H Å N D B O G M A T E M A T I K 2. U D G A V E

Størrelse: px
Starte visningen fra side:

Download "H Å N D B O G M A T E M A T I K 2. U D G A V E"

Transkript

1 H Å N D B O G M A T E M A T I K C 2. U D G A V E

2

3 ÁÒ ÓÐ Indhold 1 1 Procentregning Delingsprocent Vækstprocent Renteformlen Omregning af rente Indekstal Geometri Arealet af en trekant Ensvinklede trekanter Retvinklede trekanter Proportionalitet Ligefrem proportionalitet Omvendt proportionalitet Lineære funktioner At beregne forskriften for en lineær funktion Eksponentielle funktioner At beregne forskriften for en eksponentiel funktion At løse en eksponentiel ligning At bestemme fordoblings /halveringskonstant At bestemme procentvis ændring Potenssammenhænge At beregne forskriften for en potenssammenhæng At løse en potensiel ligning At bestemme procentvis ændring Statistik Ikke-grupperede observationer Grupperede observationer ½

4 ¾ ÁÒ ÓÐ

5 ½½º½ ÈÖÓ ÒØÖ Ò Ò Ð Ò ÔÖÓ ÒØ DEL udgør PROCENT af HELHED. Det betyder, at DEL HELHED = PROCENT Hvis to af de tre størrelser er kendt, kan man finde den tredje ved at isolere den ubekendte. Eksempler: Eks. 1 En ost på 628 g. indeholder 18% fedt. Hvor mange gram fedt indeholder den? DEL 628 = DEL = 628 0, 18 = 113, 04 Eks. 2 En dram på 75 cl indeholder 27 cl sprit. Hvor mange procent? = PROCENT PROCENT = 0, % = 36% Eks. 3 Af saltvand, som indeholder 3,6% salt, skal udvindes 2 kg salt. Hvor mange kg saltvand skal der bruges? 2 HELHED = 3, HELHED = 2 0, 036 = 55, 6

6 ½º¾ Î ØÔÖÓ ÒØ Ã Ô Ø Ð½ºÈÖÓ ÒØÖ Ò Ò S = B (1 + r) Hvor S er slutværdi, B er begyndelsesværdi, r er den procentvise ændring og (1 + r) er fremskrivningsfaktoren ((1 r) hvis der er tale om fald). Der indgår 3 størrelser, 3 bogstaver, i sammenhængen, og hvis vi kender 2 af dem skulle det være muligt at finde den tredje. Det giver 3 forskellige varianter af opgaver: S er ukendt: Benzin koster 10 kr. literen. Den stiger med 10%. Hvor meget koster den så? S = 10 (1 + 0, 10) = 11 Benzin koster 10 kr. literen. Den falder med 10%. Hvor meget koster den så? S = 10 (1 0, 10) = 9 B er ukendt: Prisen på en stol stiger med 15%. Den koster nu 2875 kr. Hvor meget kostede den før stigningen? 2875 = B (1 + 0, 15) B = 2875 (1 + 0, 15) = 2500 Prisen på en stol falder med 15%. Den koster nu 2875 kr. Hvor meget kostede den før prisfaldet? 2875 = B (1 0, 15) B = 2875 (1 0, 15) = 3382, 35 r er ukendt: Prisen på et bord stiger fra 5000 kr til 6000 kr. Hvor mange % stiger det? 6000 = 5000 (1 + r) 1 + r = r = (1, 20 1) 100% = 20% = 1, 20 Prisen på et bord falder fra 6000 kr til 5000 kr. Hvor mange % falder det? 5000 = 6000 (1 + r) 1 + r = r = (0, 833 1) 100% = 16, 7% = 0, 833

7 Î ØÔÖÓ ÒØ Gennemsnitlig procentvis ændring: Hvis en procentvis stigning er sket over flere år, bliver der ofte spurgt efter den gennemsnitlige årlige procentvise stigning. Så er vi ovre i renteformlen (se næste side). Et eksempel: Antallet af industrirobotter steg på 9 år fra 62 til 552. Hvor mange procent steg antallet i gennemsnit pr. år? 552 = 62 (1 + r) 9 (1 + r) 9 = r = r = 1, 275 r = (1, 275 1) 100% = 27, 5%

8 ½º Ê ÒØ ÓÖÑÐ Ò Ã Ô Ø Ð½ºÈÖÓ ÒØÖ Ò Ò K = K 0 (1 + r) n hvor K er slutkapitalen, K 0 er begyndelsekapitalen, r er renten og n er antal terminer. Der indgår 4 størrelser, 4 bogstaver, i sammenhængen, og hvis vi kender 3 af dem skulle det være muligt at finde den fjerde. Det giver 4 forskellige varianter af opgaver: K er ukendt: Der indsættes 2600 kr. på en konto, der giver 6% p.a. Hvor meget står der på kontoen efter 8 år? K = 2600 (1 + 0, 06) 8 = , 06 8 = 4144, 00 K 0 er ukendt: Jeg vil gerne om 10 år have til rådighed. Jeg regner med at renten holder sig på 6% i de 10 år. Hvor meget skal jeg sætte ind på kontoen? r er ukendt: n er ukendt: = K 0 (1 + 0, 06) 10 = K 0 1, K 0 = = , 84 1, 0610 Beløbet på min konto er i løbet af 10 år vokset fra 2500 kr. til 3882,42 kr. Hvor meget har renten været? 3882, 42 = 2500 (1 + r) r = , , = (1 + r) 10 = 1, 045 r = 0, 045 = 4, 5% Jeg vil sætte 5000 kr. ind på en konto, som giver 6% p.a. i rente. Hvor længe skal jeg vente før der står på kontoen? = 5000 (1 + 0, 06) n 1, 06 n = = 1, 06n Denne ligning kan ikke løses med plus, minus, gange, dividere, potens eller rødder. Det kræver et ekstra redskab, nemlig log. Formlen for løsningen: så i den aktuelle ligning får vi: a n = c x = log(c) log(a) 1, 06 n = 2 n = log(2) log(1, 06) = 11, 90

9 ½º ÇÑÖ Ò Ò Ö ÒØ ÇÑÖ Ò Ò Ö ÒØ Rente: r Rente: R Det korte tidsrum er indeholdt n gange i det lange. 1. Omregning fra det korte til det lange tidsrum: 1 + R = (1 + r) n R = ((1 + r) n 1) 100% Eksempel 1: Stigning på 2% pr. år. Hvor meget på 5 år? 1 + R = (1 + 0, 02) 5 = 1, R = 1, dvs. en stigning på 10,41% på 5 år. R = (1, ) 100% = 10, 41% Eksempel 2: Fald på 3% pr. år. Hvor meget på 5 år? 1 + R = (1 0, 03) 5 = 0, R = 0, 8587 dvs. et fald på 14,13% på 5 år. R = (0, ) 100% = 14, 13% 2. Omregning fra det lange til det korte tidsrum: 1 + r = n 1 + R r = ( n 1 + R 1) 100% Eksempel 1: Stigning på 18% på 7 år. Hvor meget pr. år? 1 + r = , 18 = 7 1, 18 = 1, 0239 dvs. en stigning på 2,39% pr. år. r = (1, ) 100% = 2, 39% Eksempel 2: Fald på 25% på 7 år. Hvor meget pr. år? dvs. et fald på 4,03% pr.år. 1 + r = 7 1 0, 25 = 7 0, 75 = 0, 9597 r = (0, ) 100% = 4, 03%

10 ½º ÁÒ Ø Ð Ã Ô Ø Ð½ºÈÖÓ ÒØÖ Ò Ò Ö Ø ÐØ Ð Ò Ø Ð År Antal Landbrug Basisåret sættes til Beregningen af indekstallene ser så sådan ud: År Antal Landbrug Beregning År Antal Landbrug Beregning og vi får så følgende indekstabel: ØÒ Ö Ö År Indekstal I denne tabel er 1950 basisåret: År Indekstal Vi vil ændre basisåret til Beregningen ser sådan ud: År Indekstal Beregning og vi får så denne indekstabel med 1970 som basisår: År Indekstal

11 Ö Ò Ø ÐØ ÐÚÖ Ö Ò Ø ÐØ ÐÚÖ Vi forestiller os, at vi har indekstabellen for antallet af landbrug samt antallet af landbrug i 1970: ÀÚÓÖÑ Ò Ð Ò ÖÙ Ú Ö Ö ½ Beregningen ser sådan ud: År Indekstal Antal landbrug Indeks 1985 F(Fremskrivningsfaktor) = Indeks 1970 = 45 = 0, 625 ÀÚÓÖÑ Ò Ð Ò ÖÙ Ú Ö Ö ½ ¼ 72 Antal i 1985 = (Antal i 1970) F = , 625 = (Fremadregning: Gange med fremskrivningsfaktor) Indeks 1970 F(Fremskrivningsfaktor) = Indeks 1960 = 72 = 0, ÈÖÓ ÒØÚ Ò Ö Ò (Antal i 1970) Antal i 1960 = = = F 0, 7579 (Tilbageregning: Dividere med fremskrivningsfaktor) Her er indekstabellen for antal landbrug igen: ÀÚÓÖÑ Ò ÔÖÓ ÒØ Ö ÒØ ÐÐ Ø Ð Ø Ö ½ ¼Ø н År Indekstal : Beregningen ser sådan ud: 1 + r = = 0, 542 r = (0, 542 1) 100% = 45, 8%

12 ÀÚÓÖÑ Ø Ö Ò ÒÒ Ñ Ò ØÐ ÔÖÓ ÒØÚ Ò Ö Ò ÔÖºÖ Ã Ô Ø Ð½ºÈÖÓ ÒØÖ Ò Ò Ö ½ ¼Ø н : Beregningen ser sådan ud: 1 + r = = 0, 968 r = (0, 968 1) 100% = 3, 2% ½¼

13 ¾¾º½ ÓÑ ØÖ Ö Ð Ø ÒØÖ ÒØ Formlen for arealet af en trekant: ¾º¾ Ò Ú Ò Ð ØÖ ÒØ Ö A = 1 2 højde grundlinje = 1 2 h g Er to trekanter ensvinklede gælder samme skalafaktor for siderne: a = k a b = k b b = k b Skalafaktoren kan findes ved at sammenligne to ensliggende sider: ¾º Ê ØÚ Ò Ð ØÖ ÒØ Ö k = a a = b b = c c Vi har fire ligninger til beregning af sider og vinkler i en retvinklet trekant: a 2 + b 2 = c 2 sin(vinkel) = modstående hypotenuse cos(vinkel) = hosliggende hypotenuse tan(vinkel) = modstående hosliggende ½½

14 ÈÖÓÔÓÖØ ÓÒ Ð Ø Ø Ã Ô Ø Ð ºÈÖÓÔÓÖØ ÓÒ Ð Ø Ø º½ Ä Ö ÑÔÖÓÔÓÖØ ÓÒ Ð Ø Ø To størrelser, x og y er ligefremt proportionale, når den ene værdi fremkommer ved at man ganger den anden med en konstant faktor, altså y = k x, hvor k er en konstant, proportionalitetsfaktoren. Eksempel: x og y er ligefremt proportionale: x y 9 Faktoren findes: 9 = k 2 k = 9 2 = 4, 5 og den anvendes på de øvrige x-værdier: º¾ ÇÑÚ Ò ØÔÖÓÔÓÖØ ÓÒ Ð Ø Ø 4, 5 3 = 13, 5 4, 5 4 = 18 4, 5 10 = 45 To størrelser, x og y er omvendt proportionale, når y = k 1 y x = k x hvor k er en konstant, proportionalitetsfaktoren. Eksempel: x og y er omvendt proportionale: x y 9 Faktoren findes: ½¾ 9 2 = k k = 18 Derefter kan de øvrige y-værdier beregnes: = = 4, = 1, 8

15 Ä Ò Ö ÙÒ Ø ÓÒ Ö 1. Grafen er en ret linje i et almindeligt koordinatsystem. 2. y-værdien vokser med en konstant værdi, når x-værdien forøges med Regneforskriften er y = a x + b a er hældningskoefficienten (stigningstallet), dvs. den værdi y går op eller ned når man går én ud ad x-aksen. Hvis punkterne (x 1, y 1 ) og (x 2, y 2 ) ligger på den rette linje beregnes a ved hjælp af formlen: a = y 2 y 1 x 2 x 1 b er linjens skæringspunkt med y-aksen 4. Hvis a > 0: funktionen er voksende. Hvis a < 0: funktionen er aftagende. ½

16 º½ Ø Ö Ò ÓÖ Ö Ø Ò ÓÖ ÒÐ Ò Ö ÙÒ Ø ÓÒ Ã Ô Ø Ð ºÄ Ò Ö ÙÒ Ø ÓÒ Ö Forskriften for en lineær funktion har formen: y = a x + b og formlen for a når vi kender to punkter (x 1, y 1 ) og x 2, y 2 ): a = y 2 y 1 x 2 x 1 Punkterne Punkt 1 { }} { ( 3, 2) ligger på grafen for en lineær funktion. og Punkt 2 { }} { (5, 2) Så kan vi finde a: a = 2 ( 2) 5 ( 3) = 4 8 = 1 2 Så ved jeg foreløbig, at forskriften hedder y = 1 2 x + b Jeg vælger ét af de to givne punkter ligemeget hvilket f.eks. punkt 2, og sætter y-værdien ind i stedet for y i forskriften og x-værdien i stedet for x: Af denne ligning kan jeg så finde b: 2 = b og så har jeg hele forskriften: 2 = b b = = 1 2 y = 1 2 x 1 2 ½

17 ÔÓÒ ÒØ ÐÐ ÙÒ Ø ÓÒ Ö 1. Grafen er en ret linje i et enkeltlogaritmisk koordinatsystem. 2. y-værdien vokser med en konstant procent, når x-værdien forøges med Regneforskriften er y = b a x a er fremskrivningsfaktoren, dvs. den værdi y skal ganges med når man går én ud ad x-aksen. Hvis punkterne (x 1, y 1 ) og (x 2, y 2 ) ligger på den eksponentielle funktion beregnes a ved hjælp af formlen: a = x 2 x 1 y2 y 1 b er grafens skæringspunkt med y-aksen 4. Hvis a > 1: funktionen er voksende. Hvis 0 < a < 1: funktionen er aftagende. ½

18 º½ Ø Ö Ò ÓÖ Ö Ø Ò ÓÖ Ò ÔÓÒ ÒØ Ð Ã Ô Ø Ð º ÔÓÒ ÒØ ÐÐ ÙÒ Ø ÓÒ Ö ÙÒ Ø ÓÒ Forskriften for en eksponentiel funktion har formen: y = b a x og formlen for a når vi kender to punkter (x 1, y 1 ) og x 2, y 2 ): a = x 2 x 1 y2 y 1 Punkterne Punkt 1 { }} { ( 2, 2) og ligger på grafen for en eksponentiel funktion. Punkt 2 { }} { (3, 7) Så kan vi finde a: a = 3 ( 2) 7 2 = 1, 2847 Så ved jeg foreløbig, at forskriften hedder y = b 1, 2847 x Jeg vælger ét af de to givne punkter ligemeget hvilket f.eks. punkt 2, og sætter y-værdien ind i stedet for y i forskriften og x-værdien i stedet for x: Af denne ligning kan jeg så finde b: og så har jeg hele forskriften: 7 = b 1, = b 1, b = y = 3, 30 1, 2847 x 7 = 3, 30 1, ½

19 º¾ ØÐ Ò ÔÓÒ ÒØ ÐÐ Ò Ò ØÐ Ò ÔÓÒ ÒØ ÐÐ Ò Ò Hvis du har en eksponentiel sammenhæng, og skal finde den x-værdi, der giver y-værdien 10 (f.eks.), så har du to muligheder: 1. Hvis du har grafen er det nemmeste at aflæse: start på y-aksen med y- værdien 10, gå vandret ud til du rammer grafen og så lodret ned på x- aksen, hvor du aflæser løsningen. 2. Hvis du har forskriften, kan du beregne løsningen: Lad os sige, at forskriften er y = 3, 30 1, 2847 x så fører det til en eksponentiel ligning 10 = 3, 30 1, 2847 x eller som kan løses: 3, 30 1, 2847 x = 10 3, 30 1, 2847 x = 10 1, 2847 x = 10 3, 30 ( ) ( ) log 1, 2847 x = log x log 1, 2847 = log 3, 30 3, 30 ( ) x = log 10 3,30 = 4, 43 log 1, 2847 Generelt er formlen b a x = c x = log( c b ) log(a) ½

20 º Ø Ø ÑÑ ÓÖ Ó Ð Ò» ÐÚ Ö Ò ÓÒ Ø ÒØ Ã Ô Ø Ð º ÔÓÒ ÒØ ÐÐ ÙÒ Ø ÓÒ Ö Der er to muligheder: 1. Aflæsning på en graf: Fordoblingskonstant: Start på y-aksen med et tal c (lige meget hvilket), gå vandret ud til du rammer grafen og så lodret ned på x-aksen. Aflæs tallet x 1. Start så igen på y-aksen med tallet 2 c (altså det dobbelte af det første tal) og aflæs det tilsvarende tal x 2 på x-aksen. Fordoblingskonstanten T 2 beregnes da som T 2 = x 2 x 1 Halveringskonstant: Aflæses som fordoblingskonstanten, blot skal du i anden omgang ikke starte på y-aksen med tallet 2 c, men med 1 2 c. 2. Hvis du har regneforskriften, y = b a x, kan du også beregne: Fordoblingskonstant Halveringskonstant T 2 = log(2) log(a) T1 = log( 1 2 ) 2 log(a) º Ø Ø ÑÑ ÔÖÓ ÒØÚ Ò Ö Ò I forskriften y = b a x, er det udelukkende fremskrivningsfaktoren a, der siger noget om sammenhængens vækst, og det er derfor a alene, der skal bruges til at bestemme y-værdiens procentvise stigning: Hvis x-tilvæksten er n, er y-værdiens procentvise stigning: ½ (a n 1) 100%

21 ÈÓØ Ò ÑÑ Ò Ò 1. Grafen er en ret linje i et dobbeltlogaritmisk koordinatsystem. 2. y-værdien vokser med en konstant procent, når x-værdien forøges med en konstant procent. 3. Regneforskriften er y = b x a 4. Hvis punkterne (x 1, y 1 ) og (x 2, y 2 ) ligger på den potensielle funktion beregnes a ved hjælp af formlen: a = log(y 2) log(y 1 ) log(x 2 ) log(x 1 ) 5. b er grafens skæringspunkt med med linjen x = Hvis a > 0: funktionen er voksende. Hvis a < 0: funktionen er aftagende. ½

22 º½ Ø Ö Ò ÓÖ Ö Ø Ò ÓÖ Ò Ã Ô Ø Ð ºÈÓØ Ò ÑÑ Ò Ò ÔÓØ Ò ÑÑ Ò Ò Forskriften for en potenssammenhæng har formen: y = b x a og formlen for a når vi kender to punkter (x 1, y 1 ) og x 2, y 2 ): a = log(y 2) log(y 1 ) log(x 2 ) log(x 1 ) Punkterne Punkt 1 { }} { (2, 5) og Punkt 2 { }} { (8, 17) ligger på grafen for en potenssammenhæng. Så kan vi finde a: a = log(17) log(5) log(8) log(2) = 0, 8828 Så ved jeg foreløbig, at forskriften hedder y = b x 0,8828 Jeg vælger ét af de to givne punkter ligemeget hvilket f.eks. punkt 2, og sætter y-værdien ind i stedet for y i forskriften og x-værdien i stedet for x: Af denne ligning kan jeg så finde b: 17 = b 8 0, = b 8 0,8828 b = 17 = 2, 71 80,8828 og ¾¼ så har jeg hele forskriften: y = 2, 71 x 0,8828

23 º¾ ØÐ ÒÔÓØ Ò ÐÐ Ò Ò ØÐ ÒÔÓØ Ò ÐÐ Ò Ò Hvis du har en potenssammenhæng, og skal finde den x-værdi, der giver y- værdien 10 (f.eks.), så har du to muligheder: 1. Hvis du har grafen er det nemmeste at aflæse: start på y-aksen med y- værdien 10, gå vandret ud til du rammer grafen og så lodret ned på x- aksen, hvor du aflæser løsningen. 2. Hvis du har forskriften, kan du beregne løsningen: Lad os sige, at forskriften er y = 2, 71 x 0,8828 så fører det til en potensiel ligning 10 = 2, 71 x 0,8828 eller som kan løses: 2, 71 x 0,8828 = 10 2, 71 x 0,8828 = 10 x 0,8828 = 10 2, 71 x = 0, = 4, 388 2, 71 OBS! OBS! Hvis potensen er negativ, f.eks. hvis du skal løse ligningen x 2 = 0, 25 x = ( 2) 0, 25 = 2 så er parenteser omkring ( 2) absolut nødvendige for lommeregneren! ¾½

24 º Ø Ø ÑÑ ÔÖÓ ÒØÚ Ò Ö Ò Ã Ô Ø Ð ºÈÓØ Ò ÑÑ Ò Ò Ved en potenssammenhæng svarer der til en bestemt procentvis forøgelse af x-værdien også en bestemt (men ikke den samme) procentvis forøgelse af y- værdien. Lad en potenssammenhæng have forskriften y = b x a, og lad r x være en procentvise forøgelse af x-værdien. Så kan vi finde den dertil hørende procentvise forøgelse af y-værdien, r y, på denne måde: 1 + r y = (1 + r x ) a r y = ((1 + r x ) a 1) 100% Og omvendt: Hvis jeg kender den procentvise forøgelse af y-værdien, r y, kan jeg finde den procentvise forøgelse af x-værdien: 1 + r y = (1 + r x ) a r x = Lad os sige, at forskriften er ( ) a (1 + r y ) 1 100% y = 2, 71 x 0,8828 Hvis x vokser med 25%, hvor meget vokser y så med? r y = 1 + r y = (1 + 0, 25) 0,8828 ( ) (1 + 0, 25) 0, % = 21, 77% Hvis y vokser med 25%, hvor meget vokser x så med? 1 + 0, 25 = (1 + r x ) 0,8828 ( ) r x = 0, 8828 (1 + 0, 25) 1 100% = 28, 76% ¾¾

25 º½ ËØ Ø Ø Á ¹ ÖÙÔÔ Ö Ó ÖÚ Ø ÓÒ Ö Hvis de ugrupperede observationer er tallene {1,2,3,4,5,6,7,8,9}, så er medianen er den observation, der deler materialet i to lige store dele, så det er 5. Første kvartil er den observation der deler observationerne til venstre for 5 i to lige store dele, altså er det 2,5 På samme måde er tredje kvartil den observation der deler materialet til højre i to lige store dele, altså er det 7,5. Hvis de ugrupperede observationer er tallene {1,2,3,4,5,6,7,8}, så er medianen den observation, der deler materialet i to lige store dele, så det er 4,5. Første kvartil er den observation der deler observationerne til venstre for 4,5 i to lige store dele, altså er det 2,5. På samme måde er tredje kvartil den observation der deler materialet til højre i to lige store dele, altså er det 6,5. ELLER Hvis vi har en karakterfordeling: Karakter Frekvens (%) 4,3 13,1 17,5 9,7 8,7 11,3 12,0 14,3 8,7 0,3 Kum. frekvens 4,3 17,4 34,9 44,6 53,3 64,6 76,6 90,9 99,6 99,9 så er medianen den mindste observation med en kumuleret frekvens større end eller lig med 50%, altså 7, 1. kvartil er den mindste observation med en kumuleret frekvens større end eller lig med 50%, altså 5, osv. ¾

26 º¾ ÖÙÔÔ Ö Ó ÖÚ Ø ÓÒ Ö Ã Ô Ø Ð ºËØ Ø Ø Observations- Hyppighed Frekvens Kumuleret interval frekvens Antal Frekvens beregnes som Hyppighed Antal Kumuleret frekvens findes ved at lægge frekvenserne sammen efterhånden Histogram tegnes ud fra hyppigheder eller frekvenser Sumkurve tegnes ud fra de kumulerede frekvenser Intervallernes højre endepunkt er x-værdien OBS! x-aksen er en helt almindelig tallinje med tal, ikke intervaller! OBS! Aldersfordelinger: Selv om aldersgrupperne hedder 15 19, 20 24, 25 29, osv. så er højreendpunkterne 20, 25, 30, osv. for man er 19 lige til man bliver 20, osv. Kvartilsættet: 1. kvartil = Nedre kvartil = 25%-fraktilen Median = 50%-fraktilen 3. kvartil = Øvre kvartil = 75%-fraktilen OBS! kvartilerne er tal, aflæst på x-aksen, ikke intervaller! Middeltal beregnes som Middeltal = midt af interval frekvens + + midt af interval frekvens eller Middeltal = midt af interval hyp + + midt af interval hyp Antal ¾

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold hf Matematik C Rukiye

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Eksamensspørgsmål 4emacff1

Eksamensspørgsmål 4emacff1 Eksamensspørgsmål 4emacff1 1. Funktioner, Lineære funktioner Gør rede for den lineære funktion y ax b. Forklar herunder betydningen af a og b, og kom ind på det grafiske forløb af en lineær funktion. Kom

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2014 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Susanne Hansen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold 2hf Matematik C Thomas Pedersen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard Lindeløv mac2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2015/2016 Institution Frederiksberg HF Kursus Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Sebastian

Læs mere

SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014

SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014 SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014 1. Procent og rente Forklar hvordan man udregner procentvis ændringer i forskellige tidsrum og giv et konkret eksempel herpå. Forklar gerne med et eksempel,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Maj-juni 2015 VUCHA Hf-2 Matematik-C Ivan Jørgensen(itj) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution HF & VUC Nordsjælland, Hillerød afdeling Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2016 VUCHA Hf-2 og Hf-Enkeltfag Matematik-C Anders

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommertermin, skoleår 15-16 Institution HF &VUC København Syd Uddannelse Fag og niveau Lærer(e) Hold Hf-2

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleåret 13/14 Institution Herning HF oh VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik

Læs mere

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det.

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Emne: procent og rente: 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014/15

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2015 VUC

Læs mere

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet Rentesregning 1 Forklar begrebet fremskrivningsfaktor. Forklar kapitalfremskrivningsformlen (renteformlen), og opstil/omskriv denne så du kan bestemme 1 af størrelserne, ud fra de 3 andre. Giv eksempler,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby Hf Matematik C Ashuak Jakob France

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives.

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives. Eksamensspørgsmål - maj/juni 2016 1. Tal Du skal redegøre for løsningsregler for ligninger. Forklar, hvordan følgende ligning kan løses grafisk: x + 4 = 3x - 2 Redegør for opstilling af formler til løsning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 15-16 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF 2-årigt Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Herning HF og VUC (657248) Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer Hold hf Matematik C Dorte Christoffersen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-maj 16 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2016 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF

Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: 1. hel hf B, 1. år af 2 Termin: Juni 2014 Uddannelse: HF Lærer(e):

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juni 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Hf Matematik C Lærer(e) Manisha de Montgomery Nørgård (MAN) og Daniel Christensen (DC) - barselsvikar.

Læs mere

Undervisningsbeskrivelse & Oversigt over projektrapporter

Undervisningsbeskrivelse & Oversigt over projektrapporter Undervisningsbeskrivelse & Oversigt over projektrapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2016 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Undervisningsbeskrivelse & Oversigt over projektrapporter

Undervisningsbeskrivelse & Oversigt over projektrapporter Undervisningsbeskrivelse & Oversigt over projektrapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hf Mat C Viktor Kristensen

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål i ma til 1p sommeren 2009 (revideret) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar formlen til kapitalfremskrivning

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Undervisningsbeskrivelse for: 1mac16fs 0815 ma

Undervisningsbeskrivelse for: 1mac16fs 0815 ma Undervisningsbeskrivelse for: 1mac16fs 0815 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C fleks sommereksamen Termin: Juni 2016 Uddannelse: HF Lærer(e):

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Suna Vinther

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hf2 Matematik,

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2015/2016, eksamen maj-juni 2016 Institution Kolding HF&VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2014/2015, eksamen maj-juni 2015 Institution Kolding HF&VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Laila Knudsen mac5 Oversigt over gennemførte undervisningsforløb Forløb 1

Læs mere

Matematik C Noter For S15B. Af Cristina Sissee Jensen

Matematik C Noter For S15B. Af Cristina Sissee Jensen Matematik C Noter For S15B Af Cristina Sissee Jensen Indholds fortegnelse Statistik s.4-6 o Forklaring på ikke og grupperede statistik s.4 o Ikke grupperede s.4 o Grupperede s.6 Tal- og bogstavregning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Jun 2016 Institution HF & VUC Nordsjælland Helsingør afdeling Uddannelse Fag og niveau Lærer(e) Hold HF

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Thomas K. Andersen mac4 Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Laila Knudsen mac3 Oversigt over gennemførte undervisningsforløb Forløb 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution VestegnenHFVUC Rødovre-afdeling Uddannelse Fag og niveau Lærer(e) Hold HF Enkeltfag

Læs mere

Undervisningsbeskrivelse for: 1mac15e2 0814 ma

Undervisningsbeskrivelse for: 1mac15e2 0814 ma Undervisningsbeskrivelse for: 1mac15e2 0814 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C for enkeltfag Termin: Juni 2015 Uddannelse: HF Lærer(e): Jacob

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Laila Knudsen 1a ma Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Niels Just Mikkelsen mac3 Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Vestegnens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Jack

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 - Juni 2015 Institution Uddannelse Herning HF og VUC Hf Fag og niveau Matematik C Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2016, skoleåret 15/16 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2014, skoleåret 13/14 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer.

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer. Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 13/14 Institution VUC Albertslund Uddannelse Fag og niveau Lærer(e) Hold HF Enkeltfag Mat C Kofi Danquah Mensah

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Undervisningsbeskrivelse for: 1mac16v ma

Undervisningsbeskrivelse for: 1mac16v ma Undervisningsbeskrivelse for: 1mac16v2 0816 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C for BIIG og enkeltfag ½ års efterår Termin: December 2016 Uddannelse:

Læs mere

Undervisningsbeskrivelse for: 1q mah

Undervisningsbeskrivelse for: 1q mah Undervisningsbeskrivelse for: 1q mah Fag: Matematik C, 2HF Niveau: C Institution: Herning HF og VUC (657248) Hold: 1q Termin: Juni2014 Uddannelse: HF Lærer(e): Gitte Alstrup Jensen (GI) Forløbsoversigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2015, skoleåret 14/15 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Eksamens-seminar. Mat C flex. Gunvor M. Juul. 1.maj 2013. VUC Århus. Praktisk info om eksamen s. 1-5. Beviser i bogen oversigt s.

Eksamens-seminar. Mat C flex. Gunvor M. Juul. 1.maj 2013. VUC Århus. Praktisk info om eksamen s. 1-5. Beviser i bogen oversigt s. Eksamens-seminar Mat C flex Gunvor M. Juul Materialer: 1.maj 2013 VUC Århus Praktisk info om eksamen s. 1-5 Beviser i bogen oversigt s. 6 Mundtlige eksamensspørgsmål foreløbige s. 7-9 12 gode råd om mundtlig

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016, skoleåret (15/) 16 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC HF-E

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 - Juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC Hf Matematik

Læs mere

Undervisningsbeskrivelse for: 1s mah

Undervisningsbeskrivelse for: 1s mah Undervisningsbeskrivelse for: 1s mah Fag: Matematik C, 2HF Niveau: C Institution: Herning HF og VUC (657248) Hold: 1s Termin: Juni2014 Uddannelse: HF Lærer(e): Gitte Alstrup Jensen (GI) Forløbsoversigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VestegnenHFVUC Albertslund-afdeling Uddannelse Fag og niveau Lærer(e) Hold HF Enkeltfag

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juni 2014/2015 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold 2Hf Matematik C Manisha de Montgomery Nørgård (MAN) 1. d Oversigt over gennemførte

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Retur Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution VUC Syd Uddannelse Fag og niveau Lærer(e) 2-årigt hf Hf matematik C Hanne

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 & maj-juni 2017 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Retur Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution VUC SYD, afd. Haderslev Uddannelse Fag og niveau Lærer(e) Hf 2-årig Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2016 Institution Vestegnen hf og VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik C Nicolai

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Alexander

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik C Kenneth Berg k710hhxa1 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug-juni 13/14 Institution Campus Vejle VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Lars Therkelsen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-juni, 2013 Institution VUC Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C HUNI 2HF TmaCK13j

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Vest - Esbjerg Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Peter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Side 1/5 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2011 Institution ZBC, Vordingborg Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jørgen Slot

Læs mere

Matematik Grundforløbet

Matematik Grundforløbet Matematik Grundforløbet Mike Auerbach (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 2. udgave, 2015 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses.

Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses. 18-02-2009 16:13:02 Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: hyp 2 = kat 1 2 +kat 2 2 12 De oplyste tal indsættes; ligningen løses. hyp 2 = 5 2 +12 2 hyp 2 = 25 + 144 = 169 hyp

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Eksponentielle funktioner

Eksponentielle funktioner Eksponentielle funktioner http://en.wikipedia.org/wiki/rabbits_in_australia 4. udg. 2011 12-12-2011 Eksponentielle funktioner Vækst Udfyld tabellen ved: at skrive begyndelsesværdien b = f(0) = 30 under

Læs mere