Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder
|
|
|
- Morten Ravn
- 10 år siden
- Visninger:
Transkript
1 Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder
2 Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten af en usikker begivenhed Ex: Sandsynligheden for regn i morgen er 0,5 Ex: Sandsynligheden for at få 7 rigtige i lotto er 0, I modsætning til deterministiske hændelser: Den 25. juni har jeg fødselsdag ;-) I morgen står solen op kl. 7.4 Forskellige statistiske retninger: Frekventistisk (jeres, fortrinsvist) Bayesiansk (bruger subjektive sandsynligheder) Den klassiske sandsynlighedsteori blev udviklet i 00 tallet inspireret af Casino spil!
3 Lidt om mængder En mængde er en samling af elementer Eksempel: A={,2,3,4} eller A={plat, krone} Den tomme mængde A=Ø, indeholder ingen elementer Den universelle mængde S, indeholder alle elementer Komplementet af en mængde A, er mængden Ā, der indeholder alle elementer i S, der ikke er i A. Eksempel: S={,2,3,4,5,} og A={,4,}. Så er Ā={2,3,5} Venn Diagram A, 4, Ā 2,3,5 S
4 Mere om mængder Fællesmængden af A og B, A B, er mængden, der indeholder de elementer, der er i både A og B A={,2,3} B={3,4,5} A B={3} A A B, 2 3 4, 5 Foreningsmængden af A og B, A U B, er mængden, der indeholder de elementer, der er i A eller B eller begge S B S A={,2,3} B={3,4,5} A U B={,2,3,4,5} A, 2 3 4, 5 B A U B
5 Den tomme mængde To mængder er disjunkte, hvis fællesmængden A B=Ø A={,2,3} B={4,5} A B={Ø} A, 2, 3 4, 5 B S
6 Mere om sandsynlighed Eksperiment: Handling, der leder frem til et af flere mulige udfald Udfald: Observation eller måling Ex: Kast med en terning eller kast med en mønt Udfaldsrum: En liste af flere mulige udfald af eksperimentet, lig med den universelle mængde S={o,o2,,ok} Udfaldene skal være udtømmende Eksempler: Terningkast S={,2,3,4,5,} S={,2,3,4,5} duer ikke! Møntkast S={plat, krone} S={plat} duer ikke Udfaldene skal være disjunkte Terningkast S={,2,3,4,5,} S={-2,2-3,3-4,4-5,5-} duer ikke!
7 Hændelser En simpel hændelse er et udfald i udfaldsrummet Eksempel: Terningkast en er er en simpel hændelse En hændelse er en mængde af en eller flere simple hændelser i et udfaldsrum Eksempel: Terningkast A={2,3,4} er en hændelse Sandsynligheden for en hændelse, P(A), er summen af sandsynlighederne for de simple hændelser Eksempel: P(A)=P(2)+P(3)+P(4)=/+/+/=3/ Hvis sandsynligheden for alle udfald er ens, er sandsynligheden for en hændelse: P( A) = n( A) n( S) Eksempel:P(A)=3/ n( A) = antal elementer i A n(s) = antal elementer i S
8 Regler for sandsynlighed Givet et udfaldsrum S={o,o2,,ok} da skal sandsynlighederne opfylde: ) 0 P(o ) for alle i 2) k i= P(o i i ) = og dermed også 0 P(A), for enhver hændelse A Eksempel: Terningkast lige sandsynlighed for alle udfald: S = {,2,3,4,5,} P() = P(2) = P(3) = P(4) = P(5) = P() = P(o ) = + i i= =
9 Flere regler Sandsynligheden for Ā: P(Ā)=-P(A) Sandsynligheden for Ø: P(Ø)=0 Sandsynligheden for S: P(S)= Fællesmængden for hændelserne A og B, A B, er hændelsen, der forekommer, når både A og B forekommer Sandsynligheden for A B, P(A B), kaldes den simultane sandsynlighed (joint probability)
10 Simultan sandsynlighed - eksempel
11 Marginal sandsynlighed Marginale sandsynligheder beregnes ved at summe over rækker og søjler i tabellen.
12 Additionsreglen Sandsynligheden for foreningen mellem to mængder A og B, A U B, er givet som: P(A U B) = P(A) + P(B) P(A B) Hvis A og B er disjunkte hændelser, er P(A B) = 0 og dermed: P(A U B) = P(A) + P(B) Eksempel med fælles fonde: P A U B = P A P B - PA B = ( 0, 0,29 ) (0, 0,0) -0, = 0.4
13 Betinget sandsynlighed Den betingede sandsynlighed P(A B) betyder sandsynligheden for A, givet at vi kender B: P(A IB) P(B I A) P(A B) = og P(B A) = P(B) P(A) eller ligeledes P(A IB) = P(A B)P(B) = P(B A)P(A) Eksempel: Hvad er sandsynligheden for at en fælles fond er bedst, når vi ved at manageren kom fra en god skole? P(B A P(A IB) ) = P(A) 0. = =
14 Uafhængighed To hændelser er uafhængige hvis: P(A B) = P(A) og P(B A) = P(B) Ligeledes P(AI B) = P(A)P(B) Eksempel: Er der uafhængighed mellem om en fælles fond er god eller dårlig og om manageren kom fra en god eller dårlig skole? P(B A) = 0,275 P(B) = 0,7 De er derfor ikke uafhængige!! Lige meget hvilken kombination af hændelser vi vælger, skal uafhængigheden gælde. Hvis bare en kombinationer viser afhængighed, er hændelserne afhængige.
15 Tavle eksempel
16 Kombinatorik Hvis der er n hændelser, og hændelse i kan forekomme på N(i) mulige måder, så er antallet af mulige måder n hændelser kan forekomme på N()N(2) N(n) n fakultet: n!=n(n-)(n-2) (0!=) Permutationer: Antal mulige ordnede valg af r elementer ud af n elementer: n! n Pr = ( n r)! Kombinationer: Antal mulige uordnede valg af r elementer fra en grupper af n elementer: n = r n! r!( n r)!
17 Tavle eksempler på kombinatorik
18 Produktregel for uafhængige hændelser Reglerne for fællesmængde og foreningsmængde gælder også for flere end to hændelser Sandsynligheden for fællesmængden af flere uafhængige hændelser, er produktet af sandsynlighederne for de enkelte hændelser P(defekt korkprop)=0.75 P(4 defekte korkpropper)=0.75x0,75x0,75x0,75=0,3 Bemærk, når man udtager en stikprøve fra en STOR population, antager man uafhængighed mellem de enkelte elementer Sandsynligheden for foreningen af flere hændelser er givet ved: P(A U A 2 U...U A k ) = -P(A )P(A ) LP(A P(mindst en defekt korkprop) = - P(ingen defekte krokpropper) = - 0,25x0,25x0,25x0,25 2 k )
19 Opsamling Mængder Hændelser Sandsynligheder Regler for sandsynligheder Simultan sandsynlighed (fælles mængde) Marginal sandsynlighed (sum ud over anden variabel) Additionsreglen (forenings mængde) Betinget sandsynlighed Uafhængighed Produktregel for uafhængige hændelser Kombinatorik
20 Opgaver Kapitel 2: 20, 2, 23, 3, 38, 57
Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning
Statistik Introduktion Deskriptiv statistik Sandsynslighedregning Introduktion Kasper K. Berthelsen, Institut f. Mat. Fag 8 Kursusgange Individuel mundtlig eksamen (7-skala) Udgangspunkt i opgaver Software:
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden
Sandsynlighedsregning og statistik
og statistik Jakob G. Rasmussen, Institut for Matematiske Fag [email protected] Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden
Sandsynlighedsregning
Sandsynlighedsregning Udfaldsrum og hændelser Udfald e:resultatetafetforsøg. Udfaldsrum S: Mængden af de mulige udfald af forsøget. Hændelse A: En delmængde af udfaldsrummet. Tilfældigt fænomen S e (eks.)
Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.
Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler
Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment
Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring
TØ-opgaver til uge 45
TØ-opgaver til uge 45 Først laver vi en liste over de ligninger med mere i [IPT], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Ligning (2.6) på side 5. [3]: Sætning 3.1, ligning (3.3) på side 7.
Lad os som eksempel se på samtidigt kast med en terning og en mønt:
SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve
Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22
Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: [email protected]
Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1
Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens
Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N.
Dagens program Afsnit 1.4-1.6 Kombinatorik - Permutationer - Kombinationer Udtagelse af stikprøver - Population - Med og uden tilbagelægning Eksempler 1 Sandsynligheder Udfaldsrum Ω = {ω 1,..., ω N } hvor
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Personlig stemmeafgivning
Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt
Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.
Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder
Sandsynlighed. for matc i stx og hf Karsten Juul
Sandsynlighed for matc i stx og hf 209 Karsten Juul . Udfald Vi drejer den gule skive om dens centrum og ser hvilket af de fem felter der standser ud for den røde pil. Da skiven sidst blev drejet, var
Allan C. Malmberg. Terningkast
Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig
Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner afsnit 6.1 og 6.2 Betingede diskrete
Simulering af stokastiske fænomener med Excel
Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former.
SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. Statistisk sandsynlighed Her finder man sandsynligheden for en hændelse ved at kigge på en
Modul 3: Sandsynlighedsregning
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 3: Sandsynlighedsregning 3.1 Sandsynligheder................................... 1 3.2 Tilfældig udtrækning fra en mængde........................
Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Hvad er sandsynlighedsregning? Formel/matematisk
Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Hvad er sandsynlighedsregning? Formel/matematisk
Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Hvad er sandsynlighedsregning? Formel/matematisk
Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: [email protected] Dagens emner Stokastiske variable: udfald
2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:
Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.
Sandsynlighedsregning & Statistik
Sandsynlighedsregning & Statistik for matematikstuderende Jørgen Larsen 2006 Roskilde Universitet Teksten er sat med skriften Kp-Fonts ved hjælp af KOMA- Script og LATEX. Tegningerne er fremstillet med
Opgaver i sandsynlighedsregning
Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)
Kombinatorik og Sandsynlighedsregning
Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,
1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed...
Indhold 1 Sandsynlighed 1 1.1 Sandsynlighedsbegrebet................................. 1 1.2 Definitioner........................................ 2 1.3 Diskret fordeling.....................................
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Sandsynlighedsregning Stokastisk variabel
Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på
Simulering af stokastiske fænomener med Excel
Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen
Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen
Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig
Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen
1 Velkommen til kurset Teoretisk Statistik Lærer: Niels-Erik Jensen Plan for i dag: 1. Eks: Er euro'en skæv? 4. Praktiske informationer 2. Eks: Regressionsmodel (kap. 1) 5. Lidt om kursets indhold 3. Hvad
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Nanostatistik: Opgaver
Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Kvantitative Metoder 1 - Efterår 2006. Dagens program
Dagens program Afsnit 1.7-1.8 Fødselsdagseksemplet, fra sidst Eksperimenterikkealleerligesandsynlige Diskrete sandsynlighedsfordelinger -Definition af sandsynligheder - Regneregler Hvad er sandsynligheder?
Susanne Ditlevsen Institut for Matematiske Fag susanne
Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer
TØ-opgaver til uge 46
TØ-opgaver til uge 46 Først laver vi en liste over de ligninger med mere i [ITP], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Sætning 3.1, ligning (3.3) på side 7. [3]: Sætning 3.1, ligning (3.4)
Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:
Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Statistik og sandsynlighed
Statistik og sandsynlighed Statistik handler om at beskrive og analysere en stor mængde data. som I eller andre har indsamlet. Det kan fx være tal, der fortæller om, hvor mange lynnedslag der er i Danmark
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 28. September, 2007 Stokastiske variable Betragt 3 kast med en mønt. Så er udfaldsrummet Ω = {(p, p, p), (p, p, k), (p, k, p), (p, k, k), (k, p, p), (k, p, k),
Sandsynlighed og kombinatorik
Sandsynlighed og kombinatorik Indholdsfortegnelse... 1 Simpel sandsynlighed... 2 Kombinatorik... 4 Sandsynlighed ved hjælp af kombinatorik... 7 Udregningsark... 8 side 1 Simpel sandsynlighed 1: Du kaster
Statistik noter - Efterår 2009 Keller - Statistics for management and economics
Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin
Kvantitative Metoder 1 - Forår Dagens program
Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 7. September, 2007 Hvad er sandsynlighedsregning? Formel matematisk måde til at håndtere tilfældigheder. Dybest set en formalisering af udregninger med proportioner.
Sandsynlighedsregning
Mogens Bladt www2.imm.dtu.dk/courses/02405 14. September, 2007 Betinget sandsynlighed ud fra proportioner Vi husker på definitionen IP(A B) = IP(A B). IP(B) Betragt en befolkning bestående af N personer.
Statistik og Databehandling N: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/kurser/ statdatabehandling/f06/
Statistik og Databehandling N: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/kurser/ statdatabehandling/f06/ Jens Ledet Jensen Statistik og Databehandling N: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/statdatabehandling/f06/
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
4 Stokastiske variabler
4 Stokastiske variabler I kapitel 3 viste vi, hvordan man kan tilskrive sandsynligheder til forskellige hændelser, der knytter sig til et eksperiment. I praksis vil et eksperiment ofte involvere mange
Sandsynlighedsregning
Sandsynlighedsregning En note om sandsynlighedsregning. Den er tænkt som supplement til Vejen til Matematik B2. Henrik S. Hansen, Sct. Knud Version 2.0 Indhold Indledning... 1 Sandsynlighedsregning...
3 Usikkerhed og sandsynligheder
3 Usikkerhed og sandsynligheder De fleste samfundsvidenskabelige problemstillinger involverer usikkerhed. For at kunne analysere disse er det nødvendigt med en dybere forståelse af begrebet usikkerhed
Sandsynlighedsregning & Statistik
Jørgen Larsen Sandsynlighedsregning & Statistik for matematikstuderende 2006 Indhold Forord 5 Del I Sandsynlighedsregning 7 Indledning 9 Endelige udfaldsrum. Grundlæggende definitioner.....................
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
INSTITUT FOR MATEMATISKE FAG c
INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: [email protected] Dataanalyse Sandsynlighed og stokastiske
Kvantitative metoder 2
Kvantitative metoder 2 Beskrivende statistik og analyse af kvalitatitive data 12. februar 2007 Kvantitative metoder 2: F3 1 Program for i dag: Test i multinomialfordelingen: Q-testet (BL.13.1-2) Opsamling
Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen
Vigtigste nye emner i.,. og.5 Sandsynlighedsregning. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Siene Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: [email protected] Binomialfordelingen
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug-juni 10/11 Institution Campus Vejle Handelsgymnasie Uddannelse Fag og niveau Lærer(e) Hold HHX Statistik
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder
Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)
; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24.
10. 10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. Bestem udfaldsrummet for lykkehjulet. 10.2 En tegnestift Du putter en tegnestift i et raflebæger, ryster det godt og smider
Indblik i statistik - for samfundsvidenskab
Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik
Vejledende løsninger til opgaver i kapitel 6
Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer
