Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
|
|
|
- Alma Søgaard
- 10 år siden
- Visninger:
Transkript
1 Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark [email protected] Binomialfordelingen Eksempler Eksempel 1 Eksempel 2 Eksempel 3 5 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Praktisk information En stokastisk variabel (random variable) tildeler en værdi til udfaldet af et eksperiment der endnu ikke er udført SE PRAKTISK INFORMATION PÅ HJEMMESIDEN OG I STARTEN AF SLIDES FRA UGE 1 Et terningekast Antallet af seksere i 10 terningekast Hvor stor en andel svarer ja til et spørgsmål km/l for en bil Måling af sukkerniveau i blodprøve... Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
2 Diskret eller kontinuert Vi skelner mellem diskret og kontinuert Diskret (kan ofte tælles): Hvor mange der bruger briller herinde Antal mange flyvere letter den næste time... Kontinuert: Vindmåling Tiden det tog at komme til DTU... Før eksperimentet er udført stokastisk variabel haves noteret med stort bogstav. Så udføres eksperimentet, og vi har da en realisation eller observation noteret med småt bogstav. X 1 1 Der er en gråzone, f.eks. for observationer målt med lav opløsning. I dag er det diskret og i næste uge er det kontinuert. Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Simuler et terningekast Før eksperimentet er udført stokastisk variabel haves X 1,X 2,...,X n noteret med stort bogstav. Så udføres eksperimentet, og vi har da en realisation eller observation 1, 2,..., n noteret med småt bogstav. Hvis vi udfører eksperimentet n gange. Vælg et tal fra (1,2,3,4,5,6) med lige stor sandsynlighed for hvert udfald Simuler i R ## Simuler et terningekast ## Vælg et tal fra (1,2,3,4,5,6) med lige sandsynlighed for hvert udfald sample(1:6, size=1) ## Antal simulerede realiseringer n <- 30 ## Træk uafhængigt fra mængden (1,2,3,4,5,6) med ens sandsynlighed sample(1:6, size=n, replace=true) Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
3 Diskrete fordelinger Hvordan kan vi regne på eksperimentet før det er udført? Hvad kan vi gøre når vi endnu ikke kender udfaldet!? Løsning: brug en tæthedsfunktion En stokastisk variabel har en tæthedsfunktion (probability density function (pdf)) Definition f () = P(X = ) Sandsynligheden for at X antager værdien når eksperimentet udføres Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 En unfair ternings tæthedsfunktion En fair ternings tæthedsfunktion f X unfair() f (1) = 1 7 f (6) = Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
4 Find nogle sandsynligheder for X unfair : Sandsynligheden for at få en fire? Sandsynligheden for at få en femmer eller en sekser? Sandsynligheden for at få mindre end tre? Stikprøve Density f (1) = 1 7 f (6) = 2 7 Svarmuligheder: A: 3 7 B: 1 6 C: 4 7 D: 2 7 Vi har en terning og vil nu undersøge om en terningen er fair. Hvis vi kun har en observation kan vi da se fordelingen? Nej men hvis vi har n observationer, så har vi en stikprøve (sample) { 1, 2,..., n } og da kan vi begynde at se fordelingen E: 1 7 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Simuler n kast med en fair terning ## Simuler en fair terning ## Antal simulerede realiseringer n <- 30 ## Træk uafhængigt fra mængden (1,2,3,4,5,6) med ens sandsynlighed Fair <- sample(1:6, size=n, replace=true) ## Tæl antallet af hvert udfald table(fair) ## Plot den empiriske tæthedsfunktion (pdf), altså et density histogram plot(table(fair)/n, ylim=c(0,1), lwd=10, lab="", ylab="f()") ## Tilføj den rigtige tæthedsfunktion til plottet plot(table(fair)/n, ylim=c(0,1), lwd=10, lab="", ylab="f()") lines(rep(1/6,6), type="h", lwd=3, col="red") ## legend legend("topright", c("empirical pdf","pdf"), lty=1, col=c(1,2), lwd=c(5,2)) Simuler n kast med en ikke-fair terning ## Simuler en ikke-fair terning ## Antal simulerede realiseringer n <- 30 ## Træk uafhændigt fra mængden (1,2,3,4,5,6) med højere sandsynlighed for en sekser Unfair <- sample(1:6, size=n, replace=true, prob=c(rep(1/7,5),2/7)) ## Plot den empiriske tæthedsfunktion plot(table(unfair)/n, lwd=10, ylim=c(0,1), lab="", ylab="density") ## Tilføj den rigtige tæthedsfunktion lines(c(rep(1/7,5),2/7), lwd=4, type="h", col=2) ## En legend legend("topright", c("empirical pdf","pdf"), lty=1, col=c(1,2), lwd=c(5,2)) Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
5 Fordelingsfunktion Fordelingsfunktion (distribution function eller cumulative density function (cdf)) Fair terning eksempel Fordelingsfunktion Lad X repræsentere værdien af et kast med en fair terning Udregn sandsynligheden for at få udfald under 3: Definition Fordelingsfunktionen (cdf) er tæthedsfunktionen akkumuleret F() = P(X ) = j hvor j f ( j ) P(X < 3) = P(X 2) = F(2) fordelingsfunktionen = P(X = 1) + P(X = 2) = f (1) + f (2) tæthedsfunktionen = = 1 3 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Fair terning eksempel Fordelingsfunktion Fair terning eksempel Fordelingsfunktion Udregn sandsynligheden for at få udfald over eller lig 3: P(X 3) = 1 P(X 2) = 1 F(2) fordelingsfunktionen = = 2 3 F() F() A C F() F() B D Hvilket et af ovenstående plots kan være en fordelingsfunktion? A, B, C eller D? Svar: C Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
6 Binomialfordelingen En handling (eksperiment) med to udfald (succes eller ikke-succes) gentages Der findes en række statistiske fordelinger, som kan bruges til at beskrive og analysere forskellige problemstillinger med I dag er det diskrete fordelinger: Binomialfordelingen Den hypergeometriske fordeling Eksperiment med udfald: Tæl antal succeser Lad X repræsentere antal succeser efter n gentagelser X følger binomialfordelingen X B(n,p) med parametre n antal gentagelser p sandsynligheden for succes i hver gentagelse Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Binomialfordelingen Binomialfordelingen Binomialfordeling eksempel i R ## Simuler en binomialfordeling Binomialfordelingens tæthedsfunktion giver sandsynligheden for antal succeser ( ) n f (;n,p) = P(X = ) = p (1 p) n Eksempel: Sandsynlighed for 2 plat ved 5 plat-eller-krone kast med mønt ## Sandsynlighed for success p <- 0.1 ## Antal gentagelser af succes og ikke-succes eksperimentet nrepeat <- 30 ## Simuler Bernoulli eksperiment nrepeat gange tmp <- sample(c(0,1), size=nrepeat, prob=c(1-p,p), replace=true) ## er nu sum(tmp) ## Lav tilsvarende med funktion til simulering af binomialfordeling rbinom(1, size=30, prob=p) Binomialfordeling med terning i R f (2;5,0.5) = P(X = 2) = ( ) (1 0.5) 5 2 = ## Fair terning eksempel ## Antal simulerede realiseringer n <- 30 ## Træk uafhængigt fra mængden (1,2,3,4,5,6) med ens sandsynlighed Fair <- sample(1:6, size=n, replace=true) ## Tæl sammen for mange seksere sum(fair == 6) ## Lav tilsvarende med rbinom() rbinom(n=1, size=30, prob=1/6) Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
7 X er igen antal succeser, men nu er det uden tilbagelægning ved gentagelsen X følger den hypergeometriske fordeling X H(n,a,N) med parametrene n er antallet af trækninger a er antallet af succeser i populationen N elementer store population Sandsynligheden for at få succeser er f (;n,a,n) = P(X = ) = hvor n er antallet af trækninger a er antallet af succeser i populationen N elementer stor population ( a N a ) )( n ( N n) Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Pause Binomial vs. hypergeometrisk Binomialfordelingen anvendes også for at analysere stikprøver med tilbagelægning (Tænk på en terningekast) PAUSE Når man vil analysere stikprøver uden tilbagelægning anvendes den hypergeometriske fordeling (Tænk på træk fra en hat) Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
8 Distributioner i R Eksempler R binom hyper Betegnelse Binomial hypergeometrisk d f () (probability density function). p Fordelingsfunktion F() (cumulative distribution function). r Tilfældige tal fra den anførte fordeling. (Forelæsning 10) q Fraktil (quantile) i fordeling. Husk at hjælp til funktion mm. fåes ved at sætte? foran navnet. Eksempel binomialfordelt: P(X 5) = F(5; 10, 0.6) ## Binomialfordelingsfunktion pbinom(q=5, size=10, prob=0.6) ## [1] ## Få hjælpen med?pbinom Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Eksempel 1 I et kundecenter i et telefonselskab søger man at forbedre kundetilfredsheden. Især er det vigtigt, at når der indrapporteres en fejl, bliver fejlen udbedret i løbet af samme dag. Antag at sandsynligheden for at en fejl bliver udbedret i løbet af samme dag er 0.7. I løbet af en dag indrapporteres 6 fejl. Hvad er sandsynligheden for at samtlige fejl udbedres? Step 1) Hvad skal repræsenteres: X er antal udbedrede fejl Step 2) Fordeling: X følgera: binomial, B: hypergeometrisk? binomialfordelingen Step 3) Hvilken sandsynlighed: P(X??) P(X = 6) = f (6;n,p) Step 4) Hvad er antal trækninger? n = 6 Hvad er succes-sandsynligheden? p = 0.7 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Eksempler Eksempler Eksempel 1 Eksempel 2 Hvad er sandsynligheden for at 2 eller færre fejl bliver udbedret samme dag? I bankoklubben trækkes der lod om 5 flasker Gammel Dansk. Der er udstedt 50 lodder og du har 3 lodder. Step 1) Hvad skal repræsenteres: X er antal udbedrede fejl Hvad er sandsynligheden for at du vinder præcis en flaske Gammel Dansk? Step 2) Hvilken fordeling: X følger binomialfordelingen Step 3) Hvilken sandsynlighed: A: P(X < 2) B: P(X 1) C: P(X < 3) D: 1 P(X 2) P(X < 3) = P(X 2) = F(2;n,p) Step 4) Hvad er antal trækninger? n = 6 Hvad er succes-sandsynligheden? p = 0.7 Step 1) Hvad skal repræsenteres: X er antal flasker du vinder Step 2) Hvilken fordeling: X følger den hypergeometriske fordeling Step 3) Hvilken sandsynlighed: P(X??) Step 4) Hvad er antal trækninger? n = 5 Hvor mange succeser er der? a = 3 Hvor mange er der i alt? N = 50 P(X = 1) = f (1;n,a,N) Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
9 anvendes ofte som en fordeling (model) for tælletal, hvor der ikke er nogen naturlig øvre grænse karakteriseres ved en intensitet, dvs. på formen antal/enhed X følger X P(λ) Parameteren λ angiver intensiteten λ er typisk hændelser per tidsinterval Intervallerne mellem hændelserne er uafhængige, dvs. processen er hukommelsesløs f () = P(X = ) = λ! e λ Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Eksempel 3.1: Eksempel 3.2: Det antages, at der i gennemsnit bliver indlagt 0.3 patienter pr. dag på københavnske hospitaler som følge af luftforurening. Hvad er sandsynligheden for at der på en vilkårlig dag bliver indlagt højst 2 patienter som følge af luftforurening? Step 1) Hvad skal repræsenteres: X er antal patienter pr. dag Step 2) Hvilken fordeling: X følger Step 3) Hvilken sandsynlighed: P(X??) P(X 2) Step 4) Hvad er raten: λ = 0.3 patienter per dag Det antages, at der i gennemsnit bliver indlagt 0.3 patienter pr. dag på københavnske hospitaler som følge af luftforurening. Hvad er sandsynligheden for at der på en vilkårlig dag bliver indlagt præcis 2 patienter? Step 3) Hvilken sandsynlighed: P(X??) P(X = 2) Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
10 Eksempel 3.3: Eksempel 3.4: Skalering af intensiteten i Poissonfordeling Det antages, at der i gennemsnit bliver indlagt 0.3 patienter pr. dag på københavnske hospitaler som følge af luftforurening. Hvad er sandsynligheden for at der på en vilkårlig dag bliver indlagt mindst 2 patienter? Step 3) Hvilken sandsynlighed: P(X??) P(X 2) = 1 P(X 1) Hvad er sandsynligheden for at der i en periode på 3 dage bliver indlagt præcis 1 patient? Step 1) Hvad skal repræsenteres: Fra X som er patienter per dag Til X 3dage som er patienter per 3 dage Step 2) Hvilken fordeling følger X 3dage : Step 3) Hvilken sandsynlighed: P(X 3dage??) P(X 3dage = 1) Step 4) Skaler raten Fra λ dag = 0.3 patient/dag til λ 3dage = 0.9 patient/3 dag Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Middelværdi (mean) og forventningsværdi (epectation) Middelværdi eksempel Definition: Middelværdi af stokastisk variabel µ = E(X) = f () alle Det rigtige gennemsnit eller populationens gennemsnit Fortæller hvor midten af X er Middelværdi af et terningekast µ = E(X) = = = 3.5 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
11 ## Simuler en fair terning ## Antal simulerede realiseringer n <- 30 ## Træk uafhængigt fra mængden (1,2,3,4,5,6) med ens sandsynlighed Fair <- sample(1:6, size=n, replace=true) ## Udregn gennemsnit (empirisk middelværdi, sample mean, læg mærke til ## at i R hedder funktionen 'mean') mean(fair) ## [1] Hvad sker der generelt med gennemsnittet af en stikprøve når man får flere observationer? A: Gennemsnittet er uafhængigt af antal observationer B: Gennemsnittet kommer generelt længere væk fra middelværdien C: Gennemsnittet kommer generelt tættere på middelværdien Svar C: Des flere observationer, des tættere kommer man generelt på middelværdien. Prøv at lege med det i ved simulering i R Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Varians (variance) Varians eksempel Definition: Varians af stokastisk variabel Et mål for spredningen σ 2 = Var(X) = ( µ) 2 f () alle Den rigtige spredning af X (modsat empirisk varians (sample variance)) Varians af terningekast σ 2 = E[(X µ) 2 ] = = (1 3.5) (2 3.5) (3 3.5) (4 3.5) (5 3.5) (6 3.5) Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
12 Varians eksempel ## Simuler en fair terning ## Antal simulerede realiseringer n <- 30 ## Træk uafhængigt fra mængden (1,2,3,4,5,6) med ens sandsynlighed Fair <- sample(1:6, size=n, replace=true) ## Udregn empirisk varians (sample variance, læg mærke til ## at i R hedder funktionen 'var') var(fair) ## [1] Binomialfordelingen: Middelværdi: µ = n p Varians: σ 2 = n p (1 p) Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 for kendte fordelinger Den hypergeometriske fordeling: : Middelværdi: µ = n a N Varians: σ 2 = na (N a) (N n) N 2 (N 1) Middelværdi: µ = λ Varians: σ 2 = λ Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
13 Terninge eksempel, se forskel på empirisk middelværdi (sample mean) og middelværdi (mean) Oversigt Fordelingsfunktion ## Simuler en binomialfordeling, terninge eksempel ## Gentag 10 gange: Tæl sammen for mange seksere på 30 slag antalseksere <- rbinom(n=10, size=30, prob=1/6) ## Endelig kan vi se på empirisk middelværdi (sample mean) mean(rbinom(n=10, size=30, prob=1/6)) ## [1] 4.8 ## Den (rigtige) middelværdi (mean) n * 1/6 ## [1] 5 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55 4 Binomialfordelingen Eksempler Eksempel 1 Eksempel 2 Eksempel 3 5 Peder Bacher ([email protected]) Introduktion til Statistik Efterår / 55
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen
Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
Vejledende løsninger til opgaver i kapitel 6
Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1
Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.
Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Løsninger til kapitel 5
1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen
Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring
Grundlæggende statistik Lektion 2 Indhold Diskrete fordelinger Binomial fordelingen Poisson fordelingen Hypergeometrisk fordeling Data typer el. typer af tilfældige variable Diskrete variable > Kategoriseres
Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: [email protected] Dagens emner Stokastiske variable: udfald
Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling
Disrete fordelinger Fire vigtige disrete fordelinger: 1. Uniform fordeling (disret) 2. Binomial fordeling 3. Hyper-geometris fordeling 4. Poisson fordeling 1 Uniform fordeling Definition Esperiment med
Statistik noter - Efterår 2009 Keller - Statistics for management and economics
Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.
Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)
; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff
Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger
Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.
2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske
Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136
Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man
Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher
Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver
Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2 Københavns Universitet Susanne Ditlevsen og Helle Sørensen R opgaver Det er en god ide at vænne sig til at skrive kommandoerne i en editor
Kvantitative Metoder 1 - Forår Dagens program
Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative
Hvad skal vi lave i dag?
p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.
Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner afsnit 6.1 og 6.2 Betingede diskrete
02402 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel 4
0202 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel Hjemmeopgaver Vejledende løsning.2 Eksperimentet kan beskrives ved binomialfordelingen, X b(x; n, p), hvor n = og p = 1 2. Dermed kan man
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden
Statistik viden eller tilfældighed
MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår
Teoretisk Statistik, 16. februar Generel teori,repetition
1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske
Forelæsning 10: Statistik ved hjælp af simulering
Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Binomialfordelingen. Binomialfordelingen. Binomialfordelingen
Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),
Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.
Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population
1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger
Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Peder Bacher DTU Compute, Dynamiske Systemer Building 303B, Room 017 Danish Technical University 2800 Lyngby
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer
