Projekt 5.9. Geometriske fraktaler og fraktale dimensioner

Størrelse: px
Starte visningen fra side:

Download "Projekt 5.9. Geometriske fraktaler og fraktale dimensioner"

Transkript

1 Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Indhold 1. Fraktaler og vækstmodeller Kløverøen Fraktal dimension Skridtlængdemetoden Netmaskemetoden Dimensionsbegrebet Fraktal-øvelse: Koch-øen Koch-øens areal, omkreds og dimension

2 Projekt 5.9. Geometriske fraktaler og fraktale dimensioner 1. Fraktaler og vækstmodeller Geometriske figurer med uendelig små mikrostrukturer kaldes for fraktaler. Det var den franskamerikanske matematiker Benoit Mandelbrot, der i 1975 indførte denne betegnelse efter det latinske ord for "brud" for at minde om de uregelmæssige brudflader, der ofte opstår, hvis man knækker en gren eller flækker en sten, jf. fraktur = benbrud. Fraktaler er derfor velegnede, når man skal lave modeller af naturens former og ønsker at fremhæve deres uregelmæssige struktur. Fx er kystlinjer fulde af bugter og sving af alle mulige størrelser. Ligegyldigt hvor tæt man kommer på en kyst, vil der dukke stadig mindre bugter og sving op, indtil vi kommer så tæt på, at mikrostrukturen drukner i havet, der skyller frem og tilbage i vandkanten. 2. Kløverøen Vi vil nu lave en model af en kystlinje, idet vi vil konstruere en fraktal ø. Som så mange andre simple matematiske modeller er modellen ikke specielt realistisk, men den er nyttig, fordi den på en enkel måde formår at gengive et væsentligt træk ved virkelige kyster: deres mikrostruktur. Forestil dig, at øen starter som et kvadrat. Hver dag kommer havet og gnaver sig ind på øen, samtidig med at det aflejrer det frigjorte materiale rundt langs øen. Øen ændrer derfor langsomt udseende efter nogle simple regler, som vi nu vil fastlægge. Vi dele. kvadratet i 16 lige store delkvadrater. Disse nummereres fra 1 til 16 som vist på figuren. Når havet gnaver sig ind på øen, fjerner det langs hver af siderne det tredje randkvadrat og aflejrer det ud for nabokvadratet. Den første dag fjerner havet altså randkvadraterne 3, 6, 9 og 12 og aflejrer dem ud for kvadraterne 2, 5, 8 og 11. Efter den første dag ser øen derfor således ud: Kløverøen efter 1. dag. De 16 delkvadrater deles nu i 16 nye kvadrater, der kan nummereres på samme måde som før. De yderste randkvadrater omfordeles som før. Havet gnaver sig ind på øen og fjerner hvert tredje randkvadrat og aflejrer det ved siden af. Efter den anden dag ser øen derfor således ud: 2

3 Havet gnaver sig ind på øen. Kløverøen efter 2. dag. Sådan fortsætter det dag efter dag! Kløverøen efter 3. dag. Den yderste dag! Efter den femte dag er de nye bugter og sving så små, at vi ikke længere kan se dem på ovenstående figurer, men i princippet kan vi fortsætte processen i det uendelige. Hver dag gnaver havet nye og endnu mindre bugter ud, og når der er gået uendelig mange dage (på "den yderste dag"), har havet så fået frembragt en fraktal ø, Kløverøen. Vi kan nemt finde arealet af Kløverøen. Hver eneste dag fjernes der nemlig ikke noget materiale fra øen. Der sker blot en omfordeling af materialet. Arealet er derfor uændret fra dag til dag, og på den yderste dag må Kløverøen derfor have præcis samme areal, som da den startede. Arealet har altså en konstant vækst. Anderledes forholder det sig med kystlængden. For hver dag der går, bliver ethvert vandret linjestykke erstattet af otte nye linjestykker, fire vandrette, der tilsammen har samme længde som det oprindelige 3

4 linjestykke, og fire lodrette, der tilsvarende tilsammen har samme længde som det oprindelige linjestykke. Det samme sker med de lodrette linjestykker. For hver dag bliver kystlængden derfor dobbelt så stor: Dag nr. x Kystlængden y Kystlængden y vokser altså eksponentielt med antallet af dage x ifølge forskriften y 4 2 x. Men heraf følger, at kysten på den yderste dag er blevet uendelig lang. 3. Fraktal dimension I eksemplet med Kløverøen så vi, at kystlængden blev dobbelt så stor for hver dag, der gik. Kløverøens kyst er derfor uendelig lang. I almindelighed giver det ingen mening at tale om længden af en fraktal kyst. I stedet vil vi prøve at finde et mål for, hvor "krøllet" den fraktale kyst er. Når vi zoomer ind på en kystlinje, dukker der for hver forstørrelse flere og flere bugter og sving op. Vi søger et mål for, hvor detaljeret denne mikrostruktur er. 3.1 Skridtlængdemetoden Vi kan undersøge, hvordan nye detaljer dukker op således: Hvis vi skal måle længden af en kystlinje (eller længden af en grænse mellem to lande, eller...) skal vi vælge en skridtlængde/målestok og derefter tælle, hvor mange skridt vi skal tage for at komme rundt langs kysten henholdsvis hvor mange målestokke vi skal lægge i forlængelse af hinanden for at komme hele øen rundt. Hvis kysten var en pæn glat kurve, fx en cirkelbue, ville vi nu umiddelbart forvente, at skridtlængden og det samlede antal skridt var omvendt proportionale. Hver gang vi gør skridtlængden 4 gange så lille, skulle antallet af skridt blive ca. fire gange så stort. Men sådan går det ikke i tilfældet med Kløverøen: Jo mindre skridt/målestokke vi tager, jo flere detaljer får vi med. Det samlede antal skridt/målestokke rundt langs Kløverøen bliver denne gang 8 gange så stort, for hver gang vi gør skridtlængden 4 gange så lille

5 Skridtlængde 1 1/4 1/16 1/64 Samlet antal skridt Jo mindre skridtlængde/målestok vi benytter, jo flere detaljer får vi som nævnt med i vores opmåling. Vi kan derfor knytte en forstørrelsesgrad til skridtlængden/målestokken. Forstørrelsesgraden angiver, hvor mange gange skridtlængden/målestokken går op i enhedsstykket. Hvis skridtlængden fx er 1/16, bliver forstørrelsesgraden 16. Vi kan så tælle antallet af skridt som funktion af forstørrelsesgraden: Forstørrelsesgrad x Antal skridt y Som vi har set, vil antallet af skridt y stige med en faktor 8, for hver gang forstørrelsesgraden x vokser med faktoren 4. Antallet af skridt y vokser derfor som en potensfunktion af forstørrelsesgraden x. Vi kan også finde den mere præcise sammenhæng ved at se på simple potenser af x og y. Da y-værdien vokser hurtigst må vi forvente at vi skal bruge en højere potens af x for at få 'ligevægt' i form af en simpel direkte proportionalitet: 1/

6 x x x y/ y 2 / Vi bemærker da at x 3 og y 2 er ligefrem proportionale, idet der gælder sammenhængen: y 16 x dvs. y 4 x 2. Konklusion: Antallet af skridt/målestokke vokser altså med eksponenten 3/2 i forhold til forstørrelsesgraden. Bemærkning: Hvis du er fortrolig med brugen af dobbeltlogaritmiske koordinatsystemer kan vi også afsætte sammenhørende værdier af forstørrelsesgraden x og antallet af skridt y i et dobbeltlogaritmisk koordinatsystem, hvorved vi netop får en ret linje: Vi kan da karakterisere mikrostrukturens vækst under forstørrelse ved hældningen af denne linje. I det ovenstående tilfælde finder vi således hældningen 3/2, dvs. eksponenten er igen givet ved 3/2. Dette tal, dvs. eksponenten 3/2, der knytter væksten i forstørrelsesgraden sammen med væksten i antallet af skridt/målestokke kaldes den fraktale dimension af kystlinjen. Det er vores mål for, hvor krøllet kysten er. Bemærkning: Skridtlængden er også god til at måle krølletheden, dvs. den fraktale dimension, for en rigtig kyst (grænse,...). I praksis sker det ved hjælp af geodætiske kort og en stikpasser. 6

7 3.2 Netmaskemetoden Skridtlængdemetoden kan ikke bruges på alle typer fraktaler. Vi vil derfor også skitsere en anden simpel og mere generelt anvendelig metode til udmåling af den fraktale dimension. Denne gang lægger vi et gennemsigtigt net hen over den fraktale figur og forestiller os, at de enkelte masker bliver sorte, hvis de overskæres af genstanden, henholdsvis lyse, hvis de ligger udenfor. Vælger vi nu mindre og mindre netmasker, svarende til større og større forstørrelse, dukker der flere og flere detaljer op. Nedenfor er antydet udseendet af den samme figur ved forskellige størrelser netmasker: Læg mærke til, at det denne gang er netmaskernes størrelse, der afgør, hvor små detaljer vi kan se. Alt hvad der er mindre end en enkelt maske i nettet, bliver ikke registreret. For nu igen at få et mål, et bestemt tal, der kan angive "krølletheden" af den fraktale ø, tæller vi antallet af masker, der gennemskæres af kystlinjen. Så kan vi afsætte sammenhørende værdier af forstørrelsesgraden og antal gennemskårne masker i et dobbeltlogaritmisk koordinatsystem. Hvis den fraktale struktur har en fraktal dimension, så vil de fremkomne punkter med god tilnærmelse ligge på en ret linje. Det er hældningen af denne rette linje, vi bruger som et mål for den fraktale dimension. 7

8 3.3 Dimensionsbegrebet Det kan synes mærkeligt at tale om en dimension på fx halvanden. I daglig tale er vi vant til at betragte dimension som et af de hele tal 0, 1, 2 eller 3. Et punkt har dimensionen 0, en linje dimensionen 1, en plan figur som fx et kvadrat har dimensionen 2, og endelig har en rumlig figur som fx en kasse dimensionen 3: Der er flere måder at begrunde dette intuitive dimensionsbegreb på. Én af dem er følgende: a) Hvis man står i et punkt, kan man slet ikke flytte sig uden at forlade punktet. Et punkt har dimension nul. b) Hvis man står på en linje, kan man bevæge sig i præcis en "retning" (idet vi ikke skelner mellem frem og tilbage), hvis man ikke må forlade linjen. En linje har dimension 1. Det samme gælder fx for en cirkelbue. Hvis man forstørrer buen omkring et punkt på cirkelbuen, kan man til sidst ikke skelne den fra en ret linje. Hvis man befinder sig på en cirkelbue, har man derfor også netop en retning (frem og tilbage i tangentens retning), hvor man kan bevæge sig uden at forlade cirkelbuen. c) Hvis man står inde i et kvadrat, har man altid to på hinanden vinkelrette retninger til rådighed, når man vil bevæge sig rundt i kvadratet. d) En plan figur har dimension 2. I rummet har man tre på hinanden vinkelrette retninger til rådighed. Rummets dimension er derfor 3. Men hvad med denne kystlinje? Den er meget krøllet, og hvis man bevæger sig selv et nok så lille stykke langs den, kan man ligeså vel risikere at være gået i lodret retning som i vandret retning. Den er derfor indrettet som en mellemting mellem en sædvanlig glat kurve og en plan figur. Det er derfor, man kan finde på at tilskrive den en dimension mellem 1 og 2. Man kan også måle dimensionen af en klassisk figur (en ret linje, en trekant, en cirkel osv.) på samme måde som ovenfor ved at lægge kvadratiske net henover figuren. Man finder da de samme resultater som ovenfor: 8

9 a) Et punkt rammes af præcis én maske uafhængigt af forstørrelsesgraden. Masketallet y er altså en konstant funktion af forstørrelsesgraden x: y = x 0. Afsættes masketallet som funktion af forstørrelsesgraden i et dobbeltlogaritmisk koordinatsystem, fås derfor en vandret linje. Denne har hældning 0, og hældningen angiver netop dimensionen som forventet. b) En linje rammer et antal masker, der vokser proportionalt med forstørrelsesgraden. Masketallet y er altså ligefrem proportionalt med forstørrelsesgraden x: y = x 1. Afsætter man sammenhørende værdier af masketal og forstørrelsesgrad i et dobbeltlogaritmisk koordinatsystem, fås derfor en ret linje med hældning 1 i overensstemmelse med dens dimension. c) Et kvadrat rammer et antal masker, der vokser proportionalt med kvadratet på forstørrelsesgraden. Masketallet y er kvadratisk proportionalt med forstørrelsesgraden x: y = x 2. Afsætter man sammenhørende værdier af masketal og forstørrelsesgrad i et dobbeltlogaritmisk koordinatsystem, får man derfor en ret linje med hældning 2 i overensstemmelse med dens dimension. 4. Fraktal-øvelse: Koch-øen 9

10 Hvis man tegner en ligesidet trekant og lægger en anden ligesidet trekant omvendt over den første, får man konstrueret en sekstakket stjerne: davidsstjernen. Takkerne består af seks nye ligesidede trekanter. Oven på disse lægger vi nu seks andre ligesidede trekanter omvendt på. Man får herved konstrueret seks nye davidsstjerner. De nye takker danner 36 endnu mindre ligesidede trekanter osv. osv. Fortsætter vi på denne måde i det uendelige, får vi frembragt en fraktal figur, den triadiske kurve, der blev opdaget og undersøgt af den svenske matematiker Koch i Davidsstjernen: Den klassiske geometris forløber for den triadiske kurve Den triadiske kurve (Koch, 1904). Kvinde med mandolin (Picasso 1911) Kubismen er et eksempel på en kunstretning, der fortrinsvis udtrykker sig ved hjælp af klassiske geometriske figurer som rette linjer, trekanter og cirkler i overensstemmelse med Cezannes manifest: "Alle former i naturen kan føres tilbage til kuglen, keglen og cylinderen" (ca. 1900). Cesaro: "Denne uendelige indlejring af dens form i sig selv giver os en fornemmelse for det, som Tennyson et sted har kaldt den indre uendelighed, der jo til syvende og sidst er den eneste slags uendelighed, vi kan opleve i naturen. En sådan lighed mellem helheden og dens dele, selv i de uendelig små dele, får den triadiske Koch kurve til at fremstå som noget enestående. Kunne den vækkes til live, ville vi kun kunne slippe af med den igen ved at ødelægge den fuldstændigt, for den ville kunne opstå igen og igen fra dens mindste dele, på samme måde som livet selv gør det i Universet" (1905). 4.1 Koch-øens areal, omkreds og dimension 10

11 Ligesom kløverøen kan Koch-øen frembringes ved en iterativ proces, hvor vi 'dag for dag' tilføjer nye mikrostrukturer til øen. I dette tilfælde tilføjes nye ligesidede trekanter ovenpå siden af de eksisterende. Vi aflejrer altså stedse nyt materiale: Koch-øen den 0'te dag Koch-øen den 1. dag Koch-øen den 2. dag. Koch-øen den 3. dag Koch-øen den 4. dag Koch-øen i alle detaljer. Hvordan udvikler kystlængden sig som funktion af antallet af dage? Hvor lang er kystlængden på den yderste dag? Hvordan udvikler arealet sig som funktion af antallet af dage? Hvor stort er arealet på den yderste dag? Hvordan udvikler antallet af skridt sig som funktion af forstørrelsesgraden? Hvad bliver den fraktale dimension af kysten på Koch-øen? 11

Fraktaler. Vejledning. Et snefnug

Fraktaler. Vejledning. Et snefnug Fraktaler Vejledning Denne note kan benyttes i gymnasieundervisningen i matematik i 1g, eventuelt efter gennemgangen af emnet logaritmer. Min hensigt har været at give en lille introduktion til en anderledes

Læs mere

Fraktaler INTRO. FRAKTALER M l 57

Fraktaler INTRO. FRAKTALER M l 57 Fraktaler De fleste figurer, I arbejder med i matematiktimerne, har rette linjer eller glatte kurver fx rektangler og cirkler Disse figurer kan ofte bruges til at beskrive menneskeskabte ting som fx bygninger

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Hvad er matematik? C, i-bog ISBN

Hvad er matematik? C, i-bog ISBN Man kan nøjes med at gennemføre første del af projektet, som er den spiralkonstruktion, der er omtalt i kapitel 10. Eller man kan udvide med anden del, der giver en mere elegant, men også mere kompliceret

Læs mere

Projekt 2.5 Brændpunkt og ledelinje for parabler

Projekt 2.5 Brændpunkt og ledelinje for parabler Hvad er matematik? Projekter: Kapitel. Projekt.5 Brændpunkt og ledelinje for parabler Projekt.5 Brændpunkt og ledelinje for parabler En af de vigtigste egenskaber ved en parabel er, at den har et såkaldt

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Dette undervisningsforløb har jeg lavet til et forløb på UCC Nordsjælland for særligt interesserede elever i 8. klasse. Alt, der står med rødt, er henvendt

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Analytisk Geometri. Frank Nasser. 11. juli 2011

Analytisk Geometri. Frank Nasser. 11. juli 2011 Analytisk Geometri Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Fraktaler en helt ny form for matematik

Fraktaler en helt ny form for matematik Manus: Math 4 / Fraktal Manusark nr. 1 Fraktaler en helt ny form for matematik 5 10 15 20 25 30 35 Det var en sensation, da den polskfødte matematiker og filosof Benoit Mandelbrot i 1975 præsenterede sine

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Mandatfordelinger ved valg

Mandatfordelinger ved valg Mandatfordelinger ved valg I denne note vil vi prøve at beskrive et nyttigt diagram når man skal analysere problemstillinger vedrørende mandatfordelinger. For at holde diagrammet enkelt ser man på den

Læs mere

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer:

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer: Euclidean Eggs Freyja Hreinsdóttir, University of Iceland 1 Introduction Ved hjælp af et computerprogram som GeoGebra er det nemt at lave geometriske konstruktioner. Specielt er der gode værktøjer til

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

Parameterkurver. Et eksempel på en rapport

Parameterkurver. Et eksempel på en rapport x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen. Geometri. Georg Mohr-Konkurrencen

Tip til 1. runde af Georg Mohr-Konkurrencen. Geometri. Georg Mohr-Konkurrencen Tip til. runde af Georg Mohr-Konkurrencen Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en teoretisk indføring, men der i stedet fokus på

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 til juni 2018 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid

Læs mere

FRAKTALER. Hans Fogedby Institut for fysik og astronomi

FRAKTALER. Hans Fogedby Institut for fysik og astronomi FRAKTALER Hans Fogedby Institut for fysik og astronomi OVERSIGT Hvad er en fraktal Lidt historie Fraktaler i matematikken Den fraktale dimension Fraktaler i fysikken Fraktaler i biologien Fraktaler som

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Projekt 3.3 Linjer og cirkler ved trekanten

Projekt 3.3 Linjer og cirkler ved trekanten Projekt 3.3 Linjer og cirkler ved trekanten Midtnormalerne i en trekant Konstruer et linjestykke (punkt-menuen) og navngiv endepunkterne A og B (højreklik og vælg: Etiket), dvs. linjestykket betegnes AB.

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Potensfunktioner samt proportional og omvent proportional. for hf Karsten Juul

Potensfunktioner samt proportional og omvent proportional. for hf Karsten Juul Potensfunktioner samt proportional og omvent proportional for hf 2018 Karsten Juul Potensfunktion 1. Oplæg til forskrift for potensfunktion...1 2. Forskrift for potensfunktion...2 3. Udregn x eller y i

Læs mere

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning Projekt 55 Andengradspolynomier af to variable Kvadratiske funktioner i to variable - de tre typer paraboloider f() = A + B + C, hvor A 0 Et andengradspolynomium i en variabel har en forskrift på formen

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Introduktion til ovaler: Ovato Tondo fra Rafaels skole En oval er en lukket krum kurve med to vinkelrette symmetriakser, storeaksen og lilleaksen, og dermed også et symmetricentrum. Der findes mange forskellige

Læs mere

Projekt 9.5 Racefordomme i USA og Simpsons paradoks (B og A)

Projekt 9.5 Racefordomme i USA og Simpsons paradoks (B og A) Projekt 9.5 Racefordomme i USA og Simpsons paradoks (B og A) (Data er hentet fra M. Radelet, "Racial characteristics and imposition of death penalty", American Sociological Review, 46 (1981), pp 918-927

Læs mere

Mattip om. Geometri former og figurer. Du skal lære: Kan ikke Kan næsten Kan. At finde og tegne former og figurer

Mattip om. Geometri former og figurer. Du skal lære: Kan ikke Kan næsten Kan. At finde og tegne former og figurer Mattip om Geometri former og figurer Du skal lære: At finde og tegne former og figurer Kan ikke Kan næsten Kan At beregne omkreds og areal af figurer Om forskellige typer trekanter At finde højde og grundlinje

Læs mere

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Om opbygningen af en geometrisk model for mandatfordelinger

Om opbygningen af en geometrisk model for mandatfordelinger Om opbygningen af en geometrisk model for mandatfordelinger I denne note vil vi prøve at beskrive et nyttigt diagram når man skal analysere problemstillinger vedrørende mandatfordelinger. For at holde

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Introduktion til den afledede funktion

Introduktion til den afledede funktion Introduktion til den afledede funktion Scenarie: Rutsjebanen Tilsigtede viden Bredere kompetencemål Nødvendige matematiske forudsætninger Tid Niveau Materialer til rådighed At give en forståelse for konceptet

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Om ensvinklede og ligedannede trekanter

Om ensvinklede og ligedannede trekanter Om ensvinklede og ligedannede trekanter Vi vil her give et bevis for sætningen, der siger at for trekanter er begreberne ensvinklet og ligedannet det samme. Sætningen er langt fra trivial trekanter er

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

Læs selv om UENDELIGHED. Erik Bjerre og Pernille Pind Forlaget Mañana

Læs selv om UENDELIGHED. Erik Bjerre og Pernille Pind Forlaget Mañana Læs selv om UENDELIGHED Erik Bjerre og Pernille Pind Forlaget Mañana Læs selv om UENDELIGHED Erik Bjerre og Pernille Pind Forlaget Mañana 2 Uendelighed - et matematisk symbol Der kan være uendeligt lang

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydningsloven Når en bølge, fx en lysbølge, rammer en grænseflade mellem to stoffer, vil bølgen normalt blive spaltet i to: Noget af bølgen kastes tilbage (spejling), hvor udfaldsvinklen u

Læs mere

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) Kaos og fraktaler i dynamiske systemer Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) UNF Matematik Camp 2010 Oversigt tre simple eksempler på klassiske fraktaler deterministiske

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Projekt 3.1 Pyramidestub og cirkelareal

Projekt 3.1 Pyramidestub og cirkelareal Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni skoleåret 2016/17 Institution Viden Djurs - VID Gymnasier Uddannelse Fag og niveau Lærer Hold HTX

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Matematik. Meteriske system

Matematik. Meteriske system Matematik Geometriske figurer 1 Meteriske system Enheder: Når vi arbejder i længder, arealer og rummål er udgangspunktet metersystemet: 2 www.ucholstebro.dk. Døesvej 70 76. 7500 Holstebro. Telefon 99 122

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Papirfoldning. en matematisk undersøgelse til brug i din undervisning.

Papirfoldning. en matematisk undersøgelse til brug i din undervisning. Papirfoldning en matematisk undersøgelse til brug i din undervisning. Når man folder og klipper figurer kan man blive irriteret over at skulle vende og dreje saksen. Hvor få klip kan man mon nøjes med?

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Nasser 0. april 0 c 008-0. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Baggrund: I de senere år har en del gymnasieskoler eksperimenteret med HOT-programmet i matematik og fysik, hvor HOT står for Higher

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

På opdagelse i GeoGebra

På opdagelse i GeoGebra På opdagelse i GeoGebra Trekanter: 1. Start med at åbne programmet på din computer. Du skal sørge for at gitteret i koordinatsystem er sat til. Dette gør vi ved at trykke på Vis oppe i venstre hjørne og

Læs mere

Symbolsprog og Variabelsammenhænge

Symbolsprog og Variabelsammenhænge Indledning til Symbolsprog og Variabelsammenhænge for Gymnasiet og Hf 1000 kr 500 0 0 5 10 15 timer 2005 Karsten Juul Brugsanvisning Du skal se i de fuldt optrukne rammer for at finde: Regler for løsning

Læs mere

Introducerende undervisningsmateriale til Geogebra

Introducerende undervisningsmateriale til Geogebra Klaus Frederiksen & Christine Hansen Introducerende undervisningsmateriale til Geogebra - Dynamisk geometriundervisning www.bricksite.com/ckgeogebra 01-03-2012 Indhold 1. Intro til programmets udseende...

Læs mere

Grundlæggende matematiske begreber del 3

Grundlæggende matematiske begreber del 3 Grundlæggende matematiske begreber del 3 Ligninger med flere variable Ligningssystemer x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse LIGNINGER MED FLERE VARIABLE... 3 Ligninger med flere

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Mircobit Kursus Lektion 5 (Du skal her vælge Lets Code og nederst Microsoft Block Editor.)

Mircobit Kursus Lektion 5   (Du skal her vælge Lets Code og nederst Microsoft Block Editor.) Mircobit Kursus Lektion 5 http://microbit.org/ (Du skal her vælge Lets Code og nederst Microsoft Block Editor.) Vi laver en variabel point til at holde styr på pointene. Af en mystisk grund kunne man ikke

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

i tredje brøkstreg efter lukket tiendedele primtal time

i tredje brøkstreg efter lukket tiendedele primtal time ægte 1 i tredje 3 i anden rumfang år 12 måle kalender lagt sammen resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn efter bagved foran placering kvart fjerdedel lagkage rationale

Læs mere

Matematik i grundforløbet

Matematik i grundforløbet Mike Vandal Auerbach Matematik i grundforløbet y x www.mathematicus.dk Matematik i grundforløbet. udgave, 208 Disse matematiknoter er skrevet til matematikundervisningen i grundforløbet (som det ser ud

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Matematik A 5 timers skriftlig prøve

Matematik A 5 timers skriftlig prøve Højere Teknisk Eksamen august 2009 HTX092-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 28. august 2009 kl. 9.00-14.00 Side 1 af 9 sider Matematik A 2009 Prøvens varighed

Læs mere

Matematik Basis. Faglige mål. Kernestof. Supplerende stof

Matematik Basis. Faglige mål. Kernestof. Supplerende stof Matematik Basis Undervisningens mål er, at kursisten kan: a) forstå tallenes opbygning i positionssystemet samt gange og dividere med et multiplum af 10 b) forstå de fire regningsarter og vælge hensigtsmæssige

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Grundlæggende matematiske begreber del 3

Grundlæggende matematiske begreber del 3 Grundlæggende matematiske begreber del 3 Ligninger med flere variable Ligningssystemer x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse LIGNINGER MED FLERE VARIABLE... 3 Ligninger med flere

Læs mere

Projekt 6.7. Beviser for Pythagoras sætning - og konstruktion af animationer

Projekt 6.7. Beviser for Pythagoras sætning - og konstruktion af animationer Projekt 6.7. Beviser for Pythagoras sætning - og konstruktion af animationer Flere beviser for Pythagoras sætning 1 Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... 1 Opgave 1 Et

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Bedste rette linje ved mindste kvadraters metode

Bedste rette linje ved mindste kvadraters metode 1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere