsområder 33-36 Geometri 1 Indlæring af geometriske navne Figurer har bestemte egenskaber Lære at måle vinkler med vinkelmåler

Læs mere

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål http://pub.uvm.dk/2002/kom/hel.pdf http://qa.uvm.dk/uddannelser-og-dagtilbud/folkeskolen/afsluttendeproever/om-afsluttende-proever/proevevejledninger

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 12/13 Institution Nørre Nissum Seminarium & HF Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik,

Læs mere

Fagplan og mål for matematik 7-9 klasse

Fagplan og mål for matematik 7-9 klasse Fagplan og mål for matematik 7-9 klasse På Slotsparkens Friskole følger vi Undervisningsministeriets mål for de fag. Kompetencemål se link : http://ffm.emu.dk Fagets kompetenceområder: Matematiske kompetencer

Læs mere

AT-forløb Jordskælv i Chile 1.u

AT-forløb Jordskælv i Chile 1.u Kapitel 1 AT-forløb Jordskælv i Chile 1.u 1.1 Indgående fag I forløbet indgår fagene naturgeografi v. Mikkel Røjle Bruun (BR), samfundsfag v. Ann Britt Wolsing (AW) og matematik v. Flemming Pedersen (FP).

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Vejledende årsplan for matematik 4.v 2008/09

Vejledende årsplan for matematik 4.v 2008/09 Vejledende årsplan for matematik 4.v 2008/09 Uge Emne Formål Opgaver samt arbejdsområder 33-35 Kendskab og skriftligt arbejde At finde elevernes individuelle niveau samt tilegne mig kendskab til deres

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6. Regression Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6.0 Indledning til funktioner eller matematiske modeller Mange gange kan

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

Mål for forløb På tur i vildmarken

Mål for forløb På tur i vildmarken Natur/teknologi 5.-6. klasse samt 3. - 4. klasse Mål for forløb Undersøgelse Undersøgelser i naturfag Eleven kan gennemføre enkle systematiske undersøgelser. variabler i en undersøgelse. Natur og miljø

Læs mere

Undervisningsplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over planlagte undervisningsforløb

Undervisningsplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over planlagte undervisningsforløb Undervisningsplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2015-2016 Institution Svendborg Erhvervsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jesper

Læs mere

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen)

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Bog: Vi bruger grundbogssystemet Format, som er et fleksibelt matematiksystem, der tager udgangspunkt i læringsstile.

Læs mere

Matematik, basis. Undervisningen på basisniveau skal udvikle kursisternes matematikkompetencer til at følge undervisningen

Matematik, basis. Undervisningen på basisniveau skal udvikle kursisternes matematikkompetencer til at følge undervisningen avu-bekendtgørelsen, august 2009 Matematik Basis, G-FED Matematik, basis 1. Identitet og formål 1.1 Identitet I matematik basis er arbejdet med forståelsen af de faglige begreber i centrum. Den opnåede

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 4 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning undersøgende arbejde Eleven kan læse og skrive enkle tekster med og om matematik

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Mundtlig prøve i matematik

Mundtlig prøve i matematik Mundtlig prøve i matematik Onsdag d. 5. december 2012 CFU Sjælland Mari-Ann Skovlund & Mikael Scheby Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve, eller

Læs mere

Niels Johnsen Problembehandlingskompetencen

Niels Johnsen Problembehandlingskompetencen Niels Johnsen Problembehandlingskompetencen Kursus arrangeret af UCC og Danmarks Lærerforening Ringsted 18.9.2015 Matematiske problemer matematiske spørgsmål, der ikke kan besvares udelukkende med rutinemetoder

Læs mere

Matematikken og naturens kræfter

Matematikken og naturens kræfter INTRO Omdrejningspunktet for dette tema er matematikkens anvendelse som beskrivelsesmiddel i forbindelse med fysiske love. Temaet er inddelt i følgende fire emner: Pendulure Frit fald Bremselængder og

Læs mere

METODESAMLING TIL ELEVER

METODESAMLING TIL ELEVER METODESAMLING TIL ELEVER I dette materiale kan I finde forskellige metoder til at arbejde med kreativitet og innovation i forbindelse med den obligatoriske projektopgave. Metoderne kan hjælpe jer til:

Læs mere

Ringsted, 17.-18. september, 2015

Ringsted, 17.-18. september, 2015 Ringsted, 17.-18. september, 2015 Lidt om ideen med læringsmålstyret undervisning FFM og matematiske kompetencer FFM, læringsmålsstyring og matematiske kompetencer Hvad betyder synlig læring? Det synlige

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 14. Denne

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

Asbjørn Madsen Årsplan for 8. klasse Matematik Jakobskolen

Asbjørn Madsen Årsplan for 8. klasse Matematik Jakobskolen Årsplan for matematik i 8. klasse Årsplanen er opbygget ud fra kapitlerne i kernebogen Kontext+ 8. De forskellige kapitler tager udgangspunkt i matematikholdige kontekster, som eleverne på den ene eller

Læs mere

Kræves der løsning af problemer fra den virkelige verden? Implementeres elevernes løsninger i den virkelige verden?

Kræves der løsning af problemer fra den virkelige verden? Implementeres elevernes løsninger i den virkelige verden? INNOVATION Kræves der løsning af problemer fra den virkelige verden? Implementeres elevernes løsninger i den virkelige verden? Oversigt På arbejdspladserne i dag vrimler det med problemløsningsopgaver.

Læs mere

Modellering med Målskytten

Modellering med Målskytten Modellering med Målskytten - Et undervisningsforløb i WeDo med udgangspunkt i matematiske emner og kompetencer Af Ralf Jøker Dohn Henrik Dagsberg Målskytten - et modelleringsprojekt i matematik ved hjælp

Læs mere

Bedømmelsesplan for Matematik C

Bedømmelsesplan for Matematik C Bedømmelsesplan for Matematik C Matematik C Hovedområder: Fagretningen: Uddannelser i fagretningen indeholder: Varighed: Læringselementer: Læringsmiljø: Kontor handel og forretningsservice Detail, Handel,

Læs mere

Det matematiske modelbegreb

Det matematiske modelbegreb 1 Hensigten med arbejdskortene i -serien er, at I får mulighed for at udvikle modelleringskompetence og derved danne jer et indblik i denne kompetence bliver rustet til at tilrettelægge undervisningsmiljøer/-situationer,

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Færdigheds- og vidensområder Evaluering. Tal: Færdighedsmål

Færdigheds- og vidensområder Evaluering. Tal: Færdighedsmål Klasse: Jorden mat Skoleår: 16/17 Eleverne arbejder med bogsystemet format, hhv. 4. og 5. klasse. Bøgerne er bygget op, så emnerne følger hinanden hele vejen, hvorfor årsplanen er opbygget efter disse.

Læs mere

skarpe til til dansklæreren om de afsluttende prøver i dansk

skarpe til til dansklæreren om de afsluttende prøver i dansk folkeskolen.dk marts 2011 7 skarpe til til dansklæreren om de afsluttende prøver i dansk Hvis du kan svare JA til de følgende spørgsmål, er dine elever godt på vej mod de afsluttende prøver i dansk i 9.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Fælles Mål og den bindende læseplan om matematik i indskolingen. 8. marts 2016

Fælles Mål og den bindende læseplan om matematik i indskolingen. 8. marts 2016 Fælles Mål og den bindende læseplan om matematik i indskolingen 8. marts 2016 Forenklede fælles mål Kompetenceområde Kompetencemål Færdighedsmål Vidensmål Opmærksomhedspunkter Bindende/vejledende Bindende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Jan 2016 - juni 2016 Institution Hotel- og Restaurantskolen Uddannelse Fag og niveau Lærer(e) Hold EUX ernæringsassistent

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 5 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning Opmærksomhedspunkt Eleven kan anvende ræsonnementer i undersøgende arbejde

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement Forslag til årsplan for 9. klasse, matematik Udarbejdet af Susanne Nielson og Pernille Peiter revideret august 2011 af pædagogisk konsulent Rikke Teglskov 33-38 Rumgeometri Kende og anvende forskellige

Læs mere

Årsplan for matematik 4. klasse 14/15

Årsplan for matematik 4. klasse 14/15 Årsplan for matematik 4. klasse 14/15 Status: 4.b er en klasse der består af ca. 20 elever. Der er en god fordeling mellem piger og drenge i klasser. Klassen har 5 matematiktimer om ugen. Vi fortsætter

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 3B Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Andre tal Eleven kan anvende konkrete, visuelle og enkle symbolske repræsentationer (fase

Læs mere

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014 Vejledning til udvalgte opgave fra Matematik B, sommer 2014 Opgave 7 Størrelsen og udbudsprisen på 100 fritidshuse på Rømø er indsamlet via boligsiden.dk. a) Grafisk præsentation, der beskriver fordelingen

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Termin hvori undervisningen afsluttes i maj/juni 2012. Denne beskrivelse dækker derfor efteråret 2011 og foråret

Læs mere

LEGO MINDSTORMS Education. Green City. Fremtiden tilhører de kreative. Problemløsning. Robotter og it Kreativitet. Samarbejde.

LEGO MINDSTORMS Education. Green City. Fremtiden tilhører de kreative. Problemløsning. Robotter og it Kreativitet. Samarbejde. LEGO MINDSTORMS Education Green City Robotter og it Kreativitet Samarbejde Problemløsning Fremtiden tilhører de kreative Mikro Værkstedet Læring for fremtiden LEGO MINDSTORMS Education har bevist, at det

Læs mere

Grundfagsbekendtgørelsen Fagbilag juni 2004 MATEMATIK. Formål

Grundfagsbekendtgørelsen Fagbilag juni 2004 MATEMATIK. Formål Grundfagsbekendtgørelsen Fagbilag juni 2004 MATEMATIK Formål Formålet med faget er, at eleverne bliver i stand til at identificere matematiske problemstillinger i både erhvervsfaglig og almen sammenhæng,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution Frederikshavn Handelsgymnasium Uddannelse Fag og niveau Lærer(e) HHX Matematik B

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December-januar 15/16 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C

Læs mere

Årsplan 9. Klasse Matematik Skoleåret 2015/16

Årsplan 9. Klasse Matematik Skoleåret 2015/16 Årsplan 9 Klasse Matematik Skoleåret 2015/16 Hovedformål Årsplanen for 9 Klasse i Matematik tager udgangspunkt i Forenklede Fællesmål (Undervisningsministeriet) Formålet med undervisningen er, at eleverne

Læs mere

3. KLASSE UNDERVISNINGSPLAN MATEMATIK

3. KLASSE UNDERVISNINGSPLAN MATEMATIK 2015-16 Lærer: Morten Bojesen Forord til faget i klassen Vi vil i matematik arbejde undervisningsdifferentieret samt elevdifferentieret. Vi arbejder med bogsystemet Matematrix 3A, 3B samt kopiark. Der

Læs mere

Appendiks 3 Beregneren - progression i de nationale matematiktest - Vejledning til brug af beregner af progression i matematik

Appendiks 3 Beregneren - progression i de nationale matematiktest - Vejledning til brug af beregner af progression i matematik Appendiks 3: Analyse af en elevs testforløb i 3. og 6. klasse I de nationale test er resultaterne baseret på et forholdsvist begrænset antal opgaver. Et vigtigt hensyn ved designet af testene har været,

Læs mere

UNDERVISNING I PROBLEMLØSNING

UNDERVISNING I PROBLEMLØSNING UNDERVISNING I PROBLEMLØSNING Fra Pernille Pinds hjemmeside: www.pindogbjerre.dk Kapitel 1 af min bog "Gode grublere og sikre strategier" Bogen kan købes i min online-butik, i boghandlere og kan lånes

Læs mere

HVAD STÅR DER I DE NYE FÆLLES MÅL OM DEN MATEMATISKE KOMPETENCE, KOMMUNIKATION? KØBENHAVN 29. SEPTEMBER 2015

HVAD STÅR DER I DE NYE FÆLLES MÅL OM DEN MATEMATISKE KOMPETENCE, KOMMUNIKATION? KØBENHAVN 29. SEPTEMBER 2015 HVAD STÅR DER I DE NYE FÆLLES MÅL OM DEN MATEMATISKE KOMPETENCE, KOMMUNIKATION? KØBENHAVN 29. SEPTEMBER 2015 BINDENDE/VEJLEDENDE BINDENDE MÅL OG TEKSTER: FAGETS FORMÅL KOMPETENCEMÅL (12 STK.) FÆRDIGHEDS-

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab defineres som menneskelige aktiviteter, hvor

Læs mere

Eksperimenterende undersøgelse af vinkelsummer i 4. 6.kl.

Eksperimenterende undersøgelse af vinkelsummer i 4. 6.kl. Eksperimenterende undersøgelse af vinkelsummer i 4. 6.kl. Målsætning: Lærermål: At observere på og udvikle brugen af geogebra i forbindelse med eksperimenterende undersøgelser af vinkelsummer i matematik

Læs mere

Barbie s Bungee Jump Eleverne kan på baggrund af en matematisk/naturfaglig undersøgelse, med efterfølgende behandling af data forudsige udfaldet af et praktisk eksperiment. Eleverne vil erfare nødvendigheden

Læs mere

Odense, den 4. marts 2013 Heidi Kristiansen. 04-03-2013 Heidi Kristiansen - Folkeskolens afsluttende prøver i matematik

Odense, den 4. marts 2013 Heidi Kristiansen. 04-03-2013 Heidi Kristiansen - Folkeskolens afsluttende prøver i matematik Odense, den 4. marts 2013 Heidi Kristiansen Oplæg til mundtlig gruppeprøve, der gør det muligt at evaluere kompetencer hvordan??? indeholde tydelige problemstillinger rene eller anvendte matematiske problemer,

Læs mere

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger.

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger. Faglige Områder Tal og brøker Der anvendes blandet tal. Der anvendes ikke blandet tal, men uægte brøker. Anvender brøker Anvender både blandet tal og brøker. Antal cifre Der skal afrundes til et passende

Læs mere

Årsplan for matematik i 8.kl. på Herborg Friskole

Årsplan for matematik i 8.kl. på Herborg Friskole Uge Emne 32 Opstartsuge 33 - Brøker 36 37-40 Kompetenceområder/mål Koordinatsystemet 41 Emneuge 42 Efterårsferie 43-50 Geometri og rumfang Geometri og måling Eleven kan forklare geometriske sammenhænge

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne

Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne Periode Mål Eleverne skal: Tal og enheder arbejde med tal og enheder, som bruges i hverdagen blive bedre til at omregne mellem enheder

Læs mere

Netopgaver. Kapitel 4 At tilpasse kurver til punkter

Netopgaver. Kapitel 4 At tilpasse kurver til punkter 1 Netopgaver Nogle af Omegas opgaver og et enkelt bevis er lagt her på nettet. Idéen til dette opstod, da vi kunne se, at sidetallet i Omega skulle holdes nede for at give en bekvem og håndterbar bog.

Læs mere

Årsplan 2015/16. Fag Matematik FP10 Gymnastikefterskolen Stevns Lærer Peder Lund Årgang 2015/16

Årsplan 2015/16. Fag Matematik FP10 Gymnastikefterskolen Stevns Lærer Peder Lund Årgang 2015/16 Årsplan 2015/16 Fag Matematik FP10 Gymnastikefterskolen Stevns Lærer Peder Lund Årgang 2015/16 Det er altoverskyggende formålet med matematikundervisningen er, at eleverne rustes til at møde fremtidige

Læs mere

Fagplan for faget matematik

Fagplan for faget matematik Fagplan for faget matematik Der undervises i matematik på alle klassetrin (0. - 7. klasse). De centrale kundskabs- og færdighedsområder er: I matematik skal de grundlæggende kundskaber og færdigheder i

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere