Kapitel 7 Matematiske vækstmodeller

Størrelse: px
Starte visningen fra side:

Download "Kapitel 7 Matematiske vækstmodeller"

Transkript

1 Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel 3 så vi et eksempel på en sådan type, nemlig lineære sammenhænge. De er karakteriseret ved, at grafen for dem danner en ret linie i et koordinatsystem, og de har alle en regneforskrift af typen: y = a x + b Tallet a angiver hældningskoefficienten. Dette tal angiver, hvor meget y-værdien ændres, hvis x-værdien vokser med 1. Hvis x-værdien har den absolutte ændring Δx, vil den absolutte ændring af y-værdien kunne beregnes som: Δy = a Δx Med andre ord kan vi karakterisere lineære sammenhænge som sammenhænge mellem to variable, x og y, hvor den absolutte ændring i x, Δx, og den absolutte ændring i y, Δy, er ligefrem proportionale. Tallet b angiver, hvor grafen skærer y-aksen. I dette kapitel skal vi møde andre typer af sammenhænge, hvor særligt den relative tilvækst har betydning. Side 103

2 7.1 Eksponentiel vækst Hvis vi har nogle bakterier i en næringsvæske, vil de formere sig ved celledeling, så længe der er næring nok. Hvis der er dobbelt så mange bakterier, vil vi regne med, at der forekommer dobbelt så mange celledelinger. Det betyder, at tilvæksten også vil være dobbelt så stor. Vi forventer, at antallet af bakterier vil vokse med samme procent. Radioaktivt materiale vil udsende stråling. Strålingen udsendes fra atomkernerne, og når en kerne har udsendt stråling (alfa, beta eller gamma-stråling) ændres den. Vi siger, at atomkernen henfalder. Ofte vil den efter et henfald blive til en stabil atomkerne, der ikke udsender mere stråling. Derfor vil et radioaktivt materiale med mange radioaktive atomkerner udsende meget stråling, fordi der er mange atomkerner, der kan henfalde. Når der er gået noget tid, vil der være færre radioaktive atomkerner tilbage, og derfor vil strålingen aftage. Hvis der kun er den halve mængde radioaktive atomer tilbage, vil vi forvente, at der kun udsendes den halve mængde stråling. Igen vil vi observere, at radioaktiviteten aftager med samme procent. Hvis man sætter et beløb ind på en konto i en bank og lader dem stå, vil de trække renter år efter år. Beløbet på kontoen vil vokse med samme procent hvert år. Her er tale om en funktionssammenhæng. Den afhængige variable, y, beløbet på kontoen, vil afhænge af den uafhængige variable, nemlig tiden, x. I alle tre ovenstående eksempler ændrede y-værdien sig med samme procent, hver gang x-værdien ændres med 1. Den relative ændring af y er konstant, hver gang x-værdien bliver 1 større. Funktionssammenhænge med denne egenskab kaldes for eksponentiel vækst. Side 104

3 Vi kan finde en regneforskrift for eksponentiel vækst ved at tage udgangspunkt i renteformlen. K n = K 0 (1 + r) n Hvis startværdien af den afhængige variable, y, kaldes for b, svarende til startbeløbet på kontoen i banken, K 0, og fremskrivningsfaktoren 1 + r kaldes for a kan regneforskriften for sammenhængen skrives: y = b a x Herunder ses graferne for forskellige eksempler på eksponentiel vækst. Læg mærke til grafernes forløb. Hvis grundtallet a = 1 + r er større end 1, svarer til det vækst med positiv rentetilvækst ( r > 0 ), og y-værdierne vil vokse, når x vokser. Hvis grundtallet a = 1 + r er mindre end 1, svarer det til vækst med negativ procenttilvækst ( r < 0 ), og y-værdierne bliver aftagende. Læg endvidere mærke til hvordan grafen i den ene retning smyger sig mod x-aksen. Vi siger, at grafen nærmer sig asymptotisk mod x-aksen. Forløb af eksponentiel vækst: Hvis en eksponentiel vækst har regneforskriften: y = b a x gælder: Hvis a > 1, vil y være voksende. Hvis a < 1, vil y være aftagende. Side 105

4 Lad os betragte en tabel for x og y: x: y: b a 1 b b a b a 2 b a 3 Hver gang vi går et trin til højre i tabellen, bliver x-værdien 1 større. Samtidig ser vi, at y-værdien bliver a gange større; y-værdierne bliver altså ganget med samme tal, nemlig tallet a, for hvert trin i tabellen. Dette kan generaliseres, således at vi ikke nødvendigvis altid vil gøre x-værdien 1 større. Lad os se på en bestemt x-værdi. Vi kalder den for x 1. Den tilsvarende y-værdi kaldes for y 1 : y 1 = b Lad os gøre x-værdien Δx større, så den bliver x 2 = x 1 + Δx. Den tilsvarende y-værdi kan nu bestemmes ved hjælp af regneforskriften: y 2 = b = Ved at bruge potensregnereglen for et produkt, se side 100, kan udtrykket omskrives til: y 2 = b = y 1 a Δx Med andre ord kan dette udtrykkes således: Hvis vi giver x-værdien den absolutte tilvækst Δx, så bliver den tilsvarende y-værdi ganget med tallet a Δx. Med andre ord: Hvis du lægger Δx til x-værdien, skal du gange y-værdien med a Δx. Dette er formuleret i denne sætning: Side 106

5 Sætning om tilvækst i eksponentiel vækst: Hvis vi har en eksponentiel vækst, y = b a x, og x-værdien får en tilvækst på Δx, vil den tilsvarende y-værdi bliver a Δx gange større. Dette kan udnyttes til at finde en regneforskrift for en funktion, som er eksponentielt voksende. Lad os se på et eksempel. Vi antager, at prisen på mælk i en periode har været eksponentielt voksende. I 2002 var prisen 6,50 kr. for 1L letmælk, mens den i 2006 er steget til 7,25 kr. Vi kan skrive disse oplysninger ind i et skema. Tid (år efter 2000) x 1 = 2 x 2 = 6 Pris (i kroner) y 1 = 6,50 y 2 = 7,25 Så udregnes den absolutte ændring i x-værdier: Δx = x 2 x 1 = 6 2 = 4 Vi ved nu at: y 2 = y 1 a Δx og her indsættes tallene Δx = 4, y 1 = 6,50 og y 2 = 7,25: 6,50 a 4 = 7,25 Denne ligning løses nu for at finde a. Først divideres med 6,50: Side 107

6 Og så tager vi den 4 de rod: = 1,0277 Endvidere ved vi, at regneforskriften er y = b a x. Her kan vi indsætte vores værdi af a, som vi lige har fundet, og et par af samhørende værdier af x og y, fx x 1 = 2 og y 1 = 6,50. Dette giver ligningen: y 1 = b og med de kendte tal indsat: 6,50 = b 1, Her kan tallet b nemt findes: b = = 6,15 Altså er regneforskriften for den eksponentielle funktion, der beskriver udviklingen i mælkeprisen i årene efter 2000 givet ved: y = 6,15 1,0277 x Denne procedure generaliseres nemt til vilkårlige tal: Sætning om regneforskrift for eksponentiel vækst: Hvis sammenhængen mellem to variable x og y er en eksponentiel vækst, og vi kender to par af samhørende værdier: x 1 og y 1 samt: x 2 og y 2 er regneforskriften: y = b a x hvor: a = b = Når man skal undersøge, om sammenhængen mellem to variable kan beskrives som en eksponentiel vækst kan man gøre det ved hjælp af regneark på computer. Her kan man udnytte faciliteten tendenslinie og vælge eksponentiel vækst som mulighed. Side 108

7 Lad os se på et eksempel. Vi kaster 100 terninger, og efter hvert kast fjerner vi alle de terninger, der har vist en 6 er. Resultatet ses i tabellen herunder: Kast nr: 0 (start) Terninger efter kastet: Ved at indtaste tallene i et regneark, kan vi få tegnet denne graf: Side 109

8 Ved at prøve med en lineær tendenslinie ses, at der ikke er tale om lineær sammenhæng, fordi punkterne ikke danner en ret linie i koordinatsystemet. Vi kan dernæst prøve med eksponentiel tendenslinie: Og straks ser vi en meget bedre overensstemmelse mellem punkterne og grafen. Så vi må konkludere, at antallet af terninger er eksponentielt aftagende. Man kan undersøge, om der er en eksponentiel sammenhæng mellem to variable uden brug af regneark. Man har konstrueret et specielt grafpapir, som kaldes for enkeltlogaritmisk papir, hvor graferne for eksponentiel vækst bliver rette linier, og alle andre typer bliver krumme kurver. Ved at indtegne sine data i et sådan stykke papir, afsløres hurtigt, om der er tale om eksponentiel vækst. Side 110

9 På enkeltlogaritmisk papir er x-aksen helt almindelig, og her angives x-værdierne som vi plejer. Men y-aksen er anderledes. Her er på forhånd trykt nogle tal, og dem skal man benytte, hvis papiret skal virke efter hensigten. Tallene, der er trykt, må forsynes med 0 er og eventuelt et komma, men aldrig med andre cifre. Hvor der er trykt et 2-tal, kan der stå: 20, 200, 2000 eller 0,2. Papiret er på y-aksen trykt med tre ens forløb af tal, der alle går fra 1 til 10. Et sådan forløb kaldes for en dekade. Alle tal i en dekade skal være 10 gange større end de tilsvarende tal i dekaden under. Hvis første dekade løber fra 1 til 10, skal næste løbe fra 10 til 100 og den øverste fra 100 til På enkeltlogaritmisk papir er der intet nulpunkt på y-aksen, og der kan ikke angives negative y-værdier på y-aksen. Her ses enkeltlogaritmisk papir, som det er trykt, og et eksempel på angivelse af værdier på x- og y-akserne. Side 111

10 Her ses data fra terningkastene indtegnet på enkeltlogaritmisk papir (der er kun vist en dekade!). Det ses tydeligt, at punkterne danner en ret linie i det enkeltlogaritmiske koordinatsystem: 7.2 Halveringstid og logaritmer Vi vil nu definere logaritmer og udlede nogle formler med logaritmer, som er meget nyttige ved regning med eksponentiel vækst. Vi starter med at se på sammenhængen: y = 10 x Side 112

11 Skemaet herunder viser forskellige værdier af x og y: x -2-1,5 0 0,75 1 2,4 3 y=10 x 0,01 0, , , I formlen y = 10 x udregner vi y, når vi kender x. Hvis vi omvendt kender y-værdien, kan vi forsøge at lede efter den x-værdi, som passer i udtrykket: y = 10 x Denne x-værdi kaldes for logaritmen til y. Den skrives log(y). Som vi har angivet logartimen til et tal, ses det, at logaritmen er det omvendte af at sætte i 10 ende potens. Definition af logaritmer: Hvis tallet y er positivt, defineres logaritmen til y, log(y), og det er det tal, x, der opfylder: log(y) = x, hvis der gælder y = 10 x Der gælder specielt: log(10 x ) = x og: 10 log(y) = y Eksempel Logaritmen til 100 er 2, dvs. log(100) = 2, fordi 10 2 = 100. Af tabellen ovenfor så vi at 0,0316 = 10-1,5. Det betyder at log(0,0316) = 1,5. Eksempel Ved at vende tabel len ovenfor kan vi få en tabel over logaritmeværdier: y 0,01 0, , , log(y) 2 1,5 0 0,75 1 2,4 3 På lommeregneren kan logaritmen nemt findes ved at bruge knappen log. Logaritmen er et udmærket værktøj, fordi man kan opløse potensudtryk ved hjælp af logaritmer. Side 113

12 Dette kommer til udtryk i denne sætning: Sætning om logaritmeregler: Der gælder følgende regler for logaritmer: 1. log(a b) = log(a) + log(b) 2. log( ) = log(a) log(b) 3. log(a x ) = x log(a) Bevis for logaritmereglerne: Vi udregner: 10 log(a) + log(b) og bruger vores potens regneregel: 10 log(a) + log(b) = 10 log(a) 10 log(b) = a b Men så kan vi tage logartimen på begge sider: log(a b) = log(10 log(a) + log(b) ) = log(a) + log(b) Herved er første regel bevist. Anden regel vises ved at bruge første regel på: a = b log(a) = log( b) = log( ) + log(b) og ved at trække log(b) fra, opnår vi: log(a) log(b) = log( ) og vi har vist anden regel. Side 114

13 Tredje regel vises igen ved at se på potensen: 10 x log(a) Dette omskrives således: 10 x log(a) = 10 log(a) x = (10 log(a) ) x = a x og igen tages logaritmen: log(a x ) = log(10 x log(a) ) = x log(a) Sidste regel er herved bevist. Vi har tidligere, fx i rentesregning, mødt problemstillinger, hvor vi skal finde værdien af en ubekendt, der optræder som potens i et udtryk. Sådanne problemer kan vi nu nemt løse ved hjælp af logaritmer. Eksempel Ligningen 1,37 x = 2,44 løses ved at tage logaritmen på begge sider: log(1,37 x ) = log(2,44) Udtrykket med x omformes ved hjælp af regneregel 3 til: x log(1,37) = log(2,44) og straks er den ubekendte, x, væk fra potensen. Vi kan nu finde x ved at dividere med log(1,37): x = = 2,83344 Eksempel En bakteriekoloni vokser med 17% i timen. Der er bakterier i kolonien. Hvis vi vil bestemme, hvornår bakterieantallet er fordoblet, kan vi opskrive sammenhængen mellem tid og bakterieantal: y = ,17 x Vi skal finde det tidspunkt, x, hvor y = (det dobbelte af ). Derfor opstiller vi ligningen; = ,17 x Side 115

14 Først divideres med : Så tager vi logaritmen på begge sider: log(2) = log(1,17 x ) = x log(1,17) Hvorefter vi dividerer med log(1,17) x = = 4,41 Det betyder, at bakteriekulturen er fordoblet efter 4,41 timers forløb. Vi har nu set eksempler på ligninger, hvor den ubekendte, x, optræder i potensen i et udtryk. Så anvender vi logaritmer til at løse dem med. Dette vil vi nu generalisere til: Sætning om løsning af ligninger med potenser: Hvis a og c er positive tal, med a 1, har ligningen: a x = c Løsningen: x = Beviset for denne sætning gennemføres ved at tage logaritmen på begge sider af lighedstegnet i ligningen: log(a x ) = log(c) Vi anvender logaritmeregel nr. 3: x log(a) = log(c) Endelig dividerer vi med log(a): x = Side 116

15 Hermed er sætningen bevist. En størrelse, der vokser eksponentielt, har en regneforskrift som: y = b a x, hvor a > 1. Man taler ofte om fordoblingskonstanten, T 2, for sådanne udviklinger. Fordoblingskonstanten er den tid, det tager for størrelsen y at fordoble sin værdi. Den findes ved at løse ligningen: 2b = b eller: 2 = Men denne ligning har løsningen: T 2 = Hvis størrelsen er aftagende taler man tilsvarende om halveringskonstant, findes ved at løse ligningen:. Denne b = b eller: = Men denne ligning har løsningen: = Vi sammenfatter dette i følgende sætning: Sætning om fordoblingskonstant og halveringskonstant: Hvis en størrelse y = b a x er eksponentielt voksende, findes fordoblingskonstanten som: T 2 = Hvis størrelsen størrelse y = b a x er eksponentielt aftagende, findes halveringskonstanten som: Side 117

16 Logaritmernes opfindelse. Ordet logaritme er sammensat af ordet logos, et græsk ord, som betyder fornuft eller rationel tankegang, og ordet arithmos, der også er græsk og betyder tal eller regning, Logaritmer er opfundet af englænderen John Napier i 1614 og schweizeren Joost Bürgi i I dag tager vi udgangspunkt i ligningen: y = 10 x når vi definerer logaritmer. Man kalder også disse logaritmer for 10-tals-logaritmen. Men i princippet kan man tage udgangspunkt i et hvilket som helst grundtal i ligningen: y = a x og herved opnår man andre slags logaritme. John Napier John Napier brugte grundtallet a = 0, , og Bürgi a = 1,0001. I videregående matematik anvendes mest den logaritme, der kaldes for den naturlige logaritme. Den har grundtaller: e = 2, Titals-logaritmen blev opfundet af englænderen Henry Briggs ( ), som i et samarbejde med John Napier udarbejdede den første tabel over logaritmer i Logaritmer var en epokegørende opfindelse, fordi udregninger med større tal bliver meget nemmere. Særligt multiplikation, division og uddragning af rødder er nemmere. Hvis man skal gange to tal med hinanden, fx Man finder blot deres logaritmer i en tabel: Disse lægges sammen: 4, log(257) = 2, log(315) = 2, Til sidst findes 10 4, = også i en tabel, og det er resultatet af multiplikationen. På denne måde er en multiplikation overført til et problem med at lægge to tal sammen en meget nemmere opgave. Side 118

17 7.3 Potensvækst Potensvækst er en væksttype, der har en regneforskift af typen: y = b x a Variationsområdet for den uafhængige variable er alle positive reelle tal ( x > 0 ). Læg mærke til, at regneforskriften for potensvækst og for eksponentiel vækst ligner hinanden meget, men at der er byttet om på x og a. På figuren ses grafer for en række eksempler på potensvækst. Man kan vise, at grafer for potensvækst giver en ret linie i et dobbeltlogaritmisk koordinatsystem, og at det er den eneste type, der har denne egenskab. Derfor kan man undersøge, om der er tale om potensvækst ved at indtegne grafen i et dobbeltlogaritmisk koordinatsystem og se, om den her danner en ret linie. For potensvækst gælder, at sammen procentvise vækst i den uafhængige variable giver samme procentvækst i den afhængige variable uanset hvilket udgangspunkt man vælger. Hvis vi har en x-værdi, x 0, og den tilsvarende y-værdi y 0, gælder: y 0 = b x 0 a Hvis x-værdien stiger med p%, skal x-værdien ganges med fremskrivningsfaktoren svarende til p%. Den er 1 + r, hvor r =. Den nye x-værdi er altså: Side 119

18 x = (1+r) x 0 Den tilsvarende y-værdi findes nu: y = b x a = b ((1+r) x 0 ) a = b (1+r) a x 0 a = (1+r) a b x 0 a = (1+r) a y 0 Heraf ses, at y-værdien er ganget med fremskrivningsfaktoren (1+r) a, hvilket svarer til, at den er vokset med samme procent uafhængigt af udgangspunktet x Oversigt over væksttyper Type: Ændringer i x og y: Graf: Lineær: y = ax + b Samme absolutte vækst i x giver samme absolutte vækst i y: Δy = a Δx Ret linie i et almindeligt koordinatsystem. Eksponentiel: y = b a x Potens: y = b x a Samme absolutte ændring i x giver same relative ændring i y: y + Δy = y a Δx Samme relative ændring i x giver samme relative ændring i y Ret linie i enkeltlogaritmisk koordinatsystem. Ret linie i dobbeltlogaritmisk koordinatsystem. Side 120

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Eksponentielle funktioner

Eksponentielle funktioner Eksponentielle funktioner http://en.wikipedia.org/wiki/rabbits_in_australia 4. udg. 2011 12-12-2011 Eksponentielle funktioner Vækst Udfyld tabellen ved: at skrive begyndelsesværdien b = f(0) = 30 under

Læs mere

Eksamensspørgsmål: Eksponentiel vækst

Eksamensspørgsmål: Eksponentiel vækst Eksamensspørgsmål: Eksponentiel vækst Indhold Definition:... Eksempel :... Begndelsesværdien b... Fremskrivningsfaktoren a... Eksempel :... Formlerne for a og b... 3 Eksempel 3:... 3 Bevis for formlen

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold 2hf Matematik C Thomas Pedersen

Læs mere

9 Eksponential- og logaritmefunktioner

9 Eksponential- og logaritmefunktioner 9 Eksponential- og logaritmefunktioner Hayati Balo, AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2 2. Crone og Rosenquist, Matematiske elementer

Læs mere

Matematik Grundforløbet

Matematik Grundforløbet Matematik Grundforløbet Mike Auerbach (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 2. udgave, 2015 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

brikkerne til regning & matematik funktioner preben bernitt

brikkerne til regning & matematik funktioner preben bernitt brikkerne til regning & matematik funktioner 2+ preben bernitt brikkerne til regning & matematik funktioner 2+ beta udgave som E-bog ISBN: 978-87-92488-32-9 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

M A T E M A T I K G R U N D F O R L Ø B E T

M A T E M A T I K G R U N D F O R L Ø B E T M A T E M A T I K G R U N D F O R L Ø B E T M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 3. udgave, 2016 Disse noter er skrevet til matematikundervisning

Læs mere

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG INDHOLDSFORTEGNELSE Formelsamling... side Grundlæggende færdigheder... side 4 a Finde konstanterne a og b i en regneforskrift (og p eller r)... side 4 b

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2008.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2008. Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 008. Billeder: Forside: Collage af foto fra blandt andet: istock.com/chuntise istock.com/ihoe Side 11: istock.com/jamesbenet Side 14: Tegning af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Herning HF og VUC (657248) Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C,

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2017 Skoleår 2016/2017 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen.

Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen. 37-43. Side 1 af 8 Eksponentiel udvikling ( 37-43) Opgaverne med svar starter på side 4, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 7 med et s foran

Læs mere

Potenser, rødder og logartime

Potenser, rødder og logartime Potenser, rødder og logartime Hamid Yar Mohammad 9/0-03 0. Potens Almen kendte definition på potens, når n N kan a R. a n = a a... a } {{ } a multipliceret n gange Mere kompleks definition a n = e n In(a),

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold hf Matematik C Rukiye

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hf2 Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard Lindeløv mac2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleåret 13/14 Institution Herning HF oh VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 - Juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC Hf Matematik

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Vi har valgt at analysere vores gruppe ud fra belbins 9 grupperoller, vi har følgende roller

Vi har valgt at analysere vores gruppe ud fra belbins 9 grupperoller, vi har følgende roller Forside Indledning Vi har fået tildelt et skema over nogle observationer af gærceller, ideen ligger i at gærceller på bestemt tidspunkt vokser eksponentielt. Der skal nu laves en model over som bevise

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF

Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: 1. hel hf B, 1. år af 2 Termin: Juni 2014 Uddannelse: HF Lærer(e):

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Alexander

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Laila Knudsen mac3 Oversigt over gennemførte undervisningsforløb Forløb 1

Læs mere

Matematik for hf C-niveau

Matematik for hf C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for hf C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for hf C-niveau

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Formelsamling C-niveau

Formelsamling C-niveau Formelsamling C-niveau Maj 2017 Indhold C-niveau 1 Tal og Regnearter 3 1.1 Regnearternes hierarki................................... 3 1.1.1 Regneregler..................................... 3 1.2 Parenteser..........................................

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer 2hf Matematik C Søren Fritzbøger Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2014 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Susanne Hansen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Matematik A og Informationsteknologi B

Matematik A og Informationsteknologi B Matematik A og Informationsteknologi B Projektopgave 2 Eksponentielle modeller Benjamin Andreas Olander Christiansen Jens Werner Nielsen Klasse 2.4 6. december 2010 Vejledere: Jørn Christian Bendtsen og

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Regneark Excel fortsat

Regneark Excel fortsat Regneark Excel fortsat Indhold SÅDAN TEGNES GRAFER I REGNEARK EXCEL... 1 i Excel 97-2003... 1 I Excel 2007... 1 ØVELSE... 2 I Excel 97-2003:... 2 I Excel 2007... 3 OM E-OPGAVER 12A... 4 Sådan tegnes grafer

Læs mere

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives.

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives. Eksamensspørgsmål - maj/juni 2016 1. Tal Du skal redegøre for løsningsregler for ligninger. Forklar, hvordan følgende ligning kan løses grafisk: x + 4 = 3x - 2 Redegør for opstilling af formler til løsning

Læs mere

Erik Vestergaard www.matematikfysik.dk

Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 0B1. Potenser og potensregler Hvis a R og n er et helt, positivt tal, så er potensen a som bekendt defineret ved: n (1) n

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 - Juni 2015 Institution Uddannelse Herning HF og VUC Hf Fag og niveau Matematik C Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Projektopgave Matematik A Tema: Eksponentielle modeller Vejleder: Jørn Bendtsen Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Dato: 01-01-2008 Indholdsfortegnelse Indledning... 3 1.

Læs mere

INTRODUKTION Maple Funktioner Regression

INTRODUKTION Maple Funktioner Regression INTRODUKTION Maple Funktioner Regression x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse PAPIR, BLYANT OG COMPUTER... 3 LEKTIELÆSNING... 3 3 FØRSTE MATEMATIKMODULER... 3 KOM I GANG MED MAPLE...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Laila Knudsen 1a ma Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 15-16 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF 2-årigt Matematik C

Læs mere

Eksamensspørgsmål 4emacff1

Eksamensspørgsmål 4emacff1 Eksamensspørgsmål 4emacff1 1. Funktioner, Lineære funktioner Gør rede for den lineære funktion y ax b. Forklar herunder betydningen af a og b, og kom ind på det grafiske forløb af en lineær funktion. Kom

Læs mere

Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6

Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6 Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6 Indholdsfortegnelse: Enkelt logaritmisk koordinatsystem side 1 Eksempel på brug af enkelt logaritmisk koordinatsystem ud fra tabel side 2 Dobbelt

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Vestegnens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Jack

Læs mere

ØVEHÆFTE FOR MATEMATIK C RENTESREGNING

ØVEHÆFTE FOR MATEMATIK C RENTESREGNING ØVEHÆFTE FOR MATEMATIK C RENTESREGNING hvor a INDHOLDSFORTEGNELSE 1 Introduktion... side 1 Renters rente på 4 måder... side 2 2 Grundlæggende færdigheder... side 3 2c Anvendelse af kapitalfremskrivningsformlen

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 23. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Anden del af kapitlet fokuserer på rentebegrebet. I læseplanen fra Fælles Mål 2009 står der direkte, at eleverne skal arbejde med

Anden del af kapitlet fokuserer på rentebegrebet. I læseplanen fra Fælles Mål 2009 står der direkte, at eleverne skal arbejde med Af læseplanen for 7.-9. klassetrin fremgår det, at beskrivelse af lineære og ikke-lineære sammenhænge indgår i arbejdet med funktionsbegrebet. Det er ligeledes fremhævet, at arbejdet med funktionsbegrebet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution HF & VUC Nordsjælland, Hillerød afdeling Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Forår 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Rabia Jeelani

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Suna Vinther

Læs mere

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet Rentesregning 1 Forklar begrebet fremskrivningsfaktor. Forklar kapitalfremskrivningsformlen (renteformlen), og opstil/omskriv denne så du kan bestemme 1 af størrelserne, ud fra de 3 andre. Giv eksempler,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Side 1/5 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Niels Just Mikkelsen mac3 Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Thomas K. Andersen mac4 Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2014, skoleåret 13/14 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Najib Faizi

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Laila Knudsen mac5 Oversigt over gennemførte undervisningsforløb Forløb 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Elisabeth

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 1 Introduktion... side 3 2 Grundlæggende færdigheder... side 4 2a Finde konstanterne a og b i en formel... side

Læs mere