02402 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel 4
|
|
|
- Johan Andersen
- 9 år siden
- Visninger:
Transkript
1 0202 Vejledende løsninger til hjemmeopgaver og øvelser i kapitel Hjemmeopgaver Vejledende løsning.2 Eksperimentet kan beskrives ved binomialfordelingen, X b(x; n, p), hvor n = og p = 1 2. Dermed kan man beregne: ( n P (antal krone) = P (X = x) = p x) x (1 p) n x Sandsynligheden for at slå ingen krone (og dermed plat): ( ) P (0 krone) = P (X = 0) = ( )0 (1 1 2 ) 0 = ( 1 2 ) På samme måde beregnes de øvrige udfald: ( P (1 krone) = P (X = 1) = ( 1) 1 2 )1 (1 1 2 ) 1 = ( 1 2 ) ( ) P (2 krone) = P (X = 2) = ( )2 (1 1 2 ) 2 = 6 ( 1 2 ) ( P (3 krone) = P (X = 3) = ( 3) 1 2 )3 (1 1 2 ) 3 = ( 1 2 ) P ( krone) = P (X = ) = ( ) ( 1 2 ) (1 1 2 ) = ( 1 2 ) Sansynlighederne kan afbildes i et bar chart (søjlediagram), således at man har en figur for tæthedsfunktionen. Ovenstående sandsynligheder kunne også være fundet ved hjælp af tabel 1, idet man bemærker, at P (X = x) = P (X x) P (X x 1) I R Alternativt kunne opgaven løses i R vha. dbinom. > a=dbinom(0,,1/2) > b=dbinom(1,,1/2) > c=dbinom(2,,1/2) > d=dbinom(3,,1/2) > e=dbinom(,,1/2) > > y<-c(a,b,c,d,e) > y [1]
2 Dette plotter vi nu i R vha. fã lgende kode > plot(y, type="o", col="blue", ann=false, axes=false) > axis(1, at=1:5, lab=c("0","1","2","3","")) > axis(2) > > title(xlab= "Antal kroner", col.lab=rgb(0,0.5,0)) > title(ylab= "Sandsynlighed", col.lab=rgb(0,0.5,0)) Sandsynlighed Antal kroner Vejledende løsning.16 (6ed:.1) Der er oplyst p = 0.0, og man skal beregne sandsynligheden for succes i ud af 12, hvilket klart kan beskrives ved en binomialfordeling når rørene er uafhængige. Hermed fås: P ( rør) = P (X = ) = ( ) 12 (0.) (1 0.0) 12 = 95 (0.0256) (0.0167) =
3 Opgaven kunne også være løst vha tabel 1: P (X = ) = P (X ) P (X 3) = = I R Her kan den også løses på samme måde, vi skriver dem op i så de passer til rækkefølgen ovenfor. > dbinom(,12,0.) [1] > pbinom(,12,0.)-pbinom(3,12,0.) [1] Vejledende løsning.21(6ed:.19) Producenten påstår, at P (for lidt kaffe i glas) = 0.1. Der tages stikprøver a n = 16, og producentens påstand godkendes, hvis der er færre end 3 glas, hvori indholdet er for lavt. a) Hvis den faktiske andel med for lidt kaffe er p = 0.05, findes > pbinom(2,16,0.05) [1] P (X 2) = B(2; 16, 0.05) = b) Hvis den faktiske andel med for lidt kaffe er p = 0.10, findes > pbinom(2,16,0.1) [1] P (X 2) = B(2; 16, 0.10) = c) Hvis den faktiske andel med for lidt kaffe er p = 0.15, findes > pbinom(2,16,0.15) [1] P (X 2) = B(2; 16, 0.15) = d) Hvis den faktiske andel med for lidt kaffe er p = 0.20, findes > pbinom(2,16,0.2) [1] P (X 2) = B(2; 16, 0.20) = Vejledende løsning.2(6ed:.22) Opgaven kan opfattes som stikprøvetagning uden tilbagelægning, dvs. sandsynligheden skal beregnes vha den hypergeometriske fordeling. Vi definerer: N = 12 a = 3 3
4 n = x = 1 (bemærk at man også kunne have formuleret a = 9 og x = 3) ( ) ( ) a N a x n x f(x) = P (X = x) = ( ) N n ( ) ( ) P (X = 1) = ( ) = Den hypergeometriske fordeling findes også i R som (hyper), men den har en anden form end i lærebogen og vi vil derfor ikke gennemgå den her. Øvelser Vejledende løsning.13(6ed:.11) a) Ved direkte opslag i tabel 1, side 576, P (X 7) = B(7; 19, 0.5) = > pbinom(7,19,0.5) [1] b) b(7; 19, 0.5) = 0.12 > dbinom(7,19,0.5) [1] c) B(8; 10, 0.95) = > pbinom(8,10,0.95) [1] d) b(8; 10, 0.95) = > dbinom(8,10,0.95) [1] e) 1 B(3; 10, 0.35) = > 1-pbinom(3,10,0.35) [1] f) B(; 9, 0.3) B(1; 9, 0.3) = > pbinom(,9,0.3)-pbinom(1,9,0.3) [1]
5 Vejledende løsning.15(6ed:.13) P (human error) = p = 0.7, n = og x = 2. Dermed fås: ( ) P (X = 2) = b(2;, 0.75) = (1 0.75) 2 = > dbinom(2,,0.75) [1] Bemærk, at løsningen også kunne fås ved tabelopslag, idet P (X = 2) = P (X 2) P (X 1) > pbinom(2,,0.75) - pbinom(1,,0.75) [1] Vejledende løsning.19 Det oplyses P (ready to eat) = p = 0.9, dvs. P (not ready to eat) = (1 p) = 0.1. Desuden har vi n = 18. a) x = 18 gode, P (X = 18) = 1 P (X 17) = 0.15 (bemærk, at opgaven også kan løses ved at vælge 1 p = 0.1 og dermed finde sandsynligheden for x = 0 dårlige) > 1-pbinom(17,18,0.9) [1] b) Med 1 p = 0.1 skal vi finde for x 2, dvs. P (X 2) = 0.73 > pbinom(2,18,0.1) [1] c) Med 1 p = 0.1 skal vi finde for x, dvs. P (X ) = 1 P (X 3) = > 1-pbinom(3,18,0.1) [1] Vejledende løsning.32(6ed:.30) Ved at bruge formel for middelværdi og varians for en diskret stokastisk variabel, findes a) b) σ 2 = µ = 3 x i f(x i ) = = 1 i=0 3 (x i µ) 2 f(x i ) = (0 1) 2 0.+(1 1) (2 1) (3 1) = 1 i=0 5
6 Vejledende løsning.1(6ed:.39) Idet vi betragter udfald fra en binomial fordeling, anvendes formlerne: a) µ = 338 og σ = 13 b) µ = 120 og σ = 10 c) µ = 2 og σ =.8 d) µ = 520 og σ = 13.9 µ = n p σ 2 = n p(1 p) σ = n p(1 p) Vejledende løsning.57(6ed:.55) Vi betragter nu en Poisson fordelt variabel, X P (λ), hvor λ = 5.8. Vi søger nu at finde sandsynligheden: P (inaktiv) = P (X 13) = 1 P (X 12) = = > 1-ppois(12,5.8) [1] Vejledende løsning.59(6ed:.57) Der er igen tale om en Poisson fordelt variabel, idet vi betragter intensitet af kundeankomster, hvor λ = 1.5 a) P (X ) = > ppois(,1.5) [1] b) For en 2-minuts periode har vi λ = = 3 og dermed P (X 3) = 1 P (X 2) = > 1-ppois(2,3) [1] c) For en 6-minuts periode har vi λ = = 9 og dermed P (X 15) = > ppois(15,9) [1] Vejledende løsning Ropg3.3.1 Der er tale om en binomialfordeling med n = 10 og p = 0.6, og den angivne sandsynlighed er P (X = ) som i bogen også kaldes b(; 10, 0.6). 6
7 Vejledende løsning Ropg3.3.2 De to sandsynligheder, der er oplyst er fã lgende: P (X ) = P (X 5) = Man får således de à nskede sandsynligheder som: P (X 5) = P (X < 5) = P (X ) = P (X > ) = 1 P (X ) = = P (X = 5) = P (X 5) P (X ) = = Vejledende løsning Ropg3.3.3 Der er tale om en poissonfordeling med λ = 3, og den angivne sandsynlighed er Vejledende løsning Ropg3.3. P (X = ) = 3 e 3.! De to sandsynligheder, der er oplyst er fã lgende: P (X ) = P (X 5) = Man får således de à nskede sandsynligheder som: P (X 5) = P (X < 5) = P (X ) = P (X > ) = 1 P (X ) = = P (X = 5) = P (X 5) P (X ) = =
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer
02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5
02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling
Vejledende løsninger til opgaver i kapitel 6
Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation
Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800
Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.
Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen
Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
INSTITUT FOR MATEMATISKE FAG c
INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: [email protected] Dataanalyse Sandsynlighed og stokastiske
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
Løsninger til kapitel 5
1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)
; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen
Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,
Grundlæggende statistik Lektion 2 Indhold Diskrete fordelinger Binomial fordelingen Poisson fordelingen Hypergeometrisk fordeling Data typer el. typer af tilfældige variable Diskrete variable > Kategoriseres
Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling
Disrete fordelinger Fire vigtige disrete fordelinger: 1. Uniform fordeling (disret) 2. Binomial fordeling 3. Hyper-geometris fordeling 4. Poisson fordeling 1 Uniform fordeling Definition Esperiment med
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen
Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136
Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse
Løsninger til kapitel 6
Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring
Kvantitative Metoder 1 - Forår Dagens program
Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.
2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Statistik noter - Efterår 2009 Keller - Statistics for management and economics
Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Sandsynlighedsregning Oversigt over begreber og fordelinger
Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)
Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala
3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter
Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning
Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Løsning til eksamen 16/
1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen
Karakteristiske funktioner og Den Centrale Grænseværdisætning
E6 efterår 1999 Notat 10 Jørgen Larsen 20. oktober 1999 Karakteristiske funktioner og Den Centrale Grænseværdisætning Karakteristiske funktioner som er nære slægtninge til Fourier-transformationen) er
Løsning til eksamen d.27 Maj 2010
DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1
Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22
Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: [email protected]
CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)
CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)
Binomialfordeling og konfidensinterval for en andel
Undervisningsbeskrivelse Termin Juni 119 Institution Uddannelse Erhvervsgymnasiet Grindsted HHX Fag og niveau Matematik B Lærer Ina Maslakova (IM) Hold 2.IA18, 2.AI18, 2.AV18 soversigt (6) 1 Lineær programmering
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Teoretisk Statistik, 16. februar Generel teori,repetition
1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske
Binomialfordelingen. Binomialfordelingen. Binomialfordelingen
Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige
Nanostatistik: Opgaver
Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
