Indvendig efterisolering: Sådan dimensioneres løsninger, som giver holdbare konstruktioner

Størrelse: px
Starte visningen fra side:

Download "Indvendig efterisolering: Sådan dimensioneres løsninger, som giver holdbare konstruktioner"

Transkript

1 Gregersensvej 2 Bygning Taastrup Telefon info@byggeriogenergi.dk Indvendig efterisolering: Sådan dimensioneres løsninger, som giver holdbare konstruktioner Forfattere: Seniorkonsulent Ruut Peuhkuri, civ.ing, ph.d, Passivhus.dk Aps Professor Carsten Rode, civ.ing, ph.d, DTU- Byg Februar 2010

2 2 INDHOLD 1. Formål Baggrund Klimaskærmens bygningsfysik og potentielle problemer ved indvendig efterisolering Hvordan vælger, projekterer og vurderer man den rigtige (indvendige) efterisoleringsløsning? Valg af materialer til indvendig efterisolering Hvad skal der tages i hensyn ved udførelse? Litteratur... 16

3 3 1. Formål Nærværende notat har til formål at supplere de mange gode råd fra både SBi Anvisning 221 og Byg- Erfa bladet Indvendig efterisolering af ældre mure. Notatet beskriver en beregningsmæssig metode for konkret projektering, dimensionering og vurdering af den bedste løsning til indvendig efterisolering og svarer på: Hvordan regner man på indvendig efterisolering? - Skal man lave dynamiske simuleringer? Hvilke beregningsprogrammer er velegnede? - Hvad skal man simulere? Er det godt nok med de termiske forhold? - Skal man regne flerdimensionelt? Hvordan vurderer man robusthed af en løsning? Hvilke dele af konstruktionen er kritiske? Fokus for notatet er på projekteringen, og derfor henvises til de nævnte udgivelser og specielt til Byg-Erfa bladet angående den praktiske udførelse. 2. Baggrund Indvendig efterisolering kan især for bygninger med bevaringsværdige facader være den eneste mulighed for at nedbringe varmetabet gennem ydervægge. Indvendig efterisolering er dog alt andet lige den næstbedste løsning i forhold til udvendig efterisolering. Der er eksempelvis følgende ulemper: Der opstår kuldebroer ved skillevægge og etagedæk, hvilket fører til en mindre reduktion af varmetabet end ønsket. Det er meget vigtigt - men svært - at tætne på indersiden af efterisoleringen for at undgå, at fugtig indeluft trænger ud i konstruktionen, hvor der er fugtfølsomme materialer. Disse er mere sårbare efter den indvendige efterisolering, fordi de nu ligger koldere, og dermed bliver den relative luftfugtighed alt andet lige højere. Den gamle facade bliver koldere, og der kan nemmere opstå frostskader. Isoleringen tager plads indendørs, MEN samtidigt kan rummene udnyttes bedre helt ud til ydervæggen. I SBi Anvisning 221 er der en række eksempler på, hvordan isoleringen placeres ved forskellige detaljer ved facaden, fx skillevægge, etagedæk og vinduer. I anvisningen understreges vigtigheden af, at samlingerne mellem dampspærren og de eksisterende konstruktioner er lufttætte, og at alt snavs og organisk materiale fra den gamle overflade skal fjernes helt før isoleringsarbejdet. Der nævnes også i anvisningen, at man kun må udføre indvendig efterisolering, hvis konstruktionen er tæt mht. slagregn. En luftspalte mellem den oprindelige konstruktion og den indvendige efterisolering forbedrer ikke den fugttekniske ydeevne af konstruktionen, hvis der allerede er en tæt dampspærre på den varme side af isoleringen. Men der er kun sparsomme råd om, hvor meget eller lidt isolering, der kan bruges. I anvisningen bringes en opfordring til, at isoleringstykkelser over 100 mm skal vurderes mht. til den fugttekniske ydeevne af den nye konstruktion. Men der er ikke angivet nogen konkret fremgangsmåde hertil.

4 4 Anvisningen tager heller ikke stilling til, hvilke materialer er egnede, eller ikke kan anbefales til de forskellige typer konstruktioner. I et Byg-Erfa blad Indvendig efterisolering af ældre mure understreges også fordelene ved udvendig efterisolering frem for den indvendige efterisolering. Hvis man nu alligevel skal isolere indvendigt, kommer bladet med mange rigtig gode råd om udførelsen, fx vigtigheden af grundig afrensning af den gamle indvendige overflade for al maling, tapet, tapetklister og snavs. Det er nemlig netop gamle tapeter, der kan danne meget gunstig grobund for mikroorganismer som skimmelsvamp. Det vil være umuligt at give løsninger for alle tænkelige detaljer i den eksisterende bygningsmasse. Derfor giver dette notat den projekterende nogle overordnede retningslinjer for, hvordan man finder frem til den bedste og mest sikre løsning. I notatet beskrives flere forskellige mulige metoder. Forskellen ligger i realistiske forventninger for graden af ekspertviden og adgang til specielt beregningsværktøj. Metoderne spænder fra det avancerede til det mest simple, som stadig kan accepteres. Det kan måske være, at den mest avancerede metode giver det rigtigste svar, men en simpel metode kan også bruges langt hen ad vejen. Alt i alt indebærer de beskrevne beregningsmæssige metoder en del kvalificerede overvejelser, hvor indsigt i fugtteorien og erfaring med konkrete projekter er nødvendigt. 3. Klimaskærmens bygningsfysik og potentielle problemer ved indvendig efterisolering En bygnings klimaskærm holder basalt set indeklima og udeklima adskilt. Den skærmer mod regn, vind og kulde. Men klimaskærmen evne til at sikre den termiske adskillelse, afhænger af isoleringsevnen og tætheden. Eksempelvis udfører en uisoleret og utæt ydervæg denne opgave dårligt, men til gengæld er selve væggen lun helt ud til ydersiden. I mange tilfælde er dette forklaringen på, at gamle huse fungerer godt, men har et stort energiforbrug. Når man ønsker at forbedre indeklimaet at få lunere overflader og mindre risiko for skimmelsvamp samtidigt med at man vil reducere energiforbruget, er det bygningsfysisk (dvs. varme- og fugtteknisk) bedst at udføre isoleringen udefra: Den gamle facade trænger alligevel ofte opfriskning og bliver således fornyet og holdt tør og varm af den udvendige isolering, forudsat at konstruktionen ellers er dimensioneret og udført korrekt. Figur 1 illustrerer denne forskel i temperaturen i den oprindelige mur mellem ud- og indvendige efterisoleringsløsning. Ved udvendig efterisolering er den gamle mur varm, hvorimod ved indvendig efterisolering bliver muren kold, og ydervæggens samlinger danner en kuldebro. Kuldebroen giver et større varmetab og en lavere temperatur på den indvendige overflade end ved den udvendige efterisolering, se også Tabel 1.

5 5 (a) (b) Figur 1: Det bygningsfysiske forskel mellem (a) 100 mm udvendig og (b) 100 mm indvendig efterisolering. Vandret snit af massiv murstensvæg på 0,33m ved skillevægssamling (øverst). Nederst Termisk 2D-beregning af en stationær situation: T inde = 20 C og T ude = -1,1 C. På figurerne er der tegnet isotermer, der viser temperaturforløbet i konstruktionen. Pilene angiver retningen og størrelsen af varmestrømmen. Betegnende for kuldebroen er, at varmestrømspilene løber i forskellige retninger, og de største pile angiver, hvor kuldebroen er værst.

6 6 Tabel 1: Varme- og linjetab per løbende meter konstruktion (eksemplet fra Figur 1) og det laveste temperatur ved indvendig overflade i hjørnet ved en stationær situation:t inde = 20 C og T ude = -1,1 C. Varmetab [W/m] Linjetab [W/mK] Lavest overfladetemperatur [ C] Uisoleret 74,9 0 17,2 100 mm indvendig 21,1 0,15 16,7 100 mm udvendig 18,7 0 19,2 Temperaturforholdene bestemmer selvfølgelig ikke i sig selv, hvor god og holdbar en konstruktion er. Den relative fugtighed, og specielt varigheden af de kombinerede temperatur- og relativ fugtighedsforhold, bestemmer om der er risiko for fx skimmelvækst i konstruktionen. Her spiller de materialer, der indgår i konstruktionen, også en stor rolle; nogle materialer er meget holdbare, mens andre nemt bliver angrebet af mikro-organismer selv efter kort eksponeringstid. En forenklet og dermed også en nemt tilgængelig metode for vurdering af temperatur- og fugtforhold i og omkring en klimaskærmskonstruktion er metoden om kritisk overfladetemperatur angivet i SBi Anvisning 224. Ved beregninger udført med de så kaldte dimensionerende ude- og indetemperatur for fugtberegninger (se Tabel 2), kan den indvendige overflades relative fugtighed bestemmes. Den må ikke overstige 75%, da det er den gældende, vejledende grænse for forøget risiko for skimmelvækst. Afhængig af den aktuelle fugtbelastningklasse, dvs. fugtforholdene i indeluften, er den kritiske overfladetemperatur bestemt i Tabel 2. Tabel 2: Den kritiske overfladetemperatur ved forskellige fugtbelastningsklasser. SBi Anvisning 224. Randbetingelse for beregning Kritisk overfladetemperatur ved fugtbelastingsklasse T ude T inde ,1 C 20 C 8,7 C 13,2 C 16,8 C 19,8 C Udover ren holdbarhed eller følsomhed overfor skimmelsvampe, fungerer forskellige materialer vidt forskelligt i konstruktionen på det bygningsfysiske plan. Materialers fugttransportegenskaber bestemmer, hvordan de vil fungere som en del af konstruktionen. Fugten kan diffundere i porøse materialer eller blive transporteret konvektivt med luftstrømme i gennemgående sprækker eller porer i materialet. Endeligt er nogle finporøse materialer kapillært aktive ved høje luftfugtigheder, og derfor kan vand fra slagregn opfugte et bygningsmateriale som mursten meget hurtigt.

7 7 Eftersom fugten i form af vanddamp fra indeluften i den kolde tid drives indefra og udadtil, skal man sørge for at have et luft- og damptæt lag inderst i konstruktionen for at undgå fugtophobning i konstruktionen, specielt hvis den udvendige isolering ikke er ventileret. (Det lufttætte lag må godt sidde yderst, bare det ikke er diffusionstæt). Det samme princip med et luft- og damptæt lag inderst i konstruktionen gælder i endnu højere grad for den indvendige efterisolering. En principiel beskrivelse af de involverede fugtmekanismer er illustreret i Figur 2. For den grundlæggende beskrivelse af fugtforhold i bygninger, inklusiv fugttransport og fugt i materialer og konstruktioner, henvises der til relevante fagbøger, bl.a. SBi Anvisning 224 om Fugt i bygninger. Figur 2: En principtegning af fugtens bevægelser omkring en detalje i ydervæggen

8 8 Typiske fugtproblemer med indvendig efterisolering kan groft deles i to kategorier, som dog ofte optræder sammen og forstærker den samlede effekt: Når man isolerer en klimaskærmskonstruktion indefra, bliver de gamle dele af konstruktionen koldere end før, og dermed stiger den relative luftfugtighed af disse. Det er svært at udføre tætte samlinger mellem den nye efterisolerede del af klimaskærmen og de eksisterende konstruktioner som etagedæk og skillevægge. Dette fører til, at den fugtige indeluft kan slippe ind i konstruktionen. Den forstærkede effekt opstår, når den nu koldere, oprindelige klimaskærmskonstruktion, bliver opfugtet af fugt fra indeluften pga. disse utætheder. Da bliver de eksisterende konstruktioner med organisk materiale meget sårbare. Derfor skal man være specielt opmærksom ved indvendig efterisolering af lette klimaskærmskonstruktioner ved eksempelvis tunge ydervægge med etagedæk af træ Nogle erfaringer med indvendig isolering af ældre etageejendom med træetagedæk viser ifølge Byg- Erfa bladet dog, at forholdene ved bjælkeenderne alligevel ikke nødvendigvis bliver så problematiske i praksis. I det tunge byggeri er nogle detaljer omkring ydervæggens samlinger potentielt problematiske, specielt ved tunge skillevægge og etagedæk af beton: Ved indvendig efterisolering danner disse en betydelig kuldebro, hvor overfladetemperaturen i hjørnerne kan være så lav, at der opstår skimmelvækst ved høj relativ fugtighed af rumluften. Indvendig efterisolering af kældervægge er meget risikabelt og må i mange tilfælde frarådes. Hvis isoleringen ikke kan udføres udvendig, så skal kælderen forblive uisoleret med hensyn til fugtforhold. En undtagelse er isolering med kalciumsilikatplader, der vil tillade kældervæggens udtørring indad. Gamle kældervægge er oftest udført uden nogen form for fugtspærre og bliver opfugtet af den fugtige jord, regnvand og sågar grundvand. I SBi Anvisning 221 vises en løsningen med indvendig isolering ned til 300 mm under terræn og udvendig isolering imod jord. Denne løsning kan godt bruges ud fra den bygningsfysiske funktion, men er ikke optimal at udføre i praksis fx pga. kældervinduerne. 4. Hvordan vælger, projekterer og vurderer man den rigtige (indvendige) efterisoleringsløsning? Når man står overfor opgaven at skulle projektere og dimensionere en efterisoleringsløsning, er der en række spørgsmål, der skal besvares, inden den endelige løsning er fastlagt. Den første er: Kan udvendig efterisolering bruges?

9 9 Hvis svaret er Ja, så er sagen på mange måder forholdsvis enkel: Der findes en række standardløsninger at vælge imellem, og der forventes ikke alvorlige problemer med dem. Isoleringstykkelsen kan langt hen ad vejen vælges ud fra den ønskede U-værdi, ønsker til at reducere energiforbruget og økonomi. Dette tilfælde behandles ikke yderligere ved denne lejlighed. Hvis svaret er Nej, skal der tages stilling til følgende spørgsmål: Hvor meget isolering kan/skal der bruges? Hvordan opbygges konstruktionen? Hvilke materialer kan bruges/må ikke bruges? Hvordan gøres konstruktionen tæt? Findes der Godkendte detaljer og systemer? Dernæst er det næste skridt at finde de steder, hvor de potentielle problemer i ydervæggen kan opstå: Dette er typisk ved ydervæggens samlinger: skillevægge, etagedæk, vinduer, tagkonstruktion, kældergulv. Der findes kommercielle standardløsninger for indvendige efterisoleringsløsninger med moderate isoleringstykkelser, fx 50 mm eller 70 mm, men i stedet for blot at vælge en isoleringstykkelse bør man undersøge, hvilken tykkelse der giver den bedste kombination af ønsket U- værdi og fugtteknisk holdbar løsning af den efterisolerede ydervæg. I det følgende gives der en step-by-step fremgangsmåde for at vælge isoleringstykkelse, først for den enklere metode Rådgivermetoden, så den avancerede beregningsmetode Forskermetoden. Rådgivermetoden Den samme problemstilling med kritiske detaljer, fx omkring en kuldebro, kan analyseres relativt godt vha. et rent termisk 2D-værktøj. Det er den næstbedste løsning i forhold til forskermetoden beskrevet længere nede. Den praktiske forklaring på, at man kan benytte en todimensional termisk simuleringsværktøj til den fugttekniske analyse af detaljerne, er, at man i stigende omfang under alle omstændigheder skal bestemme kuldebroerne i forhold til energiberegningerne og dermed udføre netop sådanne beregninger. Denne metode er således baseret på en forudsætning om, at den projekterende har viden om og adgang til termiske, men ikke nødvendigvis hygrotermiske 2D-værktøjer. Her gælder det også, at hvis detaljen vurderes at have 3D-effekter, må man udføre en 3D beregning. 1. Man udvælger nogle af de detaljer, der anses mest kritiske og modellerer dem med et 2D varmeteknisk værktøj, fx HEAT2 eller Therm. Som randbetingelser vælges konstant inde- og udetemperatur. Ifølge SBi Anvisning 224 kan der i Danmark ved sådanne beregninger bruges månedsgennemsnittet for februar som den dimensionerende udetemperatur. Beregningen gennemføres stationært. 2. Beregningsresultatet temperatur de steder, der anses kritiske vurderes med hensyn til risiko for skimmelvækst ud fra metoden i SBi Anvisning 224: Med udgangspunkt i typiske indeklimaforhold for forskellige fugtbelastningsklasser kan den kritiske temperatur bestemmes. Kriteriet er, at den relative fugtighed i konstruktionen, specielt på den indvendige overflade, ikke må overstige 75%.

10 10 3. Disse beregninger udføres som minimum for flere varianter af isoleringstykkelse og konstruktionsløsninger. 4. Nu tegner der sig et billede af forholdene ved det kritiske sted i konstruktionen som funktion af isoleringstykkelsen og evt. konstruktionsløsningen. Dermed kan både isoleringstykkelsen og konstruktionsopbygningen nu bestemmes som den løsning, hvor temperatur det kritiske sted er højest. 5. Eftersom der kun er blevet benyttet stationære beregninger, bør der gennemføres mindst endimensionale dynamiske fugtberegninger (fx Match) for vurderingen af materialevalget og placeringen af det tætte lag og graden af diffusionstæthed af de enkelte lag i den del af konstruktionen, hvor forholdene er endimensionale. 6. Det endelige valg af løsning, inklusiv isoleringstykkelse og materialer, vurderes nu ud fra de aktuelle projektkriterier, såsom totaløkonomi eller C0 2 besparelse. Forskermetoden 1. Man udvælger nogle af de detaljer, der anses for mest kritiske og modellerer dem med et 2D varme- og fugtteknisk værktøj, fx programmerne Delphin eller Wufi2D. Hvis der fandtes tilsvarende 3D beregningsværktøj, burde man benytte det for de detaljer, der vurderes at have betydelige 3D effekter, fx en bjælkeende af træ eller stål. Som randbetingelser vælges enten dynamiske vejrdata for den aktuelle lokalitet (hvilket i Danmark betyder vejrdata for København) eller månedsvis konstant inde- og udeklima. Slagregn bør inkluderes i beregningen for at kunne vurdere de ældre murede ydervægge. Beregningen gennemføres for fx 10 år. 2. Beregningsresultatet er temperatur og relativ fugtighed som funktion af tid. De steder, der anses kritiske, fx på indersiden af den nye dampspærre ved skillevæg eller i bjælkeenden vurderes med hensyn til risiko for skimmelvækst mm. I tilfælde med dynamiske timeværdier for temperatur og relativ fugtighed et sted i konstruktionen som beregningsresultat, er det oplagt også at benytte avancerede dynamiske beregningsmetoder for vurderingen af risiko for skimmelvækst: enten bestemmelse af skimmelsvampeindeks (Hukka & Viitanen 1999) eller den biohygrotermiske metode (Sedlbauer & Krus 2003). For vurdering af risiko for trænedbrydende svampe findes der også dynamiske beregningsmodeller (Viitanen et.al 2009) 3. Disse beregninger udføres for flere varianter af isoleringstykkelse og konstruktionsløsninger. Ved den del af konstruktionen, hvor forholdene er endimensionale, kan også placeringen af det tætte lag og graden af diffusionstæthed af de enkelte lag vurderes. 4. Nu tegner der sig et billede af forholdene ved det kritiske sted i konstruktionen som funktion af isoleringstykkelsen og evt. konstruktionsløsningen. Dermed kan både isoleringstykkelsen og konstruktionens opbygning bestemmes som den løsning, hvor risiko for fx skimmelvækst for den langvarige dynamiske påvirkning bliver mindst. Eftersom modellerne for vurderingen af skimmelrisiko også har sine begrænsninger, er det bedst at bruge resultaterne relativt i forhold til hinanden frem for som absolutte tal. Erfaringen med modellerne viser nemlig, at de med fordel kan bruges netop til sammenligning af løsninger (Peuhkuri et. al 2008).

11 11 5. Det endelige valg af løsning, inklusiv isoleringstykkelse og materialer, vurderes nu ud fra de aktuelle projektkriterier, såsom totaløkonomi eller C0 2 besparelse. Brugen af instationære hygrotermiske (flerdimensionale) beregninger sammen med dynamisk vurdering af skimmelrisikoen hører til den absolutte ekspertviden indenfor bygningsfysik. Derfor gennemgås i det følgende en stadig detaljeret, men noget enklere fremgangsmåde, der ikke er urealistisk at gennemføre i forbindelse med almindelig projekteringsarbejde. Forskellen på de to metoder De to beskrevne fremgangsmåder er principielt meget forskellige. Den avancerede forskermetode forudsiger bedst de typiske varme- og fugttekniske forhold og varigheden af disse i en konstruktion, mens sammenspillet mellem temperatur- og fugtforhold fremstilles meget forenklet i den enklere rådgivermodel. Derimod vurderes risikoen for skimmelvækst på den sikre side ved at benytte den enkle vurdering jf. SBi Anvisning 224, dvs. højst 75% RF. Kvalitetssikring Endelig gælder det for al modellering og beregning, at resultaterne er stærkt afhængige af de benyttede input data. Her spiller materialeværdierne en stor rolle. For at man skal kunne vurdere rigtigheden af beregningsresultatet, er det altid en god ide at udføre nogle følsomhedsanalyser. Disse går ud på at teste resultaterne for betydningen af usikkerhederne ved input parametrene. Man skal som udgangspunkt prøve at angive de mest realistiske materialeværdier. Begge metoder indeholder en del vurderinger, fx med hensyn til netop materialedata, og hvor det kritiske sted i konstruktionen findes. Bestemmelse af disse kræver indsigt i fugtteorien og erfaring med konkrete projekter. Eksempel på Rådgivermetoden I det følgende er analyseret en typisk situation, som den projekterende kan komme ud for i forbindelse med en indvendig efterisoleringssag. Der er valgt et typisk bygningsfysisk problempunkt i form af en kuldebro i forbindelse med samling af ydervæggen og en skillevæg. Der benyttes den mere pragmatiske Rådgivermetode, hvor der undersøges vha. termiske 2Dberegninger, om løsningen er problematisk for nogle isoleringstykkelser. Metoden går ud på at bestemme temperaturerne de kritiske steder i den efterisolerede konstruktion, fx i dette tilfælde ved dampspærren i samlingen mellem ydervæg og skillevæg. Desuden vurderes det, om det kan give risiko for fugtforhold, der kan føre til forringelse af indeklima (skimmelsvampevækst). Detaljen modelleres (se Figur 3) i en passende detaljeringsgrad i fx HEAT2. Randbetingelserne for den stationære beregning er som beskrevet i SBi Anvisning 224: T inde = 20 C og T ude = -1,1 C. Pilen i Figur 3 viser det kritiske sted, hvor temperaturen bestemmes. Beregningerne udføres for forskellige isoleringstykkelser for at danne et billede af sammenhængen mellem varmetab og eventuel kuldebroeffekt. Figur 4 viser dels temperaturforløbet i den uisolerede konstruktion og dels i den efterisolerede konstruktion.

12 12 Figur 3: Det fugtmæssigt kritiske punkt i konstruktionen findes på bagsiden af gipspladen tættest på skillevæggen. Vandret snit af den efterisolerede detalje ved pudset skillevæg. Figur 4: Temperaturforløb i konstruktionen ifølge 2D beregning af kuldebroen i forbindelse med en samling af massiv murstensvæg og en skillevæg af mursten. a) Før efterisolering, b) efterisolering med 100mm.

13 13 Når beregningsresultaterne aftegnes som funktion af isoleringstykkelsen, fås Figur 5. Figuren illustrerer, hvordan varmetabet reduceres mest med de første centimeter af isoleringen. Effekten aftager med isoleringstykkelsen. Temperaturen af det kritiske sted i konstruktionen finder derimod sit minimum ved mm indvendig efterisolering. Ligeledes er linjetabskoefficienten og dermed kuldebroeffekten størst for isoleringstykkelserne omkring 100 mm (se Tabel 3). Til sammenligning giver tilsvarende udvendig efterisolering ingen kuldebro og dermed en noget højere indvendig overfladetemperatur (Figur 5 og Tabel 3). Alle isoleringstykkelser i dette eksempel giver indvendige overfladetemperaturer, der ligger over den kritiske temperatur for Fugtbelastningsklasse 2. Ved isoleringstykkelserne mm ligger denne temperatur kun en smule under grænsen for Fugtbelastningsklasse 3. Det kan således konkluderes, at i dette tilfælde bør man isolere med mere end 100 mm. Den øvre grænse kan bestemmes ud fra projektøkonomi og ønskerne til det indvendige areal Overfladetemperatur 16 T T (udvendig isolering) Fugtklasse 3 Fugtklasse 2 Varmetab 40 Varmetab [W/m] Isoleringstykkelse Figur 5: Massiv murstensvæg ved en skillevæg af mursten. Den kritiske indvendige overfladetemperatur i hjørnet og varmetabet som funktion af isoleringstykkelsen. Til sammenligning er der angivet, hvad den indvendige overfladetemperatur ville være i forbindelse med udvendig efterisolering med 100 mm. Der er også angivet de kritiske overfladetemperaturer ved de mest almindelige fugtbelastningsklasser 2 og 3.

14 14 Tabel 3: Linjetabskoefficient for bygningsdetaljen som funktion af efterisoleringstykkelsen. Isoleringstykkelse Linjetabskoefficient [W/mK] 0-0,0 50 0, indvendigt 0,15 udvendigt 0, , ,13 5. Valg af materialer til indvendig efterisolering Når der skal vælges materialer til indvendig efterisolering, er der nogle vigtige hensyn: Man skal vælge isoleringsmaterialer med forholdsvis lav varmeledningsevne, da pladsen på indersiden altid vil være begrænset. I enkelte tilfælde, specielt i forbindelse med facadedetaljer, kan man overveje den noget dyrere vakuumisolering, som til gengæld isolerer ca. fire gange bedre end almindelig mineraluld Materialerne og specielt isoleringsmaterialet skal ikke være fugtfølsomme: Der er risiko for indtrængende slagregn gennem det gamle murværk og ligeledes risiko for, at fugtig indeluft alligevel kan trænge ind, trods ønsket om lufttæthed. Derfor frarådes brugen af organiske isoleringsmaterialer. Isoleringen skal være nem at udføre, uden der opstår betydelige kuldebroer. Dette kræver specielt en vurdering af materialevalget til de bærende elementer i efterisoleringslaget. Valget af materialet er bl.a. afhængig af den gamle konstruktion og de belastninger, den udsættes for. I en række tilfælde, specielt i forbindelse med gammelt massivt murværk, vil man gerne undvære en dampspærre på indersiden af hensyn til optimal udtørring af konstruktionen. I disse tilfælde kan man med fordel bruge isolering af kalciumsilikat. Kalciumsilikat har den egenskab, at den er kapillært aktiv, og dermed kan fugt, der eventuelt kan være opsuget i murværket pga. regn, som kondens fra den fugtige indeluft eller pga. opstigende grundfugt, ledes ud af væggen, uden at der ophobes fugt i konstruktionen.

15 15 6. Hvad skal der tages i hensyn ved udførelse? Tætning Det kan ikke nævnes ofte nok, at valget af den indvendige efterisolering kræver ekstrem fokus på konstruktionens lufttæthed og specielt lufttæthed af den indvendige overflade. Især samlingerne mellem ydervæggen og skillevægge, etagedæk, vinduer, tagkonstruktion og kældergulv er vigtige. Gode råd om tætning af klimaskærmen findes fx i Videncenter for energibesparelser i bygningers notat om tætning af klimaskærm. Lufttætheden kan og bør måles med en trykprøvning. Rensning Det er lige så vigtigt at understrege, at de indvendige overflader, der skal isoleres, skal renses for organisk snavs og fugtfølsomme materialer som fx maling og tapet inklusiv tapetklister, og at bløde masonitplader skal fjernes helt. Særlig problemstilling ved ældre etagedæk af træ Problemstillingen ved de ældre etagedæk af træ i forbindelse med indvendig efterisolering er en særlig udfordring. Som illustreret før, er det meget svært beregningsmæssigt at komme med et kvalificeret bud på, om den efterisolerede konstruktion vil være holdbar: Eftersom den gamle gulvkonstruktion med bræddegulv ikke kan laves 100% lufttæt, vil den fugtige indeluft have potentiel adgang til bjælkeenderne. Derfor anbefales følgende: At vurdere bjælkernes tilstand før isoleringsarbejdet. Træfugtighed af bjælkeenden måles med egnet udstyr (se SBi Anvisning 224) og dermed vurderes, om bjælkens bæreevne allerede er reduceret. Træfugtigheden skal være under 15 % Bæreevneen skal være intakt Hvis bjælkelaget er i god stand, så er der umiddelbart ingen erfaringsmæssigt, der hindrer at gennemføre en god indvendig efterisolering dimensioneret efter denne vejledning. Hvis fugtigheden allerede for den uisolerede konstruktion er for høj, eller bjælkens bæreevne er reduceret, så skal man IKKE efterisolere indvendigt. I stedet kan overvejes Løsninger med indblæsning af isolering også i hulrummet omkring bjælkeenden (kan gøres med omtanke under alle omstændigheder for yderligere at kunne reducere varmetabet). Udskiftning af bjælkerne og etablering af nye etagedæk. Nye etagedæk bør projekteres med henblik på, at den indvendige efterisolering kan fortsætte uafbrudt så vidt som muligt. Dermed reduceres kuldebroeffekten. Erfaringerne fra enkelte forskningsprojekter med fokus på indvendig efterisolering både i Danmark (SBi-Rapport 113, 1993) og i Tyskland (fx Protokollband Nr. 32, 2005) bekræfter nemlig, at de målte fugtforhold i bjælkeenderne i den efterisolerede løsning ligger under det kritiske.

16 16 For eksempel ligger relativ fugtighed af bjælkeenden under 65% over flere års målinger i ét af de tyske projekter, hvor konstruktionen fuldstændig ligner et typisk dansk etagedæk af træ. Efterisoleringstykkelsen i dette projekt er 80 mm (glasuld), og den målte relativ fugtighed indendørs ligger mellem 20-50% om vinteren og mellem 30-65% om sommeren. Forklaringen findes højst sandsynligt på lufttætheden af den udførte efterisolering: Risikoen for indtrængning af det fugtige indeluft er i dette tilfælde minimeret ved at lade dampspærren på den indvendige side af efterisoleringen fortsætte langs etagedækket, altså både på over- og undersiden af det ellers utætte træbjælkelag. Løsningen er enkel og sikker, men kræver nye gulv- og loftbelægninger. Forslaget i SBi Anvisning 221 om at udelade isoleringen omkring etagedæk tæt på ydervæggen, er dermed ikke nødvendigvis den eneste måde at sikre holdbarhed af bjælkeenderne. 7. Litteratur Byg-Erfa (2009). Indvendig efterisolering af ældre mure. Byg-Erfa blad nr. (37) SBi Rapport 113 (1993). Indvendig efterisolering af en etageejendom. Byggeteknik, priser, erfaringer. Statens Byggeforskningsinstitut. SBi Anvisning 221 (2008). Efterisolering af etageboliger. Statens Byggeforskningsinstitut. SBi Anvisning 224 (2009) Fugt i bygninger. Statens Byggeforskningsinstitut. Hukka, A, and Viitanen, H. (1999). A mathematical model of mould growth on wooden material. Wood Science and Technology. 33 (6) Peuhkuri, R.; Viitanen, H.; Ojanen, T. (2008). Modelling of mould growth in building envelopes. Proceedings of the IEA ECBCS Annex 41 Closing seminar, Copenhagen, June 19, 2008 Protokollband Nr. 32. (2005) Faktor 4 auch bei sensiblen Altbauen: Passivhauskomponenten + Innendämmung. Arbeitskreis kostengünstige Passivhäuser Phase III. Sedlbauer K. & Krus, M. (2003). A new model for mould prediction and its application in practice. In Research in Building Physics. Ed. by Carmelit et al. Proc. of 2nd International conference on Building Physics. Viitanen, H. ; Toratti, T.; Peuhkuri, R.; Ojanen, T. ; Makkonen, L.; Jämsä, S.; Ruokolainen, L. ; Räisänen, J. (2009) Modelling Durability of Wooden Structures. Proceedings of 4th International Building Physics Conference, Istanbul, Turkey, 2009

Bunch 01 (arbejdstegning) Lodret snit i betonelement-facader Bunch 02 (arbejdstegning) Lodret snit i lette facader

Bunch 01 (arbejdstegning) Lodret snit i betonelement-facader Bunch 02 (arbejdstegning) Lodret snit i lette facader Galgebakken Renovering af facader 2620 Albertslund Notat Sag nr.: KON145-N003A Vedr.: Vurdering af sokkelisolering 1. Baggrund Efter aftale med Frank Borch Sørensen fra Nova5 arkitekter er Bunch Bygningsfysik

Læs mere

Fare for fugtskader når du efterisolerer

Fare for fugtskader når du efterisolerer Page 1 of 5 Pressemeddelelse 05/11 2009 Fare for fugtskader når du efterisolerer Mange bygningsejere overvejer i denne tid med rette at investere i efterisolering og andre energiforbedringer. Statens Byggeforskningsinstitut

Læs mere

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering 50 mm. Beton. Dræn

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering 50 mm. Beton. Dræn Energiløsning UDGIVET NOVEMBER 2011 - REVIDERET DECEMBER 2014 Indvendig efterisolering af kældervæg Kældervægge bør efterisoleres, hvis den samlede isoleringstykkelse svarer til 50 mm eller mindre. Efterisolering

Læs mere

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering 50 mm. Beton. Dræn

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering 50 mm. Beton. Dræn Energiløsning UDGIVET NOVEMBER 2011 - REVIDERET DECEMBER 2011 Indvendig efterisolering af kældervæg Kældervægge bør efterisoleres, hvis den samlede isoleringstykkelse svarer til 50 mm eller mindre. Efterisolering

Læs mere

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering 50 mm. Beton. Dræn

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering 50 mm. Beton. Dræn Energiløsning UDGIVET NOVEMBER 2011 - REVIDERET DECEMBER 2015 Indvendig efterisolering af kældervæg Kældervægge bør efterisoleres, hvis den samlede isoleringstykkelse svarer til 50 mm eller mindre. Efterisolering

Læs mere

Efterisolering af hulrum i etageadskillelser

Efterisolering af hulrum i etageadskillelser Energiløsning store bygninger Efterisolering af hulrum i etageadskillelser UDGIVET DECEMBER 2012 - REVIDERET DECEMBER 2014 For etageejendomme opført i perioden ca. 1850 1920 er etageadskillelser typisk

Læs mere

God energirådgivning - klimaskærmen

God energirådgivning - klimaskærmen God energirådgivning - klimaskærmen Tæt byggeri og indeklima v/ Anne Pia Koch, Teknologisk Institut Byggeri Fugt og Indeklima 1 Fokus på skimmelsvampe Mange forskellige faktorer influerer på indeklimaet

Læs mere

Beregning af linjetab ved CRC altanplader

Beregning af linjetab ved CRC altanplader CRC Technology ApS Beregning af linjetab ved CRC altanplader Maj 2006 CRC Technology ApS Beregning af linjetab ved CRC altanplader Maj 2006 Dokument nr Revision nr Udgivelsesdato 18 maj 2006 Udarbejdet

Læs mere

Sådan efterisoleres med kvalitet

Sådan efterisoleres med kvalitet Kvalitetsguide UDGIVET DECEMBER 2011 Sådan efterisoleres med kvalitet Efterisolering er et effektivt og sikkert tiltag, der både sparer energi og forbedrer indeklimaet. Kvaliteten af efterisoleringsarbejdet

Læs mere

Slip for fugtproblemer og skimmelsvamp en gang for alle

Slip for fugtproblemer og skimmelsvamp en gang for alle Slip for fugtproblemer og skimmelsvamp en gang for alle Hvorfor SkamoWall? SkamoWall er svaret på en tilbagevendende udfordring for dig, der har problemer kolde og fugtige indvendige vægge, der ophober

Læs mere

KÆLDRE ER FUGTTEKNISK SET KOMPLICEREDE

KÆLDRE ER FUGTTEKNISK SET KOMPLICEREDE KÆLDRE ER FUGTTEKNISK SET KOMPLICEREDE Der er stor forskel på fugt- og temperaturforholdene i de dele af konstruktionerne, som ligger henholdsvis over og under terræn. Kældergulve vil i fugtteknisk henseende

Læs mere

Efterisolering af gulv over uopvarmet kælder. Fordele. Lavere CO 2. Bræddegulv Indskudsler Efterisolering 75 mm

Efterisolering af gulv over uopvarmet kælder. Fordele. Lavere CO 2. Bræddegulv Indskudsler Efterisolering 75 mm Energiløsning UDGIVET NOVEMBER 2011 - REVIDERET JUNI 2018 Efterisolering af gulv over uopvarmet kælder Et gulv over en uopvarmet kælder isoleret med mindre end 100 mm bør efterisoleres til nedenstående

Læs mere

Udvendig efterisolering af betonsandwichelementer

Udvendig efterisolering af betonsandwichelementer Energiløsning store bygninger UDGIVET DECEMBER 2012 - REVIDERET DECEMBER 2014 Udvendig efterisolering af betonsandwichelementer Mange etageejendomme fra 1960 erne og 1970 erne er udført i betonelementer

Læs mere

Ofte rentable konstruktioner

Ofte rentable konstruktioner Ofte rentable konstruktioner Vejledning til bygningsreglementet Version 1 05.01.2016 Forord Denne vejledning er en guide til bygningsreglementets (BR15) energiregler og de løsninger, der normalt er rentable,

Læs mere

Klimaskærm konstruktioner og komponenter

Klimaskærm konstruktioner og komponenter Klimaskærm konstruktioner og komponenter Indholdsfortegnelse Klimaskærm...2 Bygningsreglementet...2 Varmetab gennem klimaskærmen...2 Transmissionstab...3 Isolering (tag, væg, gulv)...3 Isolering af nybyggeri...3

Læs mere

UDBEDRING AF FUGTPROBLEMER SKOVPARKEN, NÆSTVED

UDBEDRING AF FUGTPROBLEMER SKOVPARKEN, NÆSTVED UDBEDRING AF FUGTPROBLEMER SKOVPARKEN, NÆSTVED HENRIK M. TOMMERUP RAMBØLL - RENOVERING & BYGNINGSFYSIK HMT@RAMBOLL.DK SKOVPARKEN, ALMENBOLIGER Rambøll har for Lejerbo udarbejdet helhedsplan for renovering

Læs mere

L7: FUGT I KONSTRUKTIONER

L7: FUGT I KONSTRUKTIONER L7: FUGT I KONSTRUKTIONER SCHOOL OF ENGINEERING DAGENS PROGRAM Opgave fra lektion 6 Håndberegning af fugtforhold i konstruktioner ved hjælp af Glazer s håndberegningsmetode Eksempler på fugtforhold i efterisolerede

Læs mere

Facadeelement 13 Kompakt element med lodret panel

Facadeelement 13 Kompakt element med lodret panel Notat Fugt i træfacader II Facadeelement 13 Kompakt element med lodret panel Tabel 1. Beskrivelse af element 13 udefra og ind. Facadebeklædning Type Lodret panel 22 mm Vanddampdiffusionsmodstand GPa s

Læs mere

RYETHAVE TERMOGRAFERING

RYETHAVE TERMOGRAFERING Til E/F Ryethave Dokumenttype Rapport Dato April, 2017 RYETHAVE TERMOGRAFERING Revision Dato 2017-04-06 Udarbejdet af TPO Kontrolleret af JANL Godkendt af TPO Ref. 1100022467 1/29 INDHOLD 1. INDLEDNING

Læs mere

Facadeelement 6 Uventileret hulrum bag vandret panel

Facadeelement 6 Uventileret hulrum bag vandret panel Notat Fugt i træfacader II Facadeelement 6 Uventileret hulrum bag vandret panel Tabel 1. Beskrivelse af element 6 udefra og ind. Facadebeklædning Type Vandret panel 22 mm Vanddampdiffusionsmodstand GPa

Læs mere

3 Termiske forhold og skimmelrisiko på ydervægge i boliger

3 Termiske forhold og skimmelrisiko på ydervægge i boliger BO-VEST AFDELING 10, HYLDESPJÆLDET INDEKLIMA VURDERING AF EKSISTERENDE FORHOLD FOR YDERVÆGGE ADRESSE COWI A/S Parallelvej 2 2800 Kongens Lyngby TLF +45 56 40 00 00 FAX +45 56 40 99 99 WWW cowi.dk MARTS

Læs mere

Facadeelement 17 Kompakt element med puds og med trækassette som bagvæg

Facadeelement 17 Kompakt element med puds og med trækassette som bagvæg Notat Fugt i træfacader II Facadeelement 17 Kompakt element med puds og med trækassette som bagvæg Tabel 1. Beskrivelse af element 17 udefra og ind. Facadebeklædning Type Puds 5 mm Vanddampdiffusionsmodstand

Læs mere

EFTERISOLERING FORTSAT VÆRKTØJER OG PRAKSIS. Udvikling i U-værdier

EFTERISOLERING FORTSAT VÆRKTØJER OG PRAKSIS. Udvikling i U-værdier EFTERISOLERING FORTSAT VÆRKTØJER OG PRAKSIS Udvikling i U-værdier Krav i 1979 Linjetab i 2001 2 1 www.energikoncept.dk 3 http://www.byggeriogenergi.dk/ 4 2 Energiløsninger bliver revideret og bliver løbende

Læs mere

ISOBYG Nyholmsvej Randers BETONTEMPERATUR AFHÆNGIG AF ISOLERINGSPLACERING OG SOKKEL TYPE

ISOBYG Nyholmsvej Randers BETONTEMPERATUR AFHÆNGIG AF ISOLERINGSPLACERING OG SOKKEL TYPE BETON TEMPERATUR 1. BETONTEMPERATUR AFHÆNGIG AF ISOLERINGSPLACERING OG SOKKEL TYPE Hos ISOBYG har vi ofte modtaget spørgsmålet om hvorvidt blokkene må vendes, så den tykke isolering vender ind,eller det

Læs mere

Der blev foretaget Mycrometer Air test, samt Mycrometer Surfacetest boligens i børneværelset.

Der blev foretaget Mycrometer Air test, samt Mycrometer Surfacetest boligens i børneværelset. Svampeundersøgelse Lokation: XX Baggrund Den 27/03-2013 har Ole Borup fra Termo-Service.dk foretaget skimmelundersøgelse i ovennævnte bolig. Undersøgelsen blev foretaget efter aftale med XX. Undersøgelsen

Læs mere

Indvendig efterisolering af massive murede vægge

Indvendig efterisolering af massive murede vægge Energiløsning store bygninger UDGIVET DECEMBER 2012 - REVIDERET DECEMBER 2014 Indvendig efterisolering af massive murede vægge For etageejendomme fra ca. 1850 1920 er ydervæggene fuldmurede (massive).

Læs mere

Udvendig efterisolering af betonsandwichelementer

Udvendig efterisolering af betonsandwichelementer Energiløsning store bygninger UDGIVET DECEMBER 2012 - REVIDERET DECEMBER 2015 Udvendig efterisolering af betonsandwichelementer Mange etageejendomme fra 1960 erne og 1970 erne er udført i betonelementer

Læs mere

Facadeelement 12 Kompakt element med en-på-to facadebeklædning

Facadeelement 12 Kompakt element med en-på-to facadebeklædning Notat Fugt i træfacader II Facadeelement 12 Kompakt element med en-på-to facadebeklædning Tabel 1. Beskrivelse af element 12 udefra og ind. Facadebeklædning Type En-på-to (bræddetykkelse) 22 mm Vanddampdiffusionsmodstand

Læs mere

Indvendig efterisolering af tung ydervæg. Eksisterende isoleringstykkelse. Eksisterende isoleringstykkelse

Indvendig efterisolering af tung ydervæg. Eksisterende isoleringstykkelse. Eksisterende isoleringstykkelse Energiløsning UDGIVET JANUAR 2010 - REVIDERET JUNI 2018 Indvendig efterisolering af tung ydervæg Tunge ydervægge er vægge af enten mursten eller letbeton. Bagmuren er normalt bærende. Hvis væggen er massiv,

Læs mere

Facadeelement 8 Uventileret hulrum og vindspærre af OSB-plade

Facadeelement 8 Uventileret hulrum og vindspærre af OSB-plade Notat Fugt i træfacader II Facadeelement 8 Uventileret hulrum og vindspærre af OSB-plade Tabel 1. Beskrivelse af element 8 udefra og ind. Facadebeklædning Type Vandret panel 22 mm Vanddampdiffusionsmodstand

Læs mere

Facadeelement 3 "Ventileret" hulrum bag lodret panel

Facadeelement 3 Ventileret hulrum bag lodret panel Notat Fugt i træfacader II Facadeelement 3 "Ventileret" hulrum bag lodret panel Tabel 1. Beskrivelse af element 3 udefra og ind. Facadebeklædning Type Lodret panel 22 mm Vanddampdiffusionsmodstand GPa

Læs mere

BR 08. Kritisk fugttilstand. Materialer i ligevægt med omgivende luft. Maj måned omkring 75% RF. Orienterende fugtkriterier -Betongulv

BR 08. Kritisk fugttilstand. Materialer i ligevægt med omgivende luft. Maj måned omkring 75% RF. Orienterende fugtkriterier -Betongulv BR 08 Kritisk fugttilstand -i bygninger I byggetilladelsen kan stilles krav om: 4.1 stk 6 Bygningskonstruktioner og materialer må ikke have et fugtindhold, der ved indflytning medfører risiko for vækst

Læs mere

Snittegning og foto Side 2 af 7

Snittegning og foto Side 2 af 7 Notat Fugt i træfacader II Facadeelement 14 Kompakt element med asfaltimprægneret træfiberplade som vindspærre Tabel 1. Beskrivelse af element 14 udefra og ind. Facadebeklædning Type Lodret panel 22 mm

Læs mere

Anvendeligheden og robustheden af indvendig isolering Fugtmålinger og skimmeundersøgelser i containerforsøg Praksisnær Cases Ryesgade & Folehaven

Anvendeligheden og robustheden af indvendig isolering Fugtmålinger og skimmeundersøgelser i containerforsøg Praksisnær Cases Ryesgade & Folehaven Anvendeligheden og robustheden af indvendig isolering Fugtmålinger og skimmeundersøgelser i containerforsøg Praksisnær Cases Ryesgade & Folehaven Teknologisk Institut Britt Haker Høegh, Seniorspecialist

Læs mere

Slip for fugtproblemer og skimmelsvamp en gang for alle

Slip for fugtproblemer og skimmelsvamp en gang for alle Slip for fugtproblemer og skimmelsvamp en gang for alle Hvorfor SkamoWall? SkamoWall er svaret på en tilbagevendende udfordring for dig, der har problemer kolde og fugtige indvendige vægge, der ophober

Læs mere

Facadeelement 11 Kompakt element med klinklagt facadebeklædning

Facadeelement 11 Kompakt element med klinklagt facadebeklædning Notat Fugt i træfacader II Facadeelement 11 Kompakt element med klinklagt facadebeklædning Tabel 1. Beskrivelse af element 11 udefra og ind. Facadebeklædning Type Klink (bræddetykkelse) 22 mm Vanddampdiffusionsmodstand

Læs mere

Effektiv varmeisolering. Komplet facadeisoleringssystem!

Effektiv varmeisolering. Komplet facadeisoleringssystem! Effektiv varmeisolering. Komplet facadeisoleringssystem! Med alle komponenter til facadeløsninger, der efterfølgende fremtræder med murstensoverflade. For både nybyggeri og renoveringsprojekter. Isolering

Læs mere

Facadeelement 9 Uventileret hulrum, vindspærre af cementspånplade

Facadeelement 9 Uventileret hulrum, vindspærre af cementspånplade Notat Fugt i træfacader II Facadeelement 9 Uventileret hulrum, vindspærre af cementspånplade Tabel 1. Beskrivelse af element 9 udefra og ind. Facadebeklædning Type Vandret panel 22 mm Vanddampdiffusionsmodstand

Læs mere

Facadeelement 5 Uventileret hulrum bag en-på-to facadebeklædning

Facadeelement 5 Uventileret hulrum bag en-på-to facadebeklædning Notat Fugt i træfacader II Facadeelement 5 Uventileret hulrum bag en-på-to facadebeklædning Tabel 1. Beskrivelse af element 5 udefra og ind. Facadebeklædning Type En-på-to (bræddetykkelse) 22 mm Vanddampdiffusionsmodstand

Læs mere

Sag nr.: KON145-N004A 2620 Albertslund Dato:

Sag nr.: KON145-N004A 2620 Albertslund Dato: Galgebakken Notat - Rev. A Sag nr.: KON145-N004A 2620 Albertslund Dato: 2017-06-06 Vedr.: Renovering af krybekældre 1. Resumé Der har efter det oplyste været mange tilfælde med skimmelvækst i Galgebakken

Læs mere

Emne Spørgsmål Svar. Inhomogene lag

Emne Spørgsmål Svar. Inhomogene lag Emne Spørgsmål Svar Inhomogene lag Hvordan beregner man et inhomogent materialelag, som indeholder et "Ikke ventileret hulrum" hvor 20 % er bjælke og 80 % et ikke ventileret hulrum. Beregningen af R-værdien

Læs mere

Facadeelement 7 Uventileret hulrum og vindspærre af krydsfiner

Facadeelement 7 Uventileret hulrum og vindspærre af krydsfiner Notat Fugt i træfacader II Facadeelement 7 Uventileret hulrum og vindspærre af krydsfiner Tabel 1. Beskrivelse af element 7 udefra og ind. Facadebeklædning Type Vandret panel 22 mm Vanddampdiffusionsmodstand

Læs mere

Tagkonstruktioner. Forandringers betydning for fugt og funktion. November 2014. Skimmelsvampe. Carsten Johansen Beton, Tilstand

Tagkonstruktioner. Forandringers betydning for fugt og funktion. November 2014. Skimmelsvampe. Carsten Johansen Beton, Tilstand Tagkonstruktioner Forandringers betydning for fugt og funktion November 2014 Seniorkonsulent Cand. Scient., tømrer Teknologisk Institut, Byggeri & Anlæg Program - Den centrale problematik ved forandring

Læs mere

Facadeelement 1 Ventileret hulrum bag klinklagt facadebeklædning

Facadeelement 1 Ventileret hulrum bag klinklagt facadebeklædning Notat Fugt i træfacader II Facadeelement 1 Ventileret hulrum bag klinklagt facadebeklædning Tabel 1. Beskrivelse af element 1 udefra og ind. Facadebeklædning Type Klink (bræddetykkelse) 22 mm Vanddampdiffusionsmodstand

Læs mere

UNDGÅ FUGT OG KONDENS

UNDGÅ FUGT OG KONDENS UNDGÅ FUGT OG KONDENS Udarbejdet af Laros A/S januar 2011 Kondensdannelse i beboelseslejligheder...2 Årsager til kondensdannelse...2 Beboernes forhold...2 Manglende udluftning...2 Ophobning af fugt møbler,

Læs mere

Termo-Service.dk - Alt Inden For Termografi, Trykprøvning og Energirådgivning

Termo-Service.dk - Alt Inden For Termografi, Trykprøvning og Energirådgivning Facade mod Vest IR000911.IS2 På billet ses Murværket med en ensartet isoleringsværdi. Vinduerne i stue plan ses med normalt varmetab for denne type vinduer. Kældervinduet ses med et større varmetab. Taget

Læs mere

Galgebakken Beregning og vurdering af facader Sag nr.: KON145-R001 2015-07-01

Galgebakken Beregning og vurdering af facader Sag nr.: KON145-R001 2015-07-01 Staktoften 22D CVR nr. 34 92 62 47 DK-2950 Vedbæk Danske Bank 4490-0011241972 Telefon (+45) 52 39 79 52 E-mail tbn@bunchbyg.dk Web www.bunchbyg.dk Galgebakken Beregning og vurdering af facader Sag nr.:

Læs mere

Tommy R. Odgaard, BSc., MSc., ph.d. Renovering og byggeteknik, COWI

Tommy R. Odgaard, BSc., MSc., ph.d. Renovering og byggeteknik, COWI DTU Symposium om indvendig efterisolering Containerforsøg hvad viser målingerne Tommy R. Odgaard, BSc., MSc., ph.d. Renovering og byggeteknik, COWI 1 Bygningsfysik, in short Case studie Sammenfatning Agenda

Læs mere

Udvendig efterisolering af letbetonvægge

Udvendig efterisolering af letbetonvægge Energiløsning etageejendomme Udvendig efterisolering af letbetonvægge UDGIVET DECEMBER 2013 - REVIDERET DECEMBER 2014 I halvtredserne, tresserne og halvfjerdserne blev en del mindre etageejendomme opført

Læs mere

Udvendig efterisolering af massive murede vægge

Udvendig efterisolering af massive murede vægge Udvendig efterisolering af massive murede vægge Energiløsning etageejendomme UDGIVET NOVEMBER 2013 - REVIDERET DECEMBER 2014 Mange ældre etageejendomme er opført med massive ydervægge med ringe varmeisolering.

Læs mere

Byggeskadefonden november 2010 Tommy Bunch-Nielsen Bygge- og Miljøteknik A/S

Byggeskadefonden november 2010 Tommy Bunch-Nielsen Bygge- og Miljøteknik A/S Byggeskadefonden november 2010 Tommy Bunch-Nielsen Bygge- og Miljøteknik A/S Næsten alle renoveringer medfører krav om isolering op til dagens standard efter BR10 SBi anvisning 224 DS/EN ISO13788 26/11/2010

Læs mere

50% på varmeregningen OP TIL. Din autoriserede Papiruldsisolatør:

50% på varmeregningen OP TIL. Din autoriserede Papiruldsisolatør: 10 gode grunde til at ISOLERE MED PAPIRULD SPAR OP TIL 50% på varmeregningen Din autoriserede Papiruldsisolatør: Hvad er Papiruld? Isoleringsmaterialet Papiruld er et granulat, der kan anvendes til nybyggeri

Læs mere

ISOKLINKER. Efterisolering og murværk i ét. NUTIDENS LØSNING PÅ FREMTIDENS BEHOV

ISOKLINKER. Efterisolering og murværk i ét. NUTIDENS LØSNING PÅ FREMTIDENS BEHOV ISOKLINKER Efterisolering og murværk i ét. NUTIDENS LØSNING PÅ FREMTIDENS BEHOV Dear Reader, ISOKLINKER facade isoleringssystemer er blevet afprøvet og testet gennem mange år og løbende forskning og udvikling

Læs mere

Efterisolering af kældergulv. Fordele

Efterisolering af kældergulv. Fordele Energiløsning UDGIVET NOVEMBER 2011 - REVIDERET JUNI 2018 Efterisolering af kældergulv Et kældergulv, som er isoleret med mindre end 100 mm, bør efterisoleres, hvis gulvet alligevel skal brydes op fx i

Læs mere

Facadeelement 15 Ventileret element med bagvæg af letklinkerbeton

Facadeelement 15 Ventileret element med bagvæg af letklinkerbeton Notat Fugt i træfacader II Facadeelement Ventileret element med bagvæg af letklinkerbeton Tabel 1. Beskrivelse af element udefra og ind. Facadebeklædning Type Lodret panel 22 mm Vanddampdiffusionsmodstand

Læs mere

Fugt Studieenhedskursus 2011. Kursets mål og evaluering. Fugt Studieenhedskursus

Fugt Studieenhedskursus 2011. Kursets mål og evaluering. Fugt Studieenhedskursus Fugt Studieenhedskursus 211 Dag 1: Introduktion (BR1, fugtteori, diffusionsberegning, øvelser) Dag 2: Opgaver og beregning Dag 3: Afleveringsopgave og opfølgning Side 1 Efterår 211 Kursets mål og evaluering

Læs mere

Ventilation af tagkonstruktioner

Ventilation af tagkonstruktioner Ventilation af tagkonstruktioner Morten Hjorslev Hansen BYG-ERFA / DUKO København 14. maj 2014 Ventilation af tagkonstruktioner med lille og stor taghældning 2 Erfaringsblade : (27) 130605 (27) 131105

Læs mere

Sådan findes kuldebroerne. og andre konstruktioner med stort varmetab

Sådan findes kuldebroerne. og andre konstruktioner med stort varmetab Kvalitetsguide UDGIVET DECEMBER 2011 Sådan findes kuldebroerne og andre konstruktioner med stort varmetab Efter af klimaskærmen er et effektivt og sikkert tiltag, der både sparer energi og forbedrer indeklimaet.

Læs mere

Fugtforhold ved isolering Med træfiber og papiruld

Fugtforhold ved isolering Med træfiber og papiruld Fugtforhold ved isolering Med træfiber og papiruld Agenda - Hvorfor papiruld og træfiber som isolering? - Min interesse! - Hvordan breder vi det glade budskab! Og hvad slår fejl i dag! - Hvorfor fokus

Læs mere

TERMOGRAFI AF BOLIG Kundeadresse

TERMOGRAFI AF BOLIG Kundeadresse TERMOGRAFI AF BOLIG Kundeadresse Dato-2013 Termo-service.dk I/S, Termofoto@termo-service.dk, Afd. Fyn/Jylland: 29821362, Afd. Sjælland: 29821361 Termografisk inspektion af bygning Kunde adresse Bygnings

Læs mere

Kondens i moderne byggeri

Kondens i moderne byggeri Kondens i moderne byggeri Kondens er et naturligt fænomen og ikke et produktproblem. Det er tegn på høj luftfugtighed, hvilket betyder, at øget ventilation er nødvendig. En gennemsnitlig familie på fire

Læs mere

Termo-Service.dk - Alt Inden For Termografi, Trykprøvning og Energirådgivning

Termo-Service.dk - Alt Inden For Termografi, Trykprøvning og Energirådgivning Stue 1. sal mod Nord IR000699.IS2 Skråvæg en angiver temperatursvingninger Ses med punktligt kuldeindtræk i kip, og varierende isoleringsværdi imellem spærkonstruktion. Stue 1. sal mod Syd IR000707.IS2

Læs mere

Rawi. Munke Mose Allé 9 5000 Odense C Tlf.: 63126500 Fax: 63126599

Rawi. Munke Mose Allé 9 5000 Odense C Tlf.: 63126500 Fax: 63126599 1. kolonne beskriver hvilken bygningsdel der undersøges Områder markeret med GULT indikere efterisoleringen. 2. kolonne beskriver ved isolering mindre end det angivet skal der efterisoleres 3. kolonne,

Læs mere

SKAMO PLUS. Egenskaber. Fakta. For yderligere information, kontakt: www.skamol.com

SKAMO PLUS. Egenskaber. Fakta. For yderligere information, kontakt: www.skamol.com SKAMO PLUS www.skamol.com Egenskaber Diffusionsåben og kapillaraktiv Skimmelhæmmende Isolerende Ubrandbar Høj trykstyrke Fri for sundhedsskadelige stoffer Nem at forarbejde med alm. håndværktøjer Fakta

Læs mere

Eksempelsamling af renoveringsprojekter

Eksempelsamling af renoveringsprojekter Reelle energibesparelser ved energirenovering af etageejendomme Eksempelsamling af renoveringsprojekter August 2018 Projekt Reelle energibesparelser ved energirenovering af etageejendomme Rapport titel

Læs mere

SPAR OP TIL 50% ved at efterisolere

SPAR OP TIL 50% ved at efterisolere 10 gode grunde til ISOLERING MED PAPIRULD SPAR Moderne og effektiv isolering OP TIL 50% ved at efterisolere Høj brandmodstand Test fortaget af Dansk Brandteknisk Institut og test vist i TV har vist, at

Læs mere

EUDP-projekt. Nyt koncept til energirenovering af murede facader - analyse vedrørende energibesparelser. Februar 2015. Troels Kildemoes, Ekolab

EUDP-projekt. Nyt koncept til energirenovering af murede facader - analyse vedrørende energibesparelser. Februar 2015. Troels Kildemoes, Ekolab EUDP-projekt Nyt koncept til energirenovering af murede facader - analyse vedrørende energibesparelser Februar 2015 Troels Kildemoes, Ekolab Indholdsfortegnelse 1. Introduktion... 3 2. Varmetab i klimaskærmen

Læs mere

Fugt i bygninger. Steffen Vissing Andersen. VIA University College Campus Horsens

Fugt i bygninger. Steffen Vissing Andersen. VIA University College Campus Horsens Steffen Vissing Andersen VIA University College Campus Horsens 2009 Indholdsfortegnelse 1. Fugt i luft... 3 1.1. Vanddampdiagram... 3 1.2. Damptryksdiagram... 5 1.3. Dugpunktstemperatur... 5 2. Temperatur

Læs mere

Indvendig analyseret termografisk gennemgang xxxx

Indvendig analyseret termografisk gennemgang xxxx Indvendig analyseret termografisk gennemgang xxxx 7/11-2010 Nr 18. Skunk i lille rum IR000293.IS2 Her ses skunken i det lille rum. I skunken var der fugtig luft, og der måltes en ligevægtsfugtighed (træfugtighed)

Læs mere

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering. Drænende fyld. Dræn

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering. Drænende fyld. Dræn Energiløsning UDGIVET NOVEMBER 2011 - REVIDERET DECEMBER 2014 Udvendig efterisolering af kældervæg Opvarmede kældre hvor kælderydervæggen er isoleret med mindre end 100 mm, bør efterisoleres til nedenstående

Læs mere

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering. Drænende fyld. Dræn

Indvendig efterisolering af kældervæg. Fordele. Lavere CO 2. Isolering. Drænende fyld. Dræn Energiløsning UDGIVET NOVEMBER 2011 - REVIDERET DECEMBER 2011 Udvendig efterisolering af kældervæg Opvarmede kældre hvor kælderydervæggen er isoleret med mindre end 100 mm, bør efterisoleres til nedenstående

Læs mere

FACADEISOLERING, DER VIRKER

FACADEISOLERING, DER VIRKER VIDENCENTER FOR ENERGIBESPARELSER I BYGNINGER NETVÆRKSDAGEN, 27. NOVEMBER 2015. FACADEISOLERING, DER VIRKER HENRIK M. TOMMERUP, CIVILING., SENIORKONSULENT RAMBØLL, ØRESTAD AFD. RENOVERING & BYGNINGSFYSIK

Læs mere

Funktionsanalyser Bygningsdele ETAGEBOLIGER BORGERGADE

Funktionsanalyser Bygningsdele ETAGEBOLIGER BORGERGADE sanalyser Bygningsdele Indhold YDER FUNDAMENTER... 8 SKITSER... 8 UDSEENDE... 8 FUNKTION... 8 STYRKE / STIVHED... 8 BRAND... 8 ISOLERING... 8 LYD... 8 FUGT... 8 ØVRIGE KRAV... 9 INDER FUNDAMENTER... 10

Læs mere

Fig. 6.11.5 Kile type D - Triangulært areal tykkest med forskellig tykkelse ved toppunkterne

Fig. 6.11.5 Kile type D - Triangulært areal tykkest med forskellig tykkelse ved toppunkterne U D R = 2 min R mid R ln R min mid R R ln R + R ( R R )( R R )( R R ) min mid min R max min max min max mid mid R max max R ln R mid max Fig. 6.11.5 Kile type D - Triangulært areal tykkest med forskellig

Læs mere

LSE-NYBODER SÅDAN BRUGER DU DIN NYBODER-BOLIG RIGTIGT BEBOERVEJLEDNING

LSE-NYBODER SÅDAN BRUGER DU DIN NYBODER-BOLIG RIGTIGT BEBOERVEJLEDNING LSE-NYBODER SÅDAN BRUGER DU DIN NYBODER-BOLIG RIGTIGT BEBOERVEJLEDNING SJÆL, CHARME OG FUGT I ældre boligbebyggelser som Nyboder, hvor der er opstigende fugt, kolde facadevægge og opfugtninger som følge

Læs mere

Fugtkursus 2015. Introduktion (BR10, fugtteori, diffusionsberegning, øvelser) Opgaver og beregning Afleveringsopgave og opfølgning

Fugtkursus 2015. Introduktion (BR10, fugtteori, diffusionsberegning, øvelser) Opgaver og beregning Afleveringsopgave og opfølgning Fugtkursus 2015 Introduktion (BR10, fugtteori, diffusionsberegning, øvelser) Opgaver og beregning Afleveringsopgave og opfølgning Side 1 2015 Kursets mål og evaluering Mål: Opnå fortrolighed med grundlæggende

Læs mere

Bygherrevejledning. Renovering af tage med tagpap og folie. Udarbejdet i samarbejde med Energistyrelsen

Bygherrevejledning. Renovering af tage med tagpap og folie. Udarbejdet i samarbejde med Energistyrelsen Bygherrevejledning Renovering af tage med tagpap og folie Energibesparelse og efterisolering Udarbejdet i samarbejde med Energistyrelsen 2 Indledning Ca. 40% af Danmarks energiforbrug anvendes til bygningers

Læs mere

Bygningens tæthed er også dit ansvar. Gode råd om dampspærre og tæthed

Bygningens tæthed er også dit ansvar. Gode råd om dampspærre og tæthed Bygningens tæthed er også dit ansvar Gode råd om dampspærre og tæthed Et fælles ansvar Dampspærren er ofte et sart element i konstruktionen, fordi den meget let kan blive beskadiget, hvis den er i vejen

Læs mere

Fugtkursus 2015. Opgaver. Steffen Vissing Andersen

Fugtkursus 2015. Opgaver. Steffen Vissing Andersen Fugtkursus 2015 Opgaver Side 1 2015 Afleveringsopgave Mål Mål: Opnå fortrolighed med grundlæggende fugtteori, fugttransportmekanismer og forståelse for vanddampdiagrammet. Foretage kvalificeret fugtanalyse

Læs mere

GALGEBAKKEN ALBERTSLUND

GALGEBAKKEN ALBERTSLUND GALGEBAKKEN ALBERTSLUND Orienteringsmøde om Helhedsplanen Tirsdag d. 7. maj 2019 EKAS Rådgivende Ingeniører A/S Trørødvej 74, 2950 Vedbæk Tlf.: 45 65 01 11 e-mail: ekas@ekas.dk www.ekas.dk Dagsorden Præsensation

Læs mere

Bondehuset. Energirigtig

Bondehuset. Energirigtig Energirigtig renovering Bondehuset Se hvor bondehuset typisk kan renoveres Få bedre komfort og spar penge på varmeregningen hvert år Reducer din udledning af drivhusgasser Få et bedre energimærke og en

Læs mere

Fugtteknikeren hvad kan han egentlig hjælpe dig med

Fugtteknikeren hvad kan han egentlig hjælpe dig med Det bliver hurtigt meget indforstået når man aftaler at sende en fugttekniker ud til en kunde, så forventningsafstemning er yderst vigtigt, særligt når vi har med private kunder at gøre og kunder der ikke

Læs mere

Sto-konceptet At skabe funktion ud fra teknik. Vand- og vindtætning med ventileret facadesystem: StoVentec

Sto-konceptet At skabe funktion ud fra teknik. Vand- og vindtætning med ventileret facadesystem: StoVentec Sto-konceptet At skabe funktion ud fra teknik Vand- og vindtætning med ventileret facadesystem: StoVentec Sæt stop for snigende nedbrydning Med to-trins tætning Det ventilerede facadesystem StoVentec Tiden

Læs mere

Forskning inden for området på DTU Byg - Indvendig efterisolering - Renovering af parcelhuse - Fossilfri varmeforsyning

Forskning inden for området på DTU Byg - Indvendig efterisolering - Renovering af parcelhuse - Fossilfri varmeforsyning Forskning inden for området på DTU Byg - Indvendig efterisolering - Renovering af parcelhuse - Fossilfri varmeforsyning Svend Svendsen Danmarks Tekniske Universitet ss@byg.dtu.dk 5 Marts 2014 1 Indvendig

Læs mere

BOLIGTERMOGRAFI Kirstineparken Hørsholm

BOLIGTERMOGRAFI Kirstineparken Hørsholm BOLIGTERMOGRAFI Kirstineparken 7 2970 Hørsholm 21/02-2012 Termo-service.dk I/S, Termofoto@termo-service.dk, Afd. Fyn/Jylland: 29821362, Afd. Sjælland: 29821361 Termografisk inspektion af bygning Kirstineparken

Læs mere

TERMOGRAFIRAPPORT. Udarbejdet for: Boligforening Vesterport Abildgårdsvej Frederikshavn

TERMOGRAFIRAPPORT. Udarbejdet for: Boligforening Vesterport Abildgårdsvej Frederikshavn TERMOGRAFIRAPPORT Udarbejdet for: Boligforening Vesterport Abildgårdsvej 35 9900 Frederikshavn Undersøgelsessted: Afd. 4, Mølleparken, 9900 Frederikshavn Dato for undersøgelse 21.12.2009, 14 og 20.01.2010

Læs mere

Få mere ud af din energirenovering. Hvordan beboere i energirenoveret byggeri er afgørende for at opnå energibesparelser

Få mere ud af din energirenovering. Hvordan beboere i energirenoveret byggeri er afgørende for at opnå energibesparelser Få mere ud af din energirenovering Hvordan beboere i energirenoveret byggeri er afgørende for at opnå energibesparelser Energirenovering - hvad kan du forvente? Her er et overblik over, hvad du som beboer

Læs mere

Energirenovering af etagebyggeriet

Energirenovering af etagebyggeriet Gregersensvej 1 Bygning 2 2630 Taastrup Telefon 7220 2255 info@byggeriogenergi.dk www.byggeriogenergi.dk Energirenovering af etagebyggeriet Juni 2010 Titel Energirenovering af etagebyggeriet Udgave 1.

Læs mere

Dampspærrer og fugtspærrer. Erik Brandt

Dampspærrer og fugtspærrer. Erik Brandt Dampspærrer og fugtspærrer Erik Brandt Byggeskader skyldes ofte fugttransport Diffusion: Transport sker gennem materialerne. Diffusion skyldes damptryksforskelle - der vil ske en udjævning mod samme niveau.

Læs mere

Termo-Service.dk - Alt Inden For Termografi, Trykprøvning og Energirådgivning

Termo-Service.dk - Alt Inden For Termografi, Trykprøvning og Energirådgivning Stue IR001774.IS2 Loft: Ses med kuldeindtræk ved tætning mellem ramme og karm. Her bør tætningslisterne kontrolleres, og udskiftes efter behov. Ses med et generelt velisoleret overfladeareal. Der ses dog

Læs mere

Efterisolering af terrændæk. Fordele. Lavere CO 2

Efterisolering af terrændæk. Fordele. Lavere CO 2 Energiløsning UDGIVET NOVEMBER 2011 - REVIDERET DECEMBER 2011 Efterisolering af terrændæk Terrændæk, som er isoleret med mindre end 100 mm isolering i alt over og under betonen, skal efterisoleres, hvis

Læs mere

Tætning af klimaskærm i forbindelse med energirenovering

Tætning af klimaskærm i forbindelse med energirenovering Guide Guide til håndværksmæssig udførelse: Hvorfor tætne et eksisterende hus? UDGIVET NOVEMBER 2009 Tætning af klimaskærm i forbindelse med energirenovering Når man vil spare på varmen i sit hus, er et

Læs mere

Ajourføringsprogram v. Kristian Vielwerth, Teknologisk Institut, Energi & Klima

Ajourføringsprogram v. Kristian Vielwerth, Teknologisk Institut, Energi & Klima Ajourføringsprogram 2017 v. Kristian Vielwerth, Teknologisk Institut, Energi & Klima Hele huset rundt Læringsmål i 2016 Energivejlederen anno 2016 Energirenovering efter BR15 Tilskud fra Energiselskaber

Læs mere

Få mere ud af din energirenovering. Hvordan beboere i energirenoveret byggeri er afgørende for at opnå energibesparelser

Få mere ud af din energirenovering. Hvordan beboere i energirenoveret byggeri er afgørende for at opnå energibesparelser Få mere ud af din energirenovering Hvordan beboere i energirenoveret byggeri er afgørende for at opnå energibesparelser Energirenovering - hvad kan du forvente? Her er et overblik over, hvad du som beboer

Læs mere

Energirenovering af terrændæk og kældervægge udfordringer og barrierer

Energirenovering af terrændæk og kældervægge udfordringer og barrierer Energirenovering af terrændæk og kældervægge udfordringer og barrierer Membran-Erfa møde om Fundamenter, sokler og kælderkonstruktioner - fugtspærrer, radonforebyggelse og geotekstiler Orientering om BR10

Læs mere

Tommy Bunch-Nielsen Bygge- og Miljøteknik A/S

Tommy Bunch-Nielsen Bygge- og Miljøteknik A/S Tommy Bunch-Nielsen Bygge- og Miljøteknik A/S Specialrådgiver indenfor bygningsfysik Har ændret alle design regler Bygge- og Miljøteknik A/S 26-11-2010 1 De sidste 15 års udvikling inden for fugtteknik

Læs mere

SKIMMELUNDERSØGELSE AF TERRÆNDÆK OG GULVE

SKIMMELUNDERSØGELSE AF TERRÆNDÆK OG GULVE BO-VEST. AFD. 10. HYLDESPJÆLDET SKIMMELUNDERSØGELSE AF TERRÆNDÆK OG GULVE ADRESSE COWI A/S Parallelvej 2 2800 Kongens Lyngby TLF +45 56 40 00 00 FAX +45 56 40 99 99 WWW cowi.dk SÆRUNDERSØGELSE PROJEKTNR.

Læs mere

PRODUKT INFORMATION. KEFA Drænpuds-System Multifunktionspuds. Værd at vide om 2008

PRODUKT INFORMATION. KEFA Drænpuds-System Multifunktionspuds. Værd at vide om 2008 PRODUKT INFORMATION Værd at vide om 2008 KEFA Drænpuds-System Multifunktionspuds Oversigt: 1. Generelt om problemer med fugt i bygninger 1.1 Byggematerialer i relation til problemer 1.2 Fugt i kældre et

Læs mere