Kapitel 4 Sandsynlighed og statistiske modeller
|
|
|
- Julius Lassen
- 9 år siden
- Visninger:
Transkript
1 Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen og estimér modellens parametre på baggrund af stikprøven Kontrollér at stikprøven ikke er i modstrid med modellen Eksempel: 95% konfidensinterval for middelværdien i en normalfordeling 2 / 22
2 Binomialfordelingen - uformelt Lyttetest: En person har i tre ud af tre sætninger korrekt hørt forskel på bas og pas - kan det være tilfældigt? Vi gentager et eksperiment tre gange, hvor der hver gang er 50% sandsynlighed for at få succes ved en tilfældighed (f. få krone) Hvad er sandsynligheden for at få krone tre gange i træk? Og hvorfor er det interessant? 3 / 22 Uformelt... fortsat Der er otte mulige udfald ved tre kast: KKK, KKP, KPK, PKK, KPP, PKP, PPK, PPP Alle otte udfald er lige sandsynlige og netop ét udfald svarer til tre gange krone Laplaces lov: Sandsynlighed er antal gunstige divideret med antal mulige Sandsynligheden for netop tre gange krone er således 1/8 = 0,125 = 12,5% 4 / 22
3 Uformelt... fortsat Tilbage til lyttetest: Der er altså en sandsynlighed (risiko) på 12,5% for, at personen ikke kan høre forskel på bas og pas selvom der blev svaret rigtigt i 3 ud af 3 tilfælde. Er dette acceptabelt og hvis ikke: Hvordan kan man så lave eksperimentet bedre? 5 / 22 Binomialfordelingen formelt n Bernoulli-forsøg med sandsynligheden p for sandt (og følgeligt sandsynligheden 1 p for falsk) Punktsandsynligheder er givet ved ( ) n f () = p n (1 p) n 1, = 0, 1,..., n hvor K(n,) er binomialkoefficienten ( ) n n (n 1)... (n + 1) = ( 1)... 1 = n!!(n )! 6 / 22
4 Binomialfordelingen formelt og grafisk X ~ Bin(3,0.5) f() = P(X=) / 22 Opgave 3 8 / 22
5 Normalfordelingen Normalfordelingen er en kontinuert fordeling mens binomialfordelingen er en diskret fordeling Tæthedsfunktion ϕ() Histogrammet for en binomialfordeling med p = 0, 5 og meget højt n ligner tæthedsfunktionen for en normalfordeling 9 / 22 Normalfordelingen som grænsefordeling for binomialfordelingen med p = 0, 5 n=5 n=10 P() P() n=20 n=50 P() P() / 22
6 Normalfordelingen Der findes uendeligt mange normalfordelinger, der hver især er karakteriseret ved deres middelværdi µ og deres spredning σ Middelværdi µ og spredning σ er parametre i normalfordelingen, og vi skriver N(µ, σ 2 ) Tæthedsfunktionen er en klokkeformet kurve: f (; µ, σ) = 1 ( σ 2π ep ( µ)2 2σ 2 (vi bruger heldigvis næsten altid tabeller) Kurven har toppunkt for = µ Større spredning giver fladere tæthedsfunktion ) 11 / 22 Tæthedsfunktion for 3 forskellige normalfordelinger f() N(10, 2 2 ) N(10, 4 2 ) N(20, 2 2 ) / 22
7 Fordelingsfunktion og standardnormalfordeling Ved bestemt integration af tæthedsfunktionen kommer vi frem til fordelingsfunktionen, der er en slags kummuleret frekvensfordeling Fraktiler i en normalfordeling er nyttige ifm udsagn af typen: 50% af eleverne kan forventes at score mellem 22 og 87 i den forelagte prøve 5% af eleverne forventes at score mindre end 12 Fordelingsfunktionen går gennem (µ, 0.5) Lavere spredning giver stejlere fordelingsfunktion 13 / 22 Fordelingsfunktion for 3 forskellige normalfordelinger F() N(10, 2 2 ) N(10, 4 2 ) N(20, 2 2 ) / 22
8 Standardnormalfordelingen Der findes uendeligt mange normalfordelinger, men vi kan i praksis klare os med én, nemlig standardnormalfordelingen N(0, 1) Fordelingsfunktionen Φ() fremkommer ved integration af tæthedsfunktionen ϕ() Tæthedsfunktion Fordelingsfunktion ϕ() Φ() / 22 Eksempel på brug af Φ Antag at vi har lavet en undersøgelse, hvor gennemsnittet af scorene er 17 og standardafvigelsen er 3. Vi antager desuden, at scorene følger en normalfordeling. Vi vil nu gerne kende sandsynligheden for, at en tilfældig score er mindre end 14. Vi normaliserer ved at beregne den såkaldte z-værdi: z = X s = = 1 Ved opslag i Tabel A kan vi nu se at p = P( 14) = Φ( 1) = 0, 159 Sandsynligheden for at en tilfældig score er mindre en 14 er altså cirka 16% 16 / 22
9 Modelkontrol Vi er ofte interesserede i at se, hvor godt vores stikprøve egentlig stemmer overens med normalfordelingsantagelsen For Tabel 2.5 (vokalvarighed i ms) beregner vi det forventede antal observationer i et bestemt interval under antagelsen om normalitet og sammenligner med det observerede Vi beregner = 208, 9 og s = 9, 79 For klassen afgrænset ved (204, 5; 209, 5] beregnes to z-værdier til -0,45 og 0,06 Via Tabel A findes tilhørende sandsynligheder p som 0,326 og 0,524 Sandsynligheden for at være i intervallet er derfor 0,524-0,326 = 0,198 Da stikprøven omfatter 40 enheder forventer vi at finde 40 0, 198 = 7, 92 enheder i intervallet Der var faktisk / 22 Grafisk modelkontrol Vokalvarighed [ms] Antal (184.5; 189.5] (189.5; 194.5] (194.5; 199.5] (199.5; 204.5] (204.5; 209.5] (209.5; 214.5] (214.5; 219.5] (219.5; 224.5] (224.5; 229.5] Observeret Forventet (229.5; 234.5] Vokalvarighed [ms] 18 / 22
10 Grafisk modelkontrol Vokalvarighed [ms] Antal (184.5; 189.5] (189.5; 194.5] (194.5; 199.5] (199.5; 204.5] (204.5; 209.5] (209.5; 214.5] (214.5; 219.5] (219.5; 224.5] (224.5; 229.5] (229.5; 234.5] Observeret Forventet 19 / 22 Normalfordeling i Ecel Der kan beregnes værdier for både f () og F () for vilkårlige normalfordelinger med funktionen normfordeling(...), der tager fire argumenter: værdi af middelværdi µ spredning σ kumulativ: 0 betyder nej (der regnes med f ) og 1 betyder ja (der regnes med F ) Der kan findes fraktiler for vilkårlige normalfordelinger med funktionen norminv(...), der tager tre argumenter: sandsynlighed p middelværdi µ spredning σ Dette svarer til at finde p i ligningen F ( p ) = p p = F 1 (p) 20 / 22
11 Normalfordeling i Ecel Ønsker man at finde værdier i standardnormalfordelingen kan man benytte funtionerne standardnormfordeling(...) og standardnorminv(...), der tager ét argument hver... men det er nok lige så nemt at angive µ = 0 og σ = 1 i de generelle funktioner I praksis bruger vi stort set kun tæthedsfunktionen når vi skal tegne pæne klokkeformede kurver det er næsten altid fordelingsfunktionen, der er den interessante 21 / 22 Opsamling Normalfordelingen er en ofte benyttet model for delvist observerede populationer, idet fordelingens parametre kan estimeres fra en stikprøve Normalfordelingen har to parametre, middelværdi µ og spredning σ, og vi skriver N(µ, σ 2 ) Standardnormalfordelingen N(0, 1) kan benyttes til beregninger i andre normalfordelinger via en z-værdi z = µ σ Således beregnes sandsynligheden P(X < ), hvor X N(µ 0, σ0 2) ved ( ) µ0 p = Φ hvor Φ er fordelingsfunktionen for standardnormalfordelingen. σ 0 22 / 22
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Kapitel 7 Forskelle mellem centraltendenser
Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
Sandsynlighedsregning Stokastisk variabel
Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Opgaver til kapitel 3
Opgaver til kapitel 3 3.1 En løber er interesseret i at undersøge om hendes løbeur er kalibreret korrekt. Hun udmåler derfor en strækning på præcis 1000 m og løber den 16 gange. For hver løbetur noterer
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Kapitel 2 Frekvensfordelinger
Kapitel 2 Frekvensfordelinger Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Grafik af frekvensfordelinger 3 Frekvensfordeling med Excel 4 Opsamling 1 Indledning 2 Grafik
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset
Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136
Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?
Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.
Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm
Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation
Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala
3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...
Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau
Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi
1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed...
Indhold 1 Sandsynlighed 1 1.1 Sandsynlighedsbegrebet................................. 1 1.2 Definitioner........................................ 2 1.3 Diskret fordeling.....................................
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Kapitel 3 Centraltendens og spredning
Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte
Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800
Kapitel 1 Statistiske grundbegreber
Kapitel 1 Statistiske grundbegreber Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Population versus stikprøve 3 Variabeltyper og måleskalaer 4 Parametrisk versus ikke-parametrisk
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()
Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
Kapitel 3 Centraltendens og spredning
Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning
Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)
; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium
Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,
Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens
Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)
Temaopgave i statistik for
Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...
Maja Tarp AARHUS UNIVERSITET
AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjylland Student år 005 fra Dronninglund Gymnasium Efter gymnasiet: Militæret Australien Startede på
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde
Løsninger til kapitel 6
Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)
Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele
Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22
Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: [email protected]
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Vejledende løsninger til opgaver i kapitel 6
Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer
Matematik A, vejledende opgave 2, ny ordning. Vejledende løsninger, Peter B. Delprøven uden hjælpemidler. Opgave 1. a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2
Delprøven uden hjælpemidler Opgave 1 a) A= 6x 2 +12xdx = 2x 3 + 6x 2 2 0 = 8 0 = 8 0 2 Opgave 2 a) Først differentierer vi løsningen: y = 10x. Dernæst indsættes løsningen y i y og vi får: y = 2 5x2 x =
Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1
Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Vejledende løsninger kapitel 8 opgaver
KAPITEL 8 OPGAVE 1 Nej den kan også være over 1 OPGAVE 2 Stikprøvestørrelse 10 Stikprøvegennemsnit 1,18 Stikprøvespredning 0,388158 Konfidensniveau 0,95 Nedre grænse 0,902328 Øvre grænse 1,457672 Stikprøvestørrelse
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
