Løsninger til kapitel 6

Relaterede dokumenter
Løsninger til kapitel 5

Hvorfor er normalfordelingen så normal?

Nanostatistik: Opgavebesvarelser

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Højde af kvinder 2 / 18

Tema. Dagens tema: Indfør centrale statistiske begreber.

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår 2007

Hvorfor er det lige at vi skal lære det her?

Løsninger til kapitel 9

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Kvantitative Metoder 1 - Efterår Dagens program

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Uge 10 Teoretisk Statistik 1. marts 2004

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Normalfordelingen og Stikprøvefordelinger

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Produkt og marked - matematiske og statistiske metoder

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Definition. Definitioner

MM501 forelæsningsslides

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Estimation og usikkerhed

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Sandsynlighedsregning

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

Oversigt over nyttige fordelinger

Om hypoteseprøvning (1)

Løsning eksamen d. 15. december 2008

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen

MM501/MM503 forelæsningsslides

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2019 Kursus nr : (navn) (underskrift) (bord nr)

Opgaver til kapitel 3

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2010 Kursus nr : (navn) (underskrift) (bord nr)

Reeksamen 2014/2015 Mål- og integralteori

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel:

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

Elementær sandsynlighedsregning

Normalfordelingen. Erik Vestergaard

Karakteristiske funktioner og Den Centrale Grænseværdisætning

Besvarelser til øvelsesopgaver i uge 6

Elementær sandsynlighedsregning

Note om Monte Carlo metoden

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr)

Vejledende løsninger til opgaver i kapitel 6

Kvantitative Metoder 1 - Forår Dagens program

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kapitel 4 Sandsynlighed og statistiske modeller

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Kvantitative Metoder 1 - Forår Dagens program

Den todimensionale normalfordeling

Eksamen 2014/2015 Mål- og integralteori

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr)

Analysestrategi. Lektion 7 slides kompileret 27. oktober :24 p.1/17

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Kvantitative Metoder 1 - Efterår Dagens program

StatDataN: Test af hypotese

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Lidt om fordelinger, afledt af normalfordelingen

Forelæsning 2: Kapitel 4, Diskrete fordelinger

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

Kvantitative Metoder 1 - Forår Dagens program

Eksamen i Statistik for biokemikere. Blok

4 Oversigt over kapitel 4

Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

StatDataN: Plot af data

Sandsynlighedsregning Oversigt over begreber og fordelinger

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter.

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Transkript:

Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180) = Φ = Φ( = 0, 1587 2 200 180 200 180 < X < 2) = X < 2) X < 180) = Φ Φ = f) Φ(0,5) = 0,6915 0,1587 = 0,5328 Opgave 6.2 50 50 a) P ( X > 50) = 1 X < 50) = 1 ) = ) = 1 0,5 = 0, 5 60 50 40 50 40 < X < 60) = X < 60) X < 40) = Φ( ) ) = b) Φ(1) = 0,8413 0,1587 = 0,6827 60 50 c) P ( X < 60) = Φ( ) = Φ(1) = 0, 8413 40 50 d) P ( X > 40) = 1 X < 40) = 1 ) = 1 = 1 0,1587 = 0, 8413 40 50 e) P ( X < 40) = Φ( ) = Φ( = 0, 1587 47 50 43 50 43 < X < 47) = X < 47) X < 43) = Φ( ) ) = f) Φ( 0,3) 0,7) = 0,3820 0,2420 = 0,1400 Opgave 6.3 X er den stokastiske variabel, som angiver antal operationer i løbet af et år. X er normalfordelt med middelværdien μ = 4300 spredningen σ =. 5000 4300 X > 5000) = 1 X < 5000) = 1 ) = 11,0769) = a) 1 0,8592 = 0,1408 4000 4300 b) P ( X < 4000) = Φ( ) = Φ( 0,4615) = 0, 3222 c) 2400 < X < 4300) = X < 4300) X 4300 4300 2400 4300 Φ( ) ) = Φ(0) 2,9231) = 0,5 0,0017 = 0,4983 < 2400) = 1

Opgave 6.4 Med X betegner vi den stokastiske variabel, som angiver vægten af en tilfældig pakke. Det oplyses, at X n(250,3). Vi får 253 250 247 250 247 X 253) = X 253) X 247) = Φ Φ = 3 3 Φ(1) = 0,8413 0,1587 = 0,6826 Sandsynligheden for, at en pakke har en vægt uden for intervallet 247-253 g er derfor 1 P (247 X 253) = 1 0,6826 = 0,3174. b) Den stokastiske variabel Y angiver antal pakker blandt de 50, som har en vægt uden for intervallet 247-253 g. Vi er her i en binomialsituation, hvor basiseksperimentet er at undersøge, om en enkelt pakke har en vægt udenfor det givne interval. Dette sker med sandsynligheden p = 0,3174. Vi undersøger i alt 50 pakker, da vægten af den ene pakke er uafhængig af de andre pakkers vægt, ses, at Y er binomialfordelt med parametrene n = 50 p = 0, 3174. I HypoStat findes P ( Y = 12) = 0, 0634 Der er altså 6,34% sandsynlighed for, at der er netop 12 pakker med en vægt uden for intervallet. Opgave 6.5 X er den stokastiske variabel, som betegner tykkelsen af en stålplade. Det vides, at X er normalfordelt med middelværdi 25,0 spredning 1,3, en varians på. a) HypoStat giver: Dette vil sige, at sandsynligheden for, at en stålplade har en tykkelse på under 24,2 mm er lig med b) HypoStat giver: Z b μ ) X~N(25 ; 1,69 ) σ X 24,2) = 0,26915 x~n(25 ; 1,69 ) x 24,2) = 0,016514 b μ Z ) σ / n Sandsynligheden for, at gennemsnittet af de 12 stålpladcer er mindre end 24,2 er på c) Denne sidste sandsynlighed er meget mindre end den første, idet gennemsnittet af uafhængige normalfordelinger har en meget mindre spredning gennemsnittet derfor vil være tættere på middelværdien på 25,0 end de enkelte observationer. 2

Opgave 6.6 X betegner den stokastiske variabel, som angiver indholdet i en vilkårlig karton. Det oplyses, at X er normalfordelt med middelværdi 05 spredning 5. a) HypoStat giver Z a μ ) X~N(1,005 ; 25 ) σ X 1,000) = 0,841345 Det vil sige, at andelen af kartoner med mindst 00 ml kun er på 84,13%, mejeriet lever derfor ikke op til kravet. b) Vi skal nu finde middelværdien, således at Vi løser ligningen: Den nye middelværdi er derfor på 08,3 ml. c) Y er nu den stokastiske variabel, som angiver antal kartoner blandt de 20 med et indhold under 00 ml. Y er binomialfordelt, idet Y er antallet af succeser i en binomialproces, hvori basiseksperimentet er at producere en enkelt karton mælk, succes er om denne indeholder under 00 ml, hvilket sker med sandsynligheden 5%. HypoStat giver nu: X~b(20 ; 0,05) X 2) = 0,26416 x) = C (1 p) ( n x) Der er altså chance for, at der er mindst 2 kartoner med under 0 ml iblandt de 20. n x p x 3

Opgave 6.7 X er den stokastiske variabel, som angiver diameteren af en ært. Det oplyses, at X er normalfordelt med middelværdi 9,3 spredning 1,4, givende en varians på 1,96. a) HypoStat giver Z b μ ) X~N(9,3 ; 1,96 ) σ X 7) = 0,050206 Det ses, at af alle ærterne har en diameter under 7,0 mm. b) Lad grænserne for mellemfine ærter være a b. Vi har da, at De mellemfine ærter har altså en diameter mellem 8,57 mm,24 mm. 4

Opgave 6.8 Der tegnes normalfraktildiagrammer for alle observationssættene: Sæt 1 Sæt 2 Sæt 3 Sæt 4 Her er der ikke tale om en normalfordeling, idet der er fire ekstreme observationer, tre små en stor. Ser man på de oprindelige data, så er der tale om observationerne 426, 485, 498 811. Men eksistensen af disse outliers betyder, at der ikke er tale om en 5

Sæt 5 Sæt 6 6