Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål
|
|
|
- Erling Hedegaard
- 8 år siden
- Visninger:
Transkript
1 Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen mellem tæthed og fordelingsfunktion Middelværdi, varians og spredning integraler af funktioner med værdier i R definitioner og regneregler Paretofordelingen, med fokus på eksistens af middelværdi/varians Normalfordelingen: tæthed, middelværdi, varians SaSt (Uge 48, tirsdag) 1 / 26 Sandsynlighedstæthed og sandsynlighedsmål P er et kontinuert fordeling på I R hvis P(A) = 1 A (x)p(x)dx = I A p(x) dx for pæne delmængder A af I, hvor p er en (sandsynligheds)tæthed, dvs. p(x) 0 med I p(x)dx = 1. Fordelingsfunktion for en kontinuert fordeling P med tæthed p: F (x) = x p(y)dy, x R Hvis P er kontinuert gælder for a I og for x < y: SaSt (Uge 48, tirsdag) 2 / 26 Eksempler Eksponentialfordelingen med parameter λ > 0 { p(x) = λe λx 0, x 0 (x > 0), F (x) = 1 e λx, x > 0 Ligefordelingen på [a, b]: p(x) = 1 0 x < a x a (a x b) F (x) = b a b a, a x b 1 x > b P({a}) = 0 P([x,y]) = P((x,y]) = P([x,y)) = P((x,y)) = F (y) F (x) SaSt (Uge 48, tirsdag) 3 / 26 SaSt (Uge 48, tirsdag) 4 / 26
2 Eksempler Betafordelingen med parameter β > 0 (i simpel udgave): p(x) = βx β 1, 0 < x < 1 Er p overhovedet en tæthed? Og hvad er fordelingsfunktionen? Eksempel 5.1.3: X ligefordelt på [ 1, 1]. Definer og lad P være fordelingen af Y. Y = max(x,0) Hvad er P({0})? Er fordelingen af Y kontinuert? Og er fordelingsfunktionen kontinuert i 0? Fordelingsfunktionen beregnet i eksempel læs selv! Kontinuert fordeling og kont. stokastisk variabel Hvis P er kontinuert med tæthed p, så: F (x) = x p(y)dy, x R Den omvendte vej: Lad F være fordelingsfunktionen for en fordeling P. Er P kontinuert? Og i givet fald, hvad er tætheden? Sætning Hvis F kan skrives F (x) = x f (y)dy hvor f er ikke-negativ, så er P kontinuert med tæthed f. Sætning Antag at P ( (a,b) ) = 1 og at F er kontinuert differentiabel på (a,b). Så er P kontinuert med tæthed { F p(x) = (x), x (a,b) 0, ellers Bemærk: a kan være, b kan være +. SaSt (Uge 48, tirsdag) 5 / 26 Middelværdi for SV med endeligt udfaldsrum SaSt (Uge 48, tirsdag) 6 / 26 Middelværdi for kontinuert fordeling Husk et øjeblik tilbage på tilfældet med endeligt udfaldsrum. X stokastisk variabel (SV) med udfaldsrum {a 1,...,a k } og sandsynlighedsfunktion p, dvs. P(X = a i ) = p(a i ). Husk middelværdi, varians og spredning/standardafvigelse fra s. 83 og 89: E(X ) = k i=1 a i p(a i ) ( [X ] ) 2 Var(X ) = E E(X ) = E(X 2 ) ( E(X ) ) 2 sd(x ) = Var(X ) X kontinuert stokastisk variabel med tæthed p. Kan antage at p er defineret på hele R men p er evt. 0 udenfor et interval. Definer middelværdien af X som xp(x) dx... når integralet vel at mærke er veldefineret! Bemærk at xp(x) kan være negativ, så der skal lidt mere til end hidtil! SaSt (Uge 48, tirsdag) 7 / 26 SaSt (Uge 48, tirsdag) 8 / 26
3 Integraler af funktioner med negative værdier Eksempler og majoranter Sidste gang: integraler af ikke-negative funktioner. Nu kan f være negativ. f : (, ) R kaldes integrabel hvis f er integrabel, dvs. hvis følgen I n konvergerer hvor I n = n n f (x) dx Hvis f er integrabel kan vi definere integralet som sidst uden problemer: n f (x)dx = lim f (x)dx n n Samme som differens mellem integral af positivdel og negativdel. Ellers skriver vi f (x) dx = + og siger at f ikke er integrabel. Eksempel D.1.5 f 1 (x) = x/(1+x 2 ) med stamfunkt. F 1 (x) = 1 2 log(1+x 2 ). Hvad er n n f 1(x)dx? Hvad er n n f 1(x) dx? Er f 1 integrabel? Eksempel D.1.6 f 2 (x) = x/(1 + x 2 ) 2 med stamfunkt. 1 F 2 (x) = 2(1 + x 2 ) Hvad er n n f 2(x)dx? Hvad er n n f 2(x) dx? Er f 2 integrabel? Følger også af sætning D.1.7. Sætning D.1.7 To funktioner f,g : I R. Hvis f (x) g(x) for alle x R og g er integrabel, så er f også integrabel. g kaldes en majorant. SaSt (Uge 48, tirsdag) 9 / 26 Middelværdi for kontinuert fordeling igen SaSt (Uge 48, tirsdag) 10 / 26 Eksempler X kontinuert stokastisk variabel med tæthed p. Kan antage at p er defineret på hele R men p er evt. 0 udenfor et interval. Vi siger at X har middelværdi hvis x p(x)dx < og definerer så middelværdien som E(X ) = xp(x)dx < Hvis x p(x)dx = siger vi at X ikke har middelværdi. Middelværdien er et gennemsnit af de mulige værdier hvor hvert punkt vægtes efter hvor meget sandsynlighed der ligger i omegnen af punktet. Hvis X er begrænset, dvs. X c for et c > 0 så har X middelværdi. X ligefordelt på [a, b]. X begrænset så middelværdien eksisterer og er lig (a + b)/2. Hvorfor er det rimeligt? Betafordelingen med parameter β. Eksisterer middelværdien? Og i givet fald, hvad er middelværdien? Eksponentialfordelingen med parameter λ. Eksisterer middelværdien? Og i givet fald, hvad er middelværdien? Husk fortolkningen som fordelingen af første ankomst: stort λ betegner intensiteten af ankomster. SaSt (Uge 48, tirsdag) 11 / 26 SaSt (Uge 48, tirsdag) 12 / 26
4 Middelværdi for transformeret stokastisk variabel Regneregler X kontinuert stokastisk variabel på I med tæthed p. Funktion t : I R. Transformeret stokastisk variabel Y = t(x ). Sætning Y = t(x ) har middelværdi hvis og kun hvis t(x) p(x)dx < og middelværdien er så I E(Y ) = E(t(X )) = t(x)p(x) dx Kan altså beregne middelværdien af Y uden først at finde fordelingen af Y (som kan være diskret/kontinuert/ingen af delene). Sætningen bevises senere i et specialtilfælde. Hvad er E(X 2 ) hvis X er eksponentialfordelt? I Sætning Hvis X har middelværdi, så har a + bx middelværdi for a,b R og E(a + bx ) = a + be(x ) Og mere generelt: Sætning Hvis t 1 (X ) og t 2 (X ) har middelværdi så har Y = t 1 (X ) + t 2 (X ) også middelværdi og den er givet ved E ( t 1 (X ) + t 2 (X ) ) = E ( t 1 (X ) ) + E ( t 2 (X ) ) SaSt (Uge 48, tirsdag) 13 / 26 Varians og spredning SaSt (Uge 48, tirsdag) 14 / 26 Eksempler Vi siger at X har varians hvis x 2 p(x)dx < og definerer så variansen som ( [X ] ) 2 Var(X ) = E E(X ) Bemærkninger: x x så hvis X har varians så har X middelværdi (så Var(X ) er veldefineret, heldigt nok). Var(X ) = E(X 2 ) [E(X )] 2. Næsten altid nemmere at bruge denne formel, dvs. regne E(X 2 ) ud først. Variansen måler den gennemsnitlige kvadratiske afvigelse fra middelværdien. Spredning/standardafvigelse, sd(x ) = Var(X ). Nemmere at fortolke end variansen da den er på samme skala som variablen selv. Eksponentialfordelingen med parameter λ: Ligefordelingen på [a, b]: Check selv! Var(X ) = E(X 2 ) [E(X )] 2 = 2 λ 2 1 λ 2 = 1 λ 2 Var(X ) = (b a)2 12 Betafordelingen med parameter β: Eksisterer variansen? Og i givet fald, hvad er den? SaSt (Uge 48, tirsdag) 15 / 26 SaSt (Uge 48, tirsdag) 16 / 26
5 Eksempel: Paretofordelingen Definer p(x) = x (+1), x > 1 Paretofordelingen med parameter > 0. Er p en sandsynlighedstæthed? For hvilke værdier af har fordelingen middelværdi? Og hvad er middelværdien? For hvilke værdier af har fordelingen varians? Og hvad er variansen? Eksempel: Paretofordelingen X er paretofordelt med parameter > 0 hvis X har tæthed p(x) = x (+1), x > 1 Er p overhovedet en sandsynlighedstæthed? n 1 [ p(x)dx = x ] n = 1 1 n 1, n så integralet 1 p(x)dx eksisterer og er lig 1. For hvilke værdier af har X middelværdi? Og hvad er så EX? ( n 1 1 n 1 ) 1 (, 1 < 0 xp(x)dx = 1 1 n 1 ), 1 > 0 1 log(n), = 1 X har middelværdi hvis og kun hvis > 1, og så er EX = /( 1). SaSt (Uge 48, tirsdag) 17 / 26 Paretofordelingen For hvilke værdier af har fordelingen varians? Og hvad er variansen? Pointer: På tilsvarende måde ses at E(X 2 ) < hvis og kun hvis > 2, og i så fald er E(X 2 ) = Dermed bliver 2 Var(X ) = E(X 2 ) (EX ) 2 = ( ) 2 2 = 1 ( 2)( 1) 2 Der findes altså fordelinger uden middelværdi og varians Eksistens af varians stærkere end eksistens af middelværdi Hvordan viser det sig at middelværdi og varians ikke eksisterer? SaSt (Uge 48, tirsdag) 18 / 26 Paretofordelingen Simulationer: træk n tilfældige tal fra paretofordelingen, og beregn empirisk middelværdi (gennemsnit) og empirisk varians, se side 99: x = 1 n n x i, s 2 = 1 i=1 n 1 n i=1 (x i x) 2 x og s 2 vil stabilisere sig omkring E(X ) og Var(X ) når n vokser hvis disse størrelser eksisterer. antal obs. x s Stabilitet omkring E(X ) = 1.4 hhv. Var(X ) = 0.37 Eksplosion! SaSt (Uge 48, tirsdag) 19 / 26 SaSt (Uge 48, tirsdag) 20 / 26
6 Normalfordelingen: hvad og hvorfor? Standard normalfordelingen Standardnormalfordelingen eller N(0, 1) er den kontinuerte fordeling på R med tæthed φ(x) = 1 e x2 /2, x R 2π Hvorfor er den så interessant? Mange pæne matematiske egenskaber kommer os til gode både når vi laver sandsynlighedsregning og statistik Forbavsende mange data kan beskrives vha. normalfordelingen Den centrale grænseværdisætning: summer af (næsten) hvad som helst er normalfordelt, når bare der er led nok i summen Lineære normalfordelingsmodeller: passer godt til mange data; eksakte fordelingsresultater for estimatorer, teststørrelser mm. Density (φ) Tæthed z Cdf (Φ) Fordelingsfunktion z SaSt (Uge 48, tirsdag) 21 / 26 Carl Friedriech Gauss, SaSt (Uge 48, tirsdag) 22 / 26 Normalfordelingen Husk: φ(x) = 1 2π e x2 /2, x R Er φ overhovedet en tæthed? φ ikke-negativ Er φ integrabel på (, )? Er integralet lig 1? Se opgave 6.1. Momenter: E( X k ) < for alle k N idet K kan findes således at x k e x2 /2 < Ke x2 /4, x R Hvad er middelværdien, E(X )? Hvad er variansen, Var(X )? E(X 3 ) = 0 og E(X 4 ) = 3: opgave SaSt (Uge 48, tirsdag) 23 / 26 SaSt (Uge 48, tirsdag) 24 / 26
7 Fordelingsfunktion Resumé Fordelingsfunktionen kaldes Φ: Φ(x) = x φ(y)dy Der findes ikke noget eksplicit udtryk for Φ. Funktionsværdier beregnes vha. computer, lommeregner eller slås op i tabeller. R: Brug funktionen pnorm. For eksempel > pnorm(1.96) [1] > pnorm(0) [1] 0.5 Vigtige ting fra i dag: Sammenhæng mellem tæthed og fordelingsfunktion Middelværdi og varians, incl. eksistensproblemer Normalfordelingenen: tæthed, fordelingsfunktion, middelværdi, varians. I skal kunne regne på disse ting! På fredag: Normalfordelingenen: sammenhæng mellem N(0,1) og N(µ,σ 2 ). Tæthed for transformeret stokastisk variabel SaSt (Uge 48, tirsdag) 25 / 26 SaSt (Uge 48, tirsdag) 26 / 26
Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte
Teoretisk Statistik, 16. februar Generel teori,repetition
1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Sandsynlighedsregning Oversigt over begreber og fordelinger
Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Transformation af kontinuerte fordelinger på R, flerdimensionale kontinuerte fordelinger, mere om normalfordelingen Helle Sørensen Uge 7, onsdag SaSt2 (Uge 7, onsdag)
Eksamen 2014/2015 Mål- og integralteori
Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
INSTITUT FOR MATEMATISKE FAG c
INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: [email protected] Dataanalyse Sandsynlighed og stokastiske
Opgaver i sandsynlighedsregning
Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)
Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: [email protected] Dagens nye emner afsnit 6.3 (og 6.4 Betingede
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske
Karakteristiske funktioner og Den Centrale Grænseværdisætning
E6 efterår 1999 Notat 10 Jørgen Larsen 20. oktober 1999 Karakteristiske funktioner og Den Centrale Grænseværdisætning Karakteristiske funktioner som er nære slægtninge til Fourier-transformationen) er
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål
Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive
Betingede sandsynligheder Aase D. Madsen
1 Uge 12 Teoretisk Statistik 15. marts 2004 1. Betingede sandsynligheder Definition Loven om den totale sandsynlighed Bayes formel 2. Betinget middelværdi og varians 3. Kovarians og korrelationskoefficient
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4
02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1
Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen
Susanne Ditlevsen Institut for Matematiske Fag susanne
Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20.
Foldning af sandsnlighedsmål Lad µ og ν være to sandsnlighedsmål på (R, B). Fortolkning Lad φ : R R være φ(, ) = + for (, ) R. Lad X og Y være to reelle stokastiske variable defineret på (Ω, F, P). Definition
hvor a og b er konstanter. Ved middelværdidannelse fås videre
Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Integration m.h.t. mål med tæthed
Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Løsning til prøveeksamen 1
IMM - DTU 020 Probability 2006-2-8 BFN/bfn Løsning til prøveeksamen Spørgsmål ) For en indikatorvariabel I A for hændelsen A gælder E(I A ) = P(A) (se for eksemepl side 68). Således er E(X) = P(N ) = =
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Løsning til eksamen 16/
1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen
Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering
Landmålingens fejlteori Lektion 3 Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition: Middelværdi og
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
Sandsynlighedsregning Stokastisk variabel
Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver
Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2 Københavns Universitet Susanne Ditlevsen og Helle Sørensen R opgaver Det er en god ide at vænne sig til at skrive kommandoerne i en editor
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)
; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians
